N

UNIVERSITETET I OSLO
Institutt for Informatikk

Reliable Systems
Martin Steffen

INF 5110: Compiler construction
Spring 2023 Series 8 12. 7. 2023

Topic: Code generation (Exercises with hints for solution)

Issued: 12. 7. 2023

The exercises here are mostly taken from older exams. More exam questions, including more
questions involving code generation are uploaded in a document examcollection.pdf (in the
directory handouts).

Table [shows from which exams the exercises are taken.

Exercise [2 exam 2007, problem 4(a)
Exercise [3 exam 2009, problem 4
Exercise [4I exam 2010, problem 4(d)
Exercise [5| (3) + (4) exam 2011, problem 4(c)+4(d)
Exercise [6l exam 2016, 4

Exercise [T exam 2017, 6

Table 1: Exam questions

Exercise 1 (Code generation) In this exercise we look at the code generation from the notat
(i.e., from [?, page 538...])

1. This is meant as repetition from the lecture. In the section for code generation, there
is an example for which we showed at the very end of the section the resulting machine
code. Look at the details how this algo generates this sequence. Try to determine a code
sequence which is better (but does the same) than the one from that example. For the
code, see the slide with the title Code sequence at the end.

2. Discuss possibilities how one could improve the given algorithm from the lecture (taken
from that book/notat).

3. Translate the TAIC from Listing [l| to machine code using the algo from the notat/lecture.
Consider some variations and improvements discussed in the previous point.

Assume that

e there are two registers initially “empty” and

e assume that for division “/”, both source and destination have to reside in registers.

Listing 1: 3AIC

t == a — ¢
u:= a + ¢
w:=a/ t
d :=w+u

www.uio.no
http://www.ifi.uio.no

Series 8 (+ Hints for solutions) 12. 7. 2023

Solution:

1. The task here is just to read and think through the corresponding material. Cf. the notat,
resp. the slides of the corresponding chapter with headers like “Code generation algo for
x :=y op z” and the following, also the material/slides about getreg-function).

2. The answer to this question is (partly) implicitly given by remarks in the lecture and the
script in which way the code generation is “simple” and restricted.

One remark was that the code generation is unaware of the “semantics”. One simple
example is that some operations are symmetric (addition, multiplication). So, semantically
and as far as the result is concerned, z := y op z and = := z op y are the same. It might, of
course, happen that, for example the values of y and/or z are contained in the registers in
such a way that one of the two (otherwise equivalent) variants is preferable (less “cost” in
the given cost model). There are other such improvements (like for instance, the addition
in x := y 4+ 0 needs not to be performed).

These are simple examples that can be understood as transformations on the “source code”
(which in this case means 3AIC). These improvements are simple in that they concern one
line only.

Possibilities of improving the code generation taking into account more than one such line
are basically limitless (depending on how much “intelligence” and “semantic analysis” and
computational effort one is willing to invest. An improvement could for instance try to
swap 2 neighboring lines (or more) in case the semantics is unaffected by that (no data
dependencies) and see if it leads to an improvement.

Attempting a truly optimal code (even restricted to basic blocks), while theoretically
thinkable, is typically not attempted.

In the lecture we have hinted at the liveness information gives a good handle on an
improvement. Already the simplest form, taking into account one single basic block, is
an important improvement (and the algo sketched in the code generation chapter takes
that into account). As mentioned, one could make the liveness information also “global”
spanning more than one basic block. One might debate, whether that should count as
an improvement of code generation or rather basically the same code generation, only
relying on better liveness information. The code generation algo, though, would need an
adaptation (and improvement thereby), as at the end of the block, registers need not be
“flushed back” unconditionally.

Liveness analysis is important, but there are other “semantical properties” which one could
analyze (for instance to avoid re-computation).

If one moves one value from the memory into a register, and the op destroys that due to
the specific form of the code generation here (for instance as done by the first instruction
in our example), then it might be worthwhile to copy the value into a second register (to
keep it for further use). That would rely on liveness information, as well. One may also
take into account, how “long” in the future the value will be needed again. If the next
use is in the very near future, such a copy should lead to an improvement, if far into the
future, it may not (the register way well be purged until the next use, and the copy was
for nothing, resp. the copy costed time in the cost model for no other gain.)

3. The code is given in Listing 2l For the alternative, where the 3AIC replaces d := w + u by
d ;= u + w: We only have to look at the last 2 lines, as the previous lines are unaffected.
In first approximation, the code generation works line by line. The code generated by
one line is influenced by the code generated from the previously lines in that it takes into
account the current status of the registers. However, the code generated “in the future”

Series 8 (+ Hints for solutions) 12. 7. 2023

does not influence the code generated for one line of 3AC. On the other hand, it’s not
strictly true that the “future source code” has no influence on the code generation.

Series 8 (+ Hints for solutions)

12. 7. 2023

© W N O e W N

I e R T e e
© 00 N O Uk W N = O

© W N o U A W N e

N e
=W N = O

15
16
17
18
19
20

Listing 2: Generated code

MOV a RO
SUBb RO // t in RO

MOV a R1 // what a pity: reload a
ADD c¢ R1 // u in Rl
// both regs full, one of
// them needs to be ‘‘purged’’
// We choose Rl (containing u)
// as t (in RO) will soon be
// used:
MOV Rl u // save value for u ‘‘back home’’

MOV a Rl // t still in RO

DIV RO Rl // w in Rl
// RO is ‘‘free’’ as t is mno
// longer needed (not live)

ADD u Rl // w is lies perfectly in Rl already
MOV R1 d /] copy d’s value to home position

Listing 3: Generated code, changed last 3AIC line

MOV a RO
SUBb RO // t in RO

MOV a R1 // what a pity: reload a

ADD c¢ R1 // u in Rl
// both regs full, one of
// them needs to be ‘‘purged’’
// We choose R1 (containing u)
// as t (in RO) will soon be
// used:

MOV R1 u // save value for u ‘‘back home’’

MOV a RI1 // t still in RO

DIV RO Rl // w in Rl
// RO is ‘‘free’’ as t is mno
// longer needed (not live)

below here: alternative code d := u + w
MOV u RO
ADD RO R1
MOV R1 d

Exercise 2 (Code generation (-%))

1. Given is the program from Listing |4l The code is basically three-address code, except that
we also allow ourselves in the code two-armed conditionals and a while-construct (with
the conventional meaning). The input and output instructions in the first two lines resp.
the last two lines are considered as standard three-address instructions, with the obvious
meaning of “inputting” a value into the mentioned variable resp. “outputting” its value.

We assume that no variable is live at the end of the code.

Series 8 (+ Hints for solutions) 12. 7. 2023

© W N O e W N

e T~ S S S S
U W N = O

Listing 4: 3-address code example

= a b // <— looky here

output a
output b

Which variables are live immediately at the end of line 4. Give a short explanation of your
answer.

Solution: One way to answer that problem is to draw the control-flow graph (just for the
overview) and go through the steps of the liveness algo. But actually, the program is simple
enough so one might even more easily just look at the program and figure out by “carefully
thinking” which of the variables at the specific line are live and which are not. Note: it’s not
required to give the values for the inLive and outLive points throughout the CFG. Other exam
questions do require the full construction (partition the intermediate code, show the CFG, and
show the liveness result for all positions in the graph), but here one is allowed to simply give the
result (it’s easy enough), i.e. to simply list the variables for which the info is needed (a, b, ¢, d)
and state their liveness status + some words of explanation (in an exam, one can keep the
explanations shorter than the ones here).

a: That’s a tricky one. But it’s live! In the else-branch, the first thing to happen to a is that

it’s assigned to (“defined”). So in that branch, it is dead. In the true-branch, it’s assigned
to also, but it’s inside the while-loop. If it so happens that the while-loop is not executed
at all, then obviously the assignment to a will not happen. Which means, the first thing
to happen to a is the output-statement in line 15. That most definitely counts as “use”
of a. It is important to realize that it does not matter whether the while-loop actually
is executed or not (we are technically dealing with static liveness). We are conceptually
operating on the CFG, where there are 2 possiblities: the while-loop is entered, or not.
Since statically we don’t know what actually happens, we have to take both options into
account. Therefore, as said, a is live.

b: The variable is immediately live as it is used in the next line.

c: The variable is never “used”. It’s only mentioned in live 4, where it’s assigned to (“defined”)

¢

but afterwards never even mentioned (and not before either). So, being a “write-only”

variable, it’s completely useless, and more specifically dead after line 4.

d: This variable is more interesting again. Like b, it’s assigned to in both branches of the

conditional, but unlike b, it’s not assigned-to (in the false-branch) inside the while-loop. So,
unavoidably, in both cases, d is overwritten before it’s used again in the output statement
in line 16. Therefore, d is dead.

Series 8 (+ Hints for solutions) 12. 7. 2023

Exercise 3 (Code generation (%))

Consider the following program in 3-address intermediate code.

Listing 5: 3-address code example

1||a = input

2({|b := input

s||tl == a+b // line 3

4(|t2 == a PR

5lc == t1 + t2

6|[if a < ¢ goto 8

71lt2 := a + b

s|lb = 25 // line 8

9llc := b 4+ ¢

w|d:=a—">b

1| if t2 = 0 goto 17

12f|d := a + b

1|tl := b — ¢

mufllc :=d— tl

15 || if ¢ < d goto 3

6|lc ;= a + b

17 || output c // line 17

18 || output d

1. Indicate where new basic blocks start. For each basic block, give the line number such that
the instruction in the line is the first one of that block.

2. Give names Bjp, Bs, ...for the program’s basic blocks in the order the blocks appear in
the given listing. Draw the control flow graph making use of those names. Don’t put in
the code into the nodes of the flow graph, the labels B; are good enough.

3. The developer who is responsible for generating the intermediate TA-code assures that
temporary variables in the generated code are dead at the end of each basic block as well
as dead at the beginning of the program, even if the same temporary variable may well be
used in different basic blocks.

Formulate a general rule to check locally in a basic block whether or not the above claim
is honored or violated in a given program.
Assume that all variables are dead after the last instruction.

4. Use the rule formulated in the previous sub-problem on the TA-code given, to check if the
condition is met or not. The temporary variables are called ¢1, t2 etc. in the code.

5. Draw the control flow graph of the problem and find the values for inLive and outLive for
each basic block. Consider the temporaries as ordinary variables.

Point out how one can answer the previous Question 4.d directly after having solved the
current sub-problem.
Are there instructions which can be omitted (thus optmizing the code)? Are there variables
which are potentially uninitialized the first time they are used.

Solution:

1. The basic blocks are indicated as comments in the code. The line numbers shift therefore,

of courseE] The first line indicates a basic block, targets of (conditional) jumps indicated
basica blocks, and lines after (conditional) jumps indicate basic blocks.

!Note that many representations, for instance in our lecture, favor 3AIC, where one uses symbolic labels not
actual line numbers. That’s a better way of dealing with the issue of (conditional) jumps in intermediate code,
anyway. The same applies to assembly code.

Series 8 (+ Hints for solutions) 12. 7. 2023

Listing 6: 3-address code example: basic blocks added

1|l // B1
2||la := input

3(|b := input

a|l// B2
5[1tl == a+b // line 3
6(|t2 := a [P

7llc == t1 + t2

s||if a < ¢ goto 8

9 B3
w|t2 := a+ b

11 B4
12||b = 25 // line 8
13|lc ;= b 4+ ¢

1uild := a—>

15| if t2 = 0 goto 17

16 B5

7||d ;= a + b

18l[tl :(= b — ¢

wlc = d— tl

2 || if ¢ < d goto 3

21 B6

2(lc ;= a+ b

23 B7

24 || output c // line 17
25 || output d

26

2. For the CFG. see below in e)
3. A possible rule could be

All temporaries which are used in a given basic block must be assigned to (“de-
fined”) in the same before the (first) use.

Another way of saying it is:
No temporary variable must have a “next-use” at the beginning of a basic block.

4. sanitary check: In block By, the temporary ¢y violates the formulated rule.

5. Liveness:

=

i

4] 1] 9]
a = input + b B5 a = input B1
b = input —c = input
-t
a goto B2 4]
4] 4]
1= a+b (%] t1=a+b B2

2= a*2 2= a*2
i : [c-aro 8 | [C10 %

if a< cgoto B4 if a< cgoto B4

output ¢ B7
output d

%)

output ¢
output (

Series 8 (+ Hints for solutions)

12. 7. 2023

(4]

a = input

b = input

Q@

1] act2
t1=a+b b =2 B4
2= a*2 PR
c=t1+12 7 = 4a-

jf a< ¢ goto B4 if 2 = 0 goto B7

abecd

4]

a = input

b = input

ab

ab ac t2

1= a+b =2 B4

2= a*2 =o+c
=a-b

c = 1+ t2 .

f a<cgoto B4 if t2 =0 goto B7

abct2 abecd

abec Og dermed gjelder:

* Ingen variable blir brukt
far de har fatt verdi

» Ingen TA-instruksjoner
kan fjernes

« Qg t2erilnlLive til B4

Exercise 4 (Code generation (—%))

abec
4]
b B5 p
c a = input
” b = input
oto B2
g 2
abd
ab
abd
ti=a+b
c=t1+12
cd if a< cgoto B4
abct2
cd
abec
output ¢ B7
output d 2= a+b B3
4] act2
abec
+b B5
-c
-t
goto B2
abd
abd

c=a+b

&]

cd

cd

output ¢
output d

B7

%)

abecd

1. Arne has looked into the code generation algo at the end of the notat (from [?, Chapter
9]). He surmises that for the following 3AIC

1 tl ;= a—b

2 t2 := b — ¢
the code generation algorithm will produce the machine instructions below. He assumes
two registers, both empty at the start.

Listing 7: 2AC

L[MOV a, RO

MOV b, RI

5 |[SUB R1, RO

4||SUB ¢, R1
Ellen disagrees. Who is right? Explain your answer.

Solution: Arne is wrong. The code is not as it is generated. The code as such makes

“semantical” sense, it’s just not code that is being generated according to the code generation
from [?]. How can we easily see that? What makes the code generation a bit weird is that the
machine code is a two-address code and that it uses the two operands in some peculiar way, in

output ¢
output d

e R N

Series 8 (+ Hints for solutions) 12. 7. 2023

particular, it determines first a location where the result should go. The preference is strongly
that the result is supposed to end up in a register. Even if the registers are all “full” still the
code will put the result in a register (but of course saving the content back to main memory).
The circumstances when or how that happens are not fully given in the book. However, as long
as there are free registers, a register is taken for the result. The second step is: check whether
the first operand (by happenstance) already in that register. Well, as the exercise states: we
have 2 registers, both are empty. Therefore 1) the result will end up in a register, say Ry, and
2), we have to move the first operand into that register. So the first line of the code is still
fine. It’s the second line where the shown code deviates from the presented code generator:
The “second” step is always the execution of the operation itself (of course, if the first step is
missing, the “second” step is actually the first).

So: an easy way to see that the code generation won’t generate the code of Listing [7]is: the
code generator always translates the prototypical 3AIC assignment with a binary operator (the
one we discussed in the lecture)

into 1 or to 2AC assinments: either just “OP...” or MOV followed by “0OP”.

Therefore, independent from whether the above sequence makes semantically sense or not: the
code generator won’t generate it.
It’s not part of the question, but here’s the code which would be generated

Listing 8: 2AC (not part of the required answer)

// t1 is not in a register , so we choose one (R0O) and then
MOV a, RO // load first operand to that register.
// This register is also which contains the result
SUB b, RO // do the substraction.
MOV b, Rl // the second line is translated analogously.
SUB ¢, R1 // a is not live after the first 3AIC code, we could
// reuse RO therefore!

Exercise 5 (Code generation & P-code (25%))

1da v “load address” Determine the address of variable v and push it on top
of the stack. An address is an integer number, as well.

1dv v “load value” Fetch the value of variable v and push it on top of the
stack

ldc k¥ “load constant” Push the constant value k£ on top of the stack

add “addition” calculate the sum of the stack’s top two elements, re-

move (“pop”) both from the stack and push the result
onto the top of the stack.

sto “store”

jmp L “jump” goto the designated label

jge L “jump on greater-or-equal” similar conditional jumps (“greater-than”, “less-than”
..) exist.

lab L “label” label to be used as targets for (conditional) jumps.

Table 2: P-code instructions

1. This sub-task is to design a “verifier” for programs in P-code, i.e., for sequences of P-code
instructions.

Series 8 (+ Hints for solutions) 12. 7. 2023

2.
3.

(a) List a many possible “properties” that the verifier can or should check or test in
P-code programs. Explain in which sense a P-code program is correct given the list
of properties being checked for.

(b) Sketch which data structures

We want to translate the P-code to machine code for a platform where all operations,
including comparisons, must be done between values which reside in registers and that
register-memory transfers must be done with dedicated LOAD and STORE operations. During
the translation, we have a stack of descriptors.

Consider the P-instruction
1dv b

where b is a variable whose value resides in the home position. This instruction therefore
pushes the value of b onto the top of the stack. When translating that to machine code,
a question there is what is better: 1) doing a LOAD instruction so that the value of b ends
up in register or alternatively 2) push a descriptor onto the stack marking that b resides
in its home position.

Discuss the two alternatives under different assumptions and side conditions. These may
include whether the user-level source language assures an order of evaluation of compound
expressions. Other factors you think relevant can be discussed as well.

. Again we translate our P-code to machine code and, as in the previous sub-problem, we

assume we translate again one block at a time, in isolation, and that consequently all
registers have to be “emptied” at the end of a basic block in a controlled manner.

The question is to find out which data descriptors in the stack are needed and if other
kinds of descriptors are needed.

We assume that we can search through all the descriptors of the elements on the stack
each time this information is needed. In that way, we avoid having to add another layer
of descriptor(s).

With your descriptor design: describe how to find information needed during code gener-
ation and, if your design contains additional descriptor, how to make use of them.

Solution:

3.

The following is from the given solution at that time.

(a) If the language definition specifies that the evaluation order is fixed from left-to-
right, one should generate a LOAD instruction to get the value into the registers. If
the language definition leaves the order open, it may be better not to load the variable
but a corresponding descriptor into the stack. Remember that the stack is not a run-
time stack, it’s a data structure the code generator uses to perform it’s task. Insofar
that the code generator goes through the intermediate code (here P-code) of the basic
block instruction by instruction, it does some form of “static simulation” of the P-
code execution, including doing a form of simulation of the stack (in the simulation

10

Series 8 (+ Hints for solutions) 12. 7. 2023

however, operating with descriptors). In that sense, it’s a kind of “simulation” of
a stack at run-time, but it’s not what we call the stack of ARs of a typical, stack-
allocated run-time environment.

(b) The situation leaves room for many optimizations. One situation discussed is that if
the expression contains a function call (or method call etc). I would not cover that
in this tasks, since I would not really consider that the expression then is part of one
basic block. The call would lead to the situation that the basic block is split into (at
least) two sub-blocks: before the call and after. It’s not part of the lecture how the
blocks and edges are done (i.e. how the CFG is done) in the presence of function
calls. One proposed solution ignores that and treats a function call as being “inside”
the basic block. The problem with function calls is that they can change values (the
may have side effects). If there are side effects, the order of evaluation matters, if
there are no side effects, the order does not matter. If therefore the expression is
side-effect free there’s no need to load the value directly, as it effectively does not
matter when it’s loaded. Therefore one may be better off simply using the descriptor
stack marking where the variable is being found in memory.

4. In any case we need the following

e if the argument is a constant (and which)
e if the value of the argument is a program variable (and which)

e if the value resides in a register (and in which)

Not everything possible will be recorded on the stack. Note that we don’t record on the
stack what is the content of the registers (only indirectly by saying whether or not a value
can be found in this-and-that register).

It should be noted that the descriptors stack is not really good enough to keep track of all
the information the code generator wants to keep an eye on. At least if it wants to keep
a level of overview over registers and variables comparable to the code generator from the
lecture. The reason why the stack itself is not good for that, no matter how much info
we plan to store into the stack entries, is simply that popping arguments off the stack
means, forgetting all information stored for the corresponding operand. The stack may
easily become empty during the expression evaluation in the middle of a basic block, after
which the code generator would not know where variables are etc.

Thus, one needs additionally to store such information, independent from the stack. Bas-
cially, one would need, besides the stack, register descripters and address descriptors in
the same way the code-generator from the lecture for 3AIC uses.

11

Series 8 (+ Hints for solutions) 12. 7. 2023

Exercise 6 (Code generation (%))

In this problem we look at code generation as discussed in the lecture, i.e., as covered by
the “notat” which had been made available and which covers parts of Chapter 9 of the old
“dragon book” (Compilers: Principles, Techniques, and Tools, A. V. Aho, R. Sethi, and
J. D. Ullman, 1986).

1. Register descriptors indicate, for each register, which variables have their value in this
register.

(a) A single register can contain the values of more than one variable. Give a short
explanation/example of how a situation like that can occur. You can keep it really
short.

To get more efficient (i.e., faster) executable code, we want to consider transformations of
three-address intermediate code, but we restrict ourselves to transformations local to basic
blocks. We again assume the code generation as done in the “notat”

So assume a basic block consisting of three-address instructions. Those look typically
as follows x :=y op z, where x, y, and z are ordinary variables or temporaries. But
constants are allowed as well (for instance, as in x := 6), to allow examples with not to
many variables.

We consider as the only allowed optmization to interchange lines of three-address instruc-
tions.

2. Describe a concrete situation where such an interchange makes the generated
code faster without of course changing the semantics.

Concrete means, lines of three-address code. Use one register only (called R). Make all as-

sumptions explicit (“at the beginning of my example, R is empty /R contains ..."”). Explain
why the interchange leads to a speed-up, referring to the cost-model of the notat/lecture.
|

Solution:

(a) Register descriptors:

(a) The answer should simply be x:=y where x and y are different variables (resp. have
different home positions), or an explanation to that effect. It’s not required to give
the machine code, an argument suffices. If one does not mention that x and y are
different, it’s accepted as ok as well.

We have not looked at the concrete code generation procedure for the x := y. But,
it was discussed in the lecture, it’s fairly obvious, and it is explicitly mentioned in
the notat. It should be immediate.

(b) Local optimization: It should be fairly easy to figure out one example covering at least
the spirit. To get a speed-up, we need to avoid register-memory traffic. One can different
points of the code generator to illustrate the speed-up.

For a correct answer, one should give

e original 3AC program plus clear indication of what is swapped

e the generated machine codes resp. the generated machine code from the original and
explain what changes and why

e mention how that affects the costs in the cost model. Exact calculation of the given
“program” is not needed, but reference to the cost model is.

12

Series 8 (+ Hints for solutions)

12. 7. 2023

© 0w N O s W N

e e e T e =
® N O ok W N = O

© 0w N O Uk W N

e e
gt W N = O

The code generation has some fine points (like liveness etc). For a full answer, let’s not

insist on that.

One example: “purging” a/the register In the cost model (and in general) register-
memory traffic costs. Especially it costs more than operations on registers. The idea of
an example is therefore: before the swap, the only register is being used for one step of
the code, after the swap, it cannot be used for that step, as it’s being used for something
else. That requires that the value has to be stored back to the home position and reloaded
later. That makes the program “more costly”.The example from Listing [9] and [I0] makes

use of that.

Listing 9: Reuse of a register for y

// initially , R

empty

y i=x + 1 // use R for the result:
// Load x 1
// R—>y (not up—to date)

z y + 1 // re—use R (containing y): 0 Reg—Mem move 0
// for loading it. So, (2) of code—gen omits
// the MOV
// however: y needs to be saved (which
// is required by get—reg, case (3)
// Store y (because it’s assumed to be live) 1
// R—> 2z (not up—to date)

a t1 + t2 // Store R z (save z) 1
// load tl1 1
// load t2 1
// R—> A (not up—to date)
// end of block: save a 1

Listing 10: Reuse of register no longer possible

// initially , R empty

y = x + 1 // use R for the result:
// Load x: 1
// R |=> y (not up—to date)

a t1 + t2 // Store R —> y (get—reg —(3) 1
// Load t1 1
// Load t2 1
// R |—> a (not up—to date)

z y + 1 // Store a (no reuse) 1
// Load y 1
// result: R <— z (not up—to date)
// end of block: store z 1

Exercise 7 (Code generation (%))

13

Series 8 (+ Hints for solutions) 12. 7. 2023

(a)

© 0w N O Uk W N

=
o

Consider the following transformation on three-address code, illustrated on the following
example.

Listing 11: Before

Listing 12: After

1[if t =0
2 || then X =y + 2
, X = y+ 2 2|[if t = 0
o ' 3 || then
i: els:rebt of then—branch> 4 <rest of then—branch>
. K=y 4z 5| else
7 <rgs?c] of élse—branch> ¢ <rest of else—branch>
. 7|l endif
s || endif

The idea is to move “common instructions” (like the assignment x = y + z in the example)
before the conditional, so long it does not change the semantics of the code. The three
address code in this sub-problem supports two-armed conditionals (if-then-else), not the
if-goto constract as in the lecture and in sub-task @

Assume code generation as covered in the “notat” which covers parts of Chapter 9 of
the old “dragon book” (Compilers: Principles, Techniques, and Tools, A. V. Aho, R.
Sethi, and J. D. Ullman, 1986). Assume further that the code generator has access to
local liveness information, i.e., liveness information per basic block, but no global liveness
information is available.

Under these assumptions, what are potential effects of the code transformation on the
qualitity of the generated code? Discuss this question referring to the cost model of the
notat /lecture.

Note: neither exact sequences of possibly generated two-address code nor detailed calcu-
lations of costs are expected /needed as answer, just a short discussion of the influence of
the transformation on factors of the cost model.

Consider the program from Listing [13|in three address code. We do not distinguish here
between temporaries and standard variables.

(a) Indicate the basic blocks in giving start and end line for each block (numbering the
blocks like By, Bj, etc.) You can also use the code repeated in the appendix, drawing
clearly visible horizontal lines indicating the boundaries of the blocks and give the
B;-numbers of the blocks.

(b) Draw the control flow graph of the program using By, B from the previous question
to identify the nodes of the graph.

(¢) Does the control-flow graph contain a loop? Use the notion of loops for control-flow
graphs from the lecture.

(d) Give the inLive and outLive information for each block (best in the form of a table).

Listing 13: Three-address code

x = input

y = input

label L1
b=x+4+y

z = blzl

label L2

x =a+ 1

if false x goto L3
X =y + X

if_true z goto L5

14

Series 8 (+ Hints for solutions)

12. 7. 2023

11
12
13
14
15
16

goto L1
label L3
z =b [P
goto 1.2
label L5
output x

15

Series 8 (+ Hints for solutions) 12. 7. 2023

Solution:

(a) The task gives only 8 points and no huge calculations or deep or long essays is expected.
There is also no unique best answer, the stituation is at least ambiguous. Factors that
influence the effect of that transformation are the following:

e memory-register traffic costs.

e since we have block-local information only, a variable (not a temporary) at the end
of a block is considered live.

e temporaries are stored back at the end of a block (they are treated as if they were
dead). The latter is the way temporaries are supposed to be treated by the code
generation.

All these are factors for an answer. One good answer could mention: if one moves an
assignment in front of such a two-armed conditional (in the way sketched by the illustrative
example): variables that occur in there (like y) are then definitely considered live (as they
occur at the end of the block before the branching. Therefore, if they happen to be in a
register, the register cannot be freed [check that, maybe they have to moved back to the
home position]. By “freeing” I mean the last step in the code generation, see the slides
around slide 55 about “recycling registers” using liveness informationﬂ If in term instead
is in the branches (before the optimization), it can be that in the rest of that basic block,
y (for instance) is not used any more, i.e., it’s clear that it’s not live. Therefore, the code
generator knows now locally that y is dead and is able to register. With an additinal
register free, that can improve the performance (avoiding memory-register traffic for other
variables etc).

The above explanation used the transformation putting x = y + x right in front of the
block. It’s only an example, if one uses differnent such transformations (pulling a line or
even more) in front, that’s ok too.

Instead of concentrating on y (or z), one can also take z for an argument. See the getreg-
algo, which determines the location where x is supposed to stay. For instance see slide
59 and around there. z will be put into a register, if there is one free. If not, liveness
information for x will be taken into account, resp. next use in the block (in case 3)E| In
case there is a next use, z can end up in a register (and if one is lucky, the content of that
register does not need to be written back!). If one moves the assignment in front, then the
condition does no longer apply, and = needs to be written back to main memory.

One particularly neat (and detailed/insightful) argument could take into account = and
y, where y is loaded to a register and y is dead (see point 1 of getreg). There, one can
simply reuse the register for y. If one becomes “considered life”, point 1 does no longer
apply, so in the worst case 4 applies, so then = has to be stored back immediately. Note
that in case 4, the storing back is done unconditionally. Keeping it in a register may
save memory-traffic: if a register value and a home location diagree, “reconciling” them is
avoided by the code generation for dead variables, when dead means: the next thing that
happens is overwriting them.

A non-argument is: the code gets shorter, therefore the cost model says better. It’s true
that the code gets shorter. But the question is not the space is main-memory, but how

2That the register for, say y, can be freed would assume additionally, that the register contains an up-to date
value of y (and would contain not the value for other non-dead variables on top). If the value in 3’s “home
location” is stale and if the register is freed, then of course the register would have to be written back, before
freeing it. We don’t expect an argument on this level of detail, especially since the details of which register to
take when purging a register were not fully given in the book.

3If 2 is dead, then there’s no need to actually do the assignment. However, the code generation does not take
that into account. It will not omit the assignment to a dead x. A more clever algo might do that though.

16

Series 8 (+ Hints for solutions) 12. 7. 2023

many “lines of code” will have to be loaded to the processor at run-time. Therefore the
code for z = y+ z when given in both branches is nonetheless only executed one depending
on which branch is taken [

This one should be rather standard. Finding the basic blocks should be faster than the
other, the second one is more cumbersome (but also standard). I weight 6 (blocks, CFG,
loop) vs. 8 (inlive and outlive).

In the suggested solution from Listing I added a block (without name) which contains
only one goto-statement. One can make the argument that this is a block. One may
also see it as node that is empty (it contains no real code, just a jump which should be
represented ultimately as edge in the cfg.) Wheter or not a node is drawn in the CFG
representing that block does not matter for the correctness of a solution. In my solution,
I did not bother to draw it. Being an empty node, its inlive and outlive would coincide.

4Side remark: the code generator might of course generate different 2AC from z = y + z in each of the two
branches.

17

Series 8 (+ Hints for solutions)

12. 7. 2023

Listing 14: Three-address code, BBs indicated

BO
input
y = input
B1

X

label L1
b=x+4+y
7z = blzl

B2

© ~ =] ot - W [V —

label 1.2

x =a+ 1

if_false x goto L3
B3

X =y + X

if true z goto L5
B4

goto L1

=
= o

e
= W N

=
o w

B5

o
3

label L3
z =b [P
goto L2

[a——
S © ®

B6

N
=

label L5
output x

NN
w N

V)
i

|output X I

(¢) A good answer should take into account the fact that there is only local

18

Series 8 (+ Hints for solutions) 12. 7. 2023

Lin Lout

BO {a,z} {a,z,y, 2}

Bl | {a,z,y,2} | {a,b,y,z}

B2 | {a,b,y,2} | {a,b,x,y,2}
B3 | {a,z,y,2} | {a,z,y,2}

B4 | {a,z,y,2} | {a,z,y,z}

B5 | {a,b,y} {a,b,y,z}

B6 {«} {}

Korrektion description:

e An answer that shows one has understood the code generation and the cost-model and
gives a reasonable explanation (perhaps an example) would get full points. I expect that
many would take the example with = y + z as basis for an argument (which is fine, but
not required).

Often, the answer was skipped. In general, it was not answered very well.

e For the global analysis, the blocks, the graph, and the loop question were answered ok.
Each gave 2 points. The liveness information: the answers were mixed, it was below
average.

O

References

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques,
and Tools. Addison-Wesley.

19

	Code generation
	Code generation
	Code generation
	Code generation & P-code
	Code generation
	Code generation

