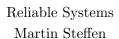
UNIVERSITETET I OSLO Institutt for Informatikk



INF 5110: Compiler construction

Spring 2023 **Handout 4** 20. 2. 2023

Handout 4: Parsing

Issued: 20. 2. 2023

For reference, to follow the slides, the handout includes some grammars we repeteadly used for illustration. These are various versions of the context-free grammar for expressions. The first version is the "obvious" one. Also some definitions are added.

Some definitions

Definition 1 (First set) Given a grammar G and a non-terminal A. The *first-set* of A, written $First_G(A)$ is defined as

$$First_G(A) = \{ a \mid A \Rightarrow_G^* a\alpha, \quad a \in \Sigma_T \} + \{ \epsilon \mid A \Rightarrow_G^* \epsilon \} . \tag{1}$$

Definition 2 (Nullable) Given a grammar G. A non-terminal $A \in \Sigma_N$ is nullable, if $A \Rightarrow^* \epsilon$.

Definition 3 (First set of a symbol) Given a grammar G and grammar symbol X. The first-set of X, written First(X), is defined as follows:

- 1. If $X \in \Sigma_T + \{\epsilon\}$, then First(X) contains X.
- 2. If $X \in \Sigma_N$: For each production

$$X \to X_1 X_2 \dots X_n$$

- (a) First(X) contains $First(X_1) \setminus \{\epsilon\}$
- (b) If, for some i < n, all $First(X_1), \ldots, First(X_i)$ contain ϵ , then First(X) contains $First(X_{i+1}) \setminus {\epsilon}$.
- (c) If all $First(X_1), \ldots, First(X_n)$ contain ϵ , then First(X) contains $\{\epsilon\}$.

Definition 4 (First set of a word) Given a grammar G and word α . The first-set of

$$\alpha = X_1 \dots X_n ,$$

written $First(\alpha)$ is satisfies the following conditions

- 1. $First(\alpha)$ contains $First(X_1) \setminus \{\epsilon\}$
- 2. for each i = 2, ..., n, if $First(X_k)$ contains ϵ for all k = 1, ..., i 1, then $First(\alpha)$ contains $First(X_i) \setminus \{\epsilon\}$

Handout 4 20. 2. 2023

3. If all $First(X_1), \ldots, First(X_n)$ contain ϵ , then First(X) contains $\{\epsilon\}$.

Definition 5 (Follow set) Given a grammar G with start symbol S, and a non-terminal A. The follow-set of A, written $Follow_G(A)$, is

$$Follow_G(A) = \{ a \mid S \$ \Rightarrow_G^* \alpha_1 A a \alpha_2, \quad a \in \Sigma_T + \{ \$ \} \} . \tag{2}$$

Definition 6 (Follow set of a non-terminal) Given a grammar G and nonterminal A. The Follow-set of A, written Follow(A) is defined as follows:

- 1. If A is the start symbol, then Follow(A) contains \$.
- 2. If there is a production $B \to \alpha A \beta$, then Follow(A) contains $First(\beta) \setminus \{\epsilon\}$.
- 3. If there is a production $B \to \alpha A\beta$ such that $\epsilon \in First(\beta)$, then Follow(A) contains Follow(B).

Lemma 7 (LL(1) (without nullable symbols)) A reduced context-free grammar without nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and for all pairs of productions $A \to \alpha_1$ and $A \to \alpha_2$ with $\alpha_1 \neq \alpha_2$:

$$First_1(\alpha_1) \cap First_1(\alpha_2) = \emptyset$$
.

Lemma 8 (LL(1)) A reduced context-free grammar is an LL(1)-grammar iff for all non-terminals A and for all pairs of productions $A \to \alpha_1$ and $A \to \alpha_2$ with $\alpha_1 \neq \alpha_2$:

$$First_1(\alpha_1 Follow_1(A)) \cap First_1(\alpha_2 Follow_1(A)) = \emptyset$$
.

Definition 9 (Handle) Assume $S \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w$. A production $A \to \beta$ at position k following α is a handle of $\alpha \beta w$. We write $\langle A \to \beta, k \rangle$ for such a handle.

References

[Engelfriet and Vogler, 1987] Engelfriet, J. and Vogler, H. (1987). Look-ahead on pushdowns. *Information and Computation*, 73(3):245–279.

[Hoogeboom and Engelfriet, 2004] Hoogeboom, H. J. and Engelfriet, J. (2004). Pushdown automata. In Martín-Vide, C., Victor, M., , and Păun, G., editors, Formal Languages and Applications, pages 117–138. Springer Verlag, Berlin, Heidelberg.