
Section
Intro

Chapter 0 “”
Course “Compiler Construction”
Martin Steffen
Spring 2023

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-2

Goal

1. semantic analysis, as far as
● typing is concerned (“static semantics”)
● other coditions (no duplicate declaration etc)

2. code generation for compila23 (ish) programs

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-3

Last time (O1)

Syntactic analysis

● lexer (scanner)
● parser
● abstract syntax tree

this time: continue with your previous deliv. (and repos)

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-4

Learning outcome

● understand type checking, implementing a simple
variant
● understand (simple form of) bytecode and how to
generate it from “source code” (as AST)
● extend an existing compiler code base with new
functionality

Section
Semantic analysis

Chapter 0 “”
Course “Compiler Construction”
Martin Steffen
Spring 2023

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-6

Semantic analysis & type checking

● parser / context-free grammars
● not powerful enough
● cannot check all (static) properties of a language spec

● => extend the front-end by a type checker
● use the AST classes of last time
● add type checking code
● allowed to make changes or adaptations if advantagous.

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-7

Another glance at compila23

NB: 2023: structs, not classes

Type checking for conditionals

● as “inspiration”, details may vary

class IfStatement extends Statement {
...
public void typeCheck(){
String condType = condition.get.Type ();
if (condType != "bool") {

throw new TypeException("condition in an if
statement must be of type bool")

}
}

Type checking: assignments

class Assignment extends Statement {
...
public void typeCheck() {
String varType = var.getType();
String expType = exp.getType();
if (varType != expType &&

!isAssigmentCompatible(varType,expType){
throw new TypeException("Cannot assign " + vartpe +
" from " + expType);

}
}

Section
Code generation

Chapter 0 “”
Course “Compiler Construction”
Martin Steffen
Spring 2023

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-11

Code generation

● byte code API and operations are described in the
document “Interpreter and bytecode for INF5110”
● Task: add bytecode generation methods to your AST
classes for instance

Ast.Node.GenerateCode(...)

● again: if adaptations of the AST are called for or useful,
go for it. . .
● some people did visitors for ast-printing, one can also
(re-)use the visitor pattern

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-12

Code generation: limitations

● interpreter and byte code library somewhat limited
● cannot express full compila 23
● no block structure
● no reference types

● your delivery should support generating correct bytecode
for the compila 23 source code file runme.cmp

Code generation: creating a procedure

CodeFile codeFile = new CodeFile();
// add the procedure by name first
codeFile.addProcedure("Main")
// then define it
CodeProcedure main = new

CodeProcedure("Main", VoidType,TYPE, codeFile);
main.addInstruction(new RETURN());
//then update it in the code file
codeFile.updateProcedure(main);

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-14

Code generation: assignment

Section
Testing

Chapter 0 “”
Course “Compiler Construction”
Martin Steffen
Spring 2023

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-16

Testing

● bunch of test files, for testing the type checker
● preferable: make ant test workable
● test files inside
./tests/semanticanalysis/errors/ (and
with fail in the filename) contain a syntactically
correct but erronous program (erroneous as the type
system or generally the semantic phase is concerned)
● => compiler returns error code 2 for semantic failure

Section
Starting point and hand in

Chapter 0 “”
Course “Compiler Construction”
Martin Steffen
Spring 2023

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-18

Provided source code (patch)

https://github.uio.no/msteffen/compila

Tests: already included in the oblig1 checkout, so left out in
the zip-patch this year.

https://github.uio.no/msteffen/compila

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-19

Provided documentation (patch)

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-20

Relevant directories

● Java
● compiler: updated compiler class (patch)
● test: some code for performing tests (patch)
● bytecode: classes for constructing bytecode (already

there)
● runtime: rte for executing the byte code (already

there)
● Compila

● tests: some test files (including runme.cmp)

INF5110 – Oblig 2

Intro

Semantic analysis

Code generation

Testing

Starting point and
hand in

0-21

Deadline
Deadline
(Friday, 12.05.2023)

Note: end of semester, and I need to report the ones passing
the oblig some time before the exam.
delivs
● working type checker
● code generator (test with runme.cmp)
● report (including your name(s) etc.

● discussion of your solution, choices you made,
assumptions you rely on

● printout of a test run (can be also checked in into the
repos, but it needs to be mentioned where it is)

● printout of the bytecode from runme.cmp (with a
target like ant list-runme)

● solution must “build” and be “testable” (typically via
ant)

	Intro
	Semantic analysis
	Code generation
	Testing
	Starting point and hand in

