
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems

Martin Steffen

INF 5110: Compiler construction
Spring 2023 12. 7. 2023Series 8

Topic: Code generation

Issued: 12. 7. 2023

The exercises here are mostly taken from older exams. More exam questions, including more
questions involving code generation are uploaded in a document examcollection.pdf (in the
directory handouts).

Table 1 shows from which exams the exercises are taken. I don’t have a complete solution
from all older exams.

Exercise 2 exam 2007, problem 4(a)
Exercise 3 exam 2009, problem 4
Exercise 4 exam 2010, problem 4(d)
Exercise 5 (3) + (4) exam 2011, problem 4(c)+4(d)
Exercise 6 exam 2016, 4
Exercise 7 exam 2017, 6

Table 1: Exam questions

Exercise 1 (Code generation) In this exercise we look at the code generation from the notat
(i.e., from [Aho et al., 1986, page 538. . .])

1. This is meant as repetition from the lecture. In the section for code generation, there
is an example for which we showed at the very end of the section the resulting machine
code. Look at the details how this algo generates this sequence. Try to determine a code
sequence which is better (but does the same) than the one from that example. For the
code, see the slide with the title Code sequence at the end.

2. Discuss possibilities how one could improve the given algorithm from the lecture (taken
from that book/notat).

3. Translate the TAIC from Listing 1 to machine code using the algo from the notat/lecture.
Consider some variations and improvements discussed in the previous point.

Assume that

• there are two registers initially “empty” and

• assume that for division “/”, both source and destination have to reside in registers.

www.uio.no
http://www.ifi.uio.no

Series 8 12. 7. 2023

Listing 1: 3AIC

1 t := a − c
2 u := a + c
3 w := a / t
4 d := w + u

Exercise 2 (Code generation (-%))

1. Given is the program from Listing 2. The code is basically three-address code, except that
we also allow ourselves in the code two-armed conditionals and a while-construct (with
the conventional meaning). The input and output instructions in the first two lines resp.
the last two lines are considered as standard three-address instructions, with the obvious
meaning of “inputting” a value into the mentioned variable resp. “outputting” its value.
We assume that no variable is live at the end of the code.

Listing 2: 3-address code example

1 a := input
2 b := input
3 d := a + b
4 c := a ∗ b // <− looky here
5 i f (b < 5) {
6 while (b < 0) {
7 a := b + 2
8 b := b + 1
9 }

10 d := 2 ∗ b
11 } else {
12 d := b ∗ 3
13 a := d − b
14 }
15 output a
16 output b

Which variables are live immediately at the end of line 4. Give a short explanation of your
answer.

Exercise 3 (Code generation (%))

Consider the following program in 3-address intermediate code.

Listing 3: 3-address code example

1 a := input
2 b := input
3 t1 := a + b // l i n e 3
4 t2 := a ∗ 2
5 c := t1 + t2
6 i f a < c goto 8
7 t2 := a + b
8 b := 25 // l i n e 8
9 c := b + c

10 d := a − b
11 i f t2 = 0 goto 17
12 d := a + b

2

Series 8 12. 7. 2023

13 t1 := b − c
14 c := d − t1
15 i f c < d goto 3
16 c := a + b
17 output c // l i n e 17
18 output d

1. Indicate where new basic blocks start. For each basic block, give the line number such that
the instruction in the line is the first one of that block.

2. Give names B1, B2, . . . for the program’s basic blocks in the order the blocks appear in
the given listing. Draw the control flow graph making use of those names. Don’t put in
the code into the nodes of the flow graph, the labels Bi are good enough.

3. The developer who is responsible for generating the intermediate TA-code assures that
temporary variables in the generated code are dead at the end of each basic block as well
as dead at the beginning of the program, even if the same temporary variable may well be
used in different basic blocks.

Formulate a general rule to check locally in a basic block whether or not the above claim
is honored or violated in a given program.

Assume that all variables are dead after the last instruction.

4. Use the rule formulated in the previous sub-problem on the TA-code given, to check if the
condition is met or not. The temporary variables are called t1, t2 etc. in the code.

5. Draw the control flow graph of the problem and find the values for inLive and outLive for
each basic block. Consider the temporaries as ordinary variables.

Point out how one can answer the previous Question 4.d directly after having solved the
current sub-problem.

Are there instructions which can be omitted (thus optmizing the code)? Are there variables
which are potentially uninitialized the first time they are used.

Exercise 4 (Code generation (–%))

1. Arne has looked into the code generation algo at the end of the notat (from [Aho et al., 1986,
Chapter 9]). He surmises that for the following 3AIC

1 t1 := a − b
2 t2 := b − c

the code generation algorithm will produce the machine instructions below. He assumes
two registers, both empty at the start.

Listing 4: 2AC

1 MOV a , R0
2 MOV b , R1
3 SUB R1 , R0
4 SUB c , R1

Ellen disagrees. Who is right? Explain your answer.

3

Series 8 12. 7. 2023

lda v “load address” Determine the address of variable v and push it on top
of the stack. An address is an integer number, as well.

ldv v “load value” Fetch the value of variable v and push it on top of the
stack

ldc k “load constant” Push the constant value k on top of the stack
add “addition” calculate the sum of the stack’s top two elements, re-

move (“pop”) both from the stack and push the result
onto the top of the stack.

sto “store”
jmp L “jump” goto the designated label
jge L “jump on greater-or-equal” similar conditional jumps (“greater-than”, “less-than”

. . .) exist.
lab L “label” label to be used as targets for (conditional) jumps.

Table 2: P-code instructions

Exercise 5 (Code generation & P-code (25%))

1. This sub-task is to design a “verifier” for programs in P-code, i.e., for sequences of P-code
instructions.

(a) List a many possible “properties” that the verifier can or should check or test in
P-code programs. Explain in which sense a P-code program is correct given the list
of properties being checked for.

(b) Sketch which data structures

2.

3. We want to translate the P-code to machine code for a platform where all operations,
including comparisons, must be done between values which reside in registers and that
register-memory transfers must be done with dedicated LOAD and STORE operations. During
the translation, we have a stack of descriptors.

Consider the P-instruction
ldv b

where b is a variable whose value resides in the home position. This instruction therefore
pushes the value of b onto the top of the stack. When translating that to machine code,
a question there is what is better: 1) doing a LOAD instruction so that the value of b ends
up in register or alternatively 2) push a descriptor onto the stack marking that b resides
in its home position.

Discuss the two alternatives under different assumptions and side conditions. These may
include whether the user-level source language assures an order of evaluation of compound
expressions. Other factors you think relevant can be discussed as well.

4. Again we translate our P-code to machine code and, as in the previous sub-problem, we
assume we translate again one block at a time, in isolation, and that consequently all
registers have to be “emptied” at the end of a basic block in a controlled manner.

The question is to find out which data descriptors in the stack are needed and if other
kinds of descriptors are needed.

We assume that we can search through all the descriptors of the elements on the stack
each time this information is needed. In that way, we avoid having to add another layer
of descriptor(s).

4

Series 8 12. 7. 2023

With your descriptor design: describe how to find information needed during code gener-
ation and, if your design contains additional descriptor, how to make use of them.

5

Series 8 12. 7. 2023

Exercise 6 (Code generation (%))

In this problem we look at code generation as discussed in the lecture, i.e., as covered by
the “notat” which had been made available and which covers parts of Chapter 9 of the old
“dragon book” (Compilers: Principles, Techniques, and Tools, A. V. Aho, R. Sethi, and
J. D. Ullman, 1986).

1. Register descriptors indicate, for each register, which variables have their value in this
register.

(a) A single register can contain the values of more than one variable. Give a short
explanation/example of how a situation like that can occur. You can keep it really
short.

To get more efficient (i.e., faster) executable code, we want to consider transformations of
three-address intermediate code, but we restrict ourselves to transformations local to basic
blocks. We again assume the code generation as done in the “notat”

So assume a basic block consisting of three-address instructions. Those look typically
as follows x := y op z, where x, y, and z are ordinary variables or temporaries. But
constants are allowed as well (for instance, as in x := 6), to allow examples with not to
many variables.

We consider as the only allowed optmization to interchange lines of three-address instruc-
tions.

2. Describe a concrete situation where such an interchange makes the generated
code faster without of course changing the semantics.

Concrete means, lines of three-address code. Use one register only (called R). Make all as-
sumptions explicit (“at the beginning of my example, R is empty/R contains . . . ”). Explain
why the interchange leads to a speed-up, referring to the cost-model of the notat/lecture.

Exercise 7 (Code generation (%))

(a) Consider the following transformation on three-address code, illustrated on the following
example.

Listing 5: Before

1 i f t == 0
2 then
3 x = y + z ;
4 <r e s t o f then−branch>
5 e l s e
6 x = y + z ;
7 <r e s t o f e l s e −branch>
8 e n d i f

Listing 6: After

1 x = y + z ;
2 i f t == 0
3 then
4 <r e s t o f then−branch>
5 e l s e
6 <r e s t o f e l s e −branch>
7 e n d i f

The idea is to move “common instructions” (like the assignment x = y + z in the example)
before the conditional, so long it does not change the semantics of the code. The three
address code in this sub-problem supports two-armed conditionals (if-then-else), not the
if-goto constract as in the lecture and in sub-task (b).

Assume code generation as covered in the “notat” which covers parts of Chapter 9 of
the old “dragon book” (Compilers: Principles, Techniques, and Tools, A. V. Aho, R.

6

Series 8 12. 7. 2023

Sethi, and J. D. Ullman, 1986). Assume further that the code generator has access to
local liveness information, i.e., liveness information per basic block, but no global liveness
information is available.

Under these assumptions, what are potential effects of the code transformation on the
qualitity of the generated code? Discuss this question referring to the cost model of the
notat/lecture.

Note: neither exact sequences of possibly generated two-address code nor detailed calcu-
lations of costs are expected/needed as answer, just a short discussion of the influence of
the transformation on factors of the cost model.

(b) Consider the program from Listing 7 in three address code. We do not distinguish here
between temporaries and standard variables.

(a) Indicate the basic blocks in giving start and end line for each block (numbering the
blocks like B0, B1, etc.) You can also use the code repeated in the appendix, drawing
clearly visible horizontal lines indicating the boundaries of the blocks and give the
Bi-numbers of the blocks.

(b) Draw the control flow graph of the program using B0, B1 from the previous question
to identify the nodes of the graph.

(c) Does the control-flow graph contain a loop? Use the notion of loops for control-flow
graphs from the lecture.

(d) Give the inLive and outLive information for each block (best in the form of a table).

Listing 7: Three-address code

1 x = input
2 y = input
3 label L1
4 b = x + y
5 z = b∗z
6 label L2
7 x = a + 1
8 i f f a l s e x goto L3
9 x = y + x

10 i f true z goto L5
11 goto L1
12 label L3
13 z = b ∗ 2
14 goto L2
15 label L5
16 output x

7

Series 8 12. 7. 2023

References

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques,
and Tools. Addison-Wesley.

8

	Code generation
	Code generation
	Code generation
	Code generation & P-code
	Code generation
	Code generation

