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The exercises on this sheet refer to the lecture and material about scanning (or lexing). In
general, when talking about letters, we assume for instance an English lettered alphabet, i.e.,
when speaking about “letters”, we mean those letter characters as covered by the simple ASCII
character set. Remember also: the ASCII character set is, technically, an ordered alphabet.
Here, in this (and similar) exercises, we mostly restrict ourselves to alphabets of 2 or 3 different
letters, only (like a, b, c).

Similarly, when talking about digits, we naturally refer to the numeric symbols of the base-10
numerical notation.

Exercise 1 (Regular expressions) Use regular expressions to capture the languages described
informally as follows:

1. All strings of lowercase letters that begin and end with an a.

2. All strings of lowercase letters that begin or end with an a.

3. All strings of digits that do not contain leading zeroes.

4. All strings of digits that represents even numbers.

5. All strings of digits such that all the 2s precede all the 9s.

6. All strings of a’s and b’s (i.e., Σ = {a, b}) that don’t contain 3 consecutive b’s.

7. All strings of a’s and b’s that contain an odd number of a’s or an odd number of b’s.

8. All strings of a’s and b’s that contain an even number of a’s and an even number of b’s.

9. All strings of a’s and b’s that contain exactly as many a’s than b’s.

Solution: In general, most of the questions should be easy (but not all). At exam-time, this
kind of questions should be routinely “under control” (and thus done quickly and without much
hesitation). Some of the questions below are discussed in some length wrt. what the description
actually means. In an exam, we try to avoid questions that requires too much head-scratching
concerning how to actually interpret an English sentence.

As always for regular expressions (and actually for notational system of any kind), there’s
more than one way to express the same thing. If nothing specifically is said, one is allowed
all “flavors” of regular expressions, including the more “user-friendly” ones. If we want some
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specific form (for instance, the basic one), it will be stated explicitly. In the solution, I don’t
“bold-face” regular expressions (as done partly in the slides) to distinguish “syntax” (regular
expressions) from “semantics” (words, languages). They are close to each other, anyway

1. Letter a at the beginning and the end:

a([a − z]∗a)? . (1)

Be careful in that the regular expression consisting just of a single a should be allowed.
I am halfway careful here also wrt. parentheses. Remember that the lecture specified
“associativity” and “precedence” for the basic regular expressions. If one remembers those,
one could have written a[a − z]∗a because 1) ∗ binds strongest and 2) for concatenation,
associativity does not play a role, as far as the resulting language is concerned. Since
we did not speak about precedence of the option operator ?, the parentheses makes the
grouping clear.
The notation [. . .] is not available in the basic regular expressions. If one needs a solution
based on basic regular expressions, one could write

(a((a | b | c | . . . | z)∗a)) | a (2)

and also that is a “cheat” because obviously “. . .” is not allowed in regular expressions. In
a written exam, it would be accepted as correct, if the . . . are clear (as in this case). If one
would write a lexer using a tool like lex, obviously the input syntax might not support
“...”. If one wanted to use there basic regular expressions, one has no choice to list them
all! Fortunately, many tools will definitely support notations like [a-z], if one has an
ordered alphabet, that have the lower-case letters in subsequent slots in the encoding.1

2. Letter a at the beginning or the end.

(a[a − z]∗) | ([a − z]∗a) (3)

In general, an “or” is easy and directly to translate (with |, of course).
If we allowed ourselves named regular expression (see the lecture), we could use that to
give a name to [a − z]∗, which avoid writing it twice.

lletters = [a − z]∗
(a lletters) | (lletters a)

(4)

Here we use an ad-hoc typographic convention, writing lletters to clearly distinguish it
from lletters representing the sequence of individual lower-case “letters” l, l, e, etc.

3. Strings of digits without leading zeroes.
That’s (almost) a standard one. What makes it actually unclear as exercise is what
“leading 0” actually means in English. Such kind of unclarity is the reason why one
is better off with writing ultimately regular expression to specify lexical conventions as
opposed to prosa text. We interpret a “leading zero” as follow. A zero is leading if it
occurs at the beginning of a string and is followed by more characters. A single 0 is not
leading (but the word starts with an 0). Also, we wrote “string” which is a sequence of
letters. We did not mention whether the string is allowed to be empty. It’s plausible to say
that the empty string has no “leading 0”, therefore we include it as well. We can capture
that as follows:

ϵ | 0 | ([1 − 9]([0 − 9]∗)) . (5)
1Food for thought: what about [a-Z], assuming the standardized ASCII character set. We had shortly

mentioned in the lecture.
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Alternatively, we make use of named regular expressions, for instance

nonzero = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digit = 0 | nonzero

noleadzero = ϵ | 0 | nonzero digit∗

(6)

Note: one classical definition of “number” would be “non-empty string of digits without
leading zero”. In contrast, our interpretation and solution included the empty string.

4. All even numbers.
This time, it might be a bit unclear what “numbers” are. For instance, is 0000 a number?
The concept of being “even” is more clear.
The unclarity comes from the fact that actually, as “compiler writers” we are at this stage
not so much dealing with numbers (as mathematical entities, which appears clear enough
for most) but notation for numbers. When confronted with 00000, most mathematicians
would say, “yes, that’s a number” (actually they might say “it’s 0”, “it’s zero”, “it’s
null”) and they might consider the discussion as outlandish, and anyway, nobody in a
mathematical textbook would ever write 00000 anyhow, unless pressed.
When fixing notation of numbers, the designer must make a choice: Is 00000 legal (=
lexcially correct) for numbers or not? Should it be considered legal, at least then there is
no debate about the fact that it’s even. We take the standpoint here, that things like 00000
are not ok (i.e., the only number notation that can start with a zero is “0”, something
that most mathematical textbooks can relate to . . . ). With this assumption (which is not
uncommon) we might get the following:

evendigit = 0 | 2 | 4 | 6 | 8
nznumber = [1 − 9][0 − 9]∗

evennumber = (nznumber? evendigit) .

(7)

5. All 2’s before all 9’s.
Also this one needs some careful consideration what is actually meant. Basically it’s about
the interpretation of what the English sentence is actually supposed to mean. So as not
to worry: in an exam, we try hard to avoid such questions which are up-to speculation or
else we accept all “reasonable” interpretations of such a sentence.
The “ambiguity” seems to revolve around the formulation “all the 9’s” or “all the 2’s”.
Does that actually mean there need to be a 9 or 2?
For instance: is the empty string allowed? If the sentence means:

if you ever see a 9, then it’s forbidden to have a 2 afterwards.

then the empty string seems ok. The following solution basically takes the previous sen-
tence as specification for the task.
There are 2 cases. If there are no 9’s, it’s ok. If there is a 9, afterwards no 2 is allowed.

digitnot9 = 0 | 1 | . . . | 8
digitnot2 = 0 | 1 | 3 | . . . | 9
solution = digitnot9∗ | digitnot9∗ 9 digitnot2∗

(8)

Other representations are possible, for instance

digitnot9∗ digitnot2∗
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6. No 3 consecutive b’s. One possible representation is

(a | ba | bba)∗(ϵ | b | bb) (9)

The first part of the sequence is “end with an a, but don’t do more than 2 b’s”. That is
half-ok, as it requires that, if not empty, the word has to end with an a. That motivates
the second part of the regular expression.
In such exercises, it pays off to specifically check the corner cases, like “is the empty string
ok and is it captured by my solution expression?”, “what if there is no bs at all?” etc.

7. Odd number of a’s or an odd number of b’s.
“Odd” means “one occurrence +2 more, and repeat that”

b∗ab∗(ab∗ab∗)∗ | a∗ba∗(ba∗ba∗)∗ . (10)

8. Even number of a’s and even number of b’s.
This one is a bit more tricky. The source of the problem is that “and” is not easily
translated into regular expressions. The emphasis is on “easily”. It can be shown that
regular languages are closed under intersection (which correspond to the word “and”).
“Closed under intersection” means, given 2 regular languages, their intersection is regular.
However, intersection is not part of the syntax of regular expression (not even to most
“user-friendly” extensions). That means, one has to think by oneself (in this particular
example) how one can capture the “and” requirement. There is a systematic algorithm to
build for instance the automaton who represents the automaton capturing the intersection
of its “sub-automata” What makes it trickier than the other constructs covered by regular
expressions is that it’s not compositional. Thus, one cannot cover intersection in the way
that Thompson’s construction translates regular expressions to NFA.
Perhaps the “easiest” way to get a solution is to go actually via an “automaton” (as
opposed to try to nail down a regular expression directly): If one takes an “a”, one cannot
reach an accepting statet unless one takes another one (more precisely, an even number
of those). And the same for b’s. That may be the most straightforward route towards the
following regular expression.

start

a

a

b

b

b

b

a

a

(aa | bb)∗( (ab | ba) (aa | bb)∗ (ab | ba)(aa | bb)∗ )∗ . (11)

9. Same number of a’s and b’s.
That one cannot be represented by regular expressions (or FSAs). The lecture does not
cover enough background to actually prove that this is not possible.2 Intuitively, a FSA
accepting the language would require that it can “count” and this would require that the
automaton had unbounded memory.

2Impossibility arguments like that typically involve what is known as pumping lemma for regular languages.
It’s not part of this lecture and the pensum, though.
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Exercise 2 (From regular expessions to automata) Assume the following regular expres-
sion

(a | b)∗a(a | b | ϵ) (12)

Formulate a sentence (in English/Norwegian etc.) which captures the meaning of the reg-
ular expression. Now, turn the regular expression into the (deterministic, minimal) finite-state
automaton which recognises that language. To do so, follow the 3 standard steps:

1. use Thompson’s construction to obtain an non-deterministic finite-state automaton for the
regular expression (12).

2. Use the subset construction to turn that into an equivalent DFA (“determinization”).

3. Use the partition refinement algo to obtain the/a minimal equivalent DFA (“minimiza-
tion”)

Solution:
A first attempt might be

All words on the two-letter alphabet a and b containing at least one a.

But actually that’s not correct! One can wait until one sees the minimal automaton to see that
it’s unplausible

The first picture shows the outcome of Thompson’s construction. Please note that the task
is not simply to obtain a NFA “similar” to an automata expected from Thompson. The task
is do give the one that comes out from the construction. Note how the construction leads to a
quite an abundance of ϵ-transitions. Illustrative in this context is, for example, the part on the
right-hand side of the overall automaton of Figure 1, corresponding to

a | b | ϵ (13)

There are two remarks relevant in that context. The first concerns, as mentioned, the amount
of ϵ-transitions. One transition, the one from state 18 to 19, is of course due to the fact that
the regular expression mentions ϵ. The others are due to “glueing” the partially constructed
automata for the subexpressions together. Note that the construction second one concerns the
fact that the (sub-)automaton for equation (13) corresponds more precisely to the grouping

(a | b) | ϵ (14)

where the parenthesis are introduced to make the structure more clear.3 Since the situation is
slightly ambigious, in a written exam, giving the automaton corresponding to a | (b | ϵ) instead
of the grouping of equation (14) would be perfectly fine. However, a seemingless superfluous
state like 12 would be required for a fully correct solution. A “naive” solution would probably
leave out 12 and directly connect 11 with 13, 15, and 18.

The second step in the overall construction is determinization using the so-called subset or
powerset construction. Due to the many ϵ-transitions, it’s a bit cumbersome, and one has to be
careful not to “forget” some reachable states, especially when dealing with the ϵ-closure. The
result is shown in Figure 2. Missing is the indication, which are the final states (in follow-up
figures, that is shown). The final or accepting states are all those that contain a final state from
the original automaton (namely state 20). Unofficially: the numbers in the “meta-states” are
meant as follows: the underlined ones are “directly” added by the constuion from the lecture
(there written Qa, the “a-successors for a set of states Q). The non-underlined ones are the ones
that have to be added as ϵ-closure. See again the algorithm as presented in the lecture.
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Figure 1: Result of Thompson’s construction

Figure 2: Result of determinization
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Figure 3: Result of the determinization

Finally, the minimization. The starting point is the deterministic one from the previous
subtask. Of course, the “names” of the states are not very useful (the huge amount of numbers
from the subset construction). So best is to rename the states. To avoid confusion, we better
name them A, B etc. not 1, 2 . . . .

Exercise 3 Find a few “tools”, or libraries for certain languages etc. that use regular expres-
sions. Check the “syntax” of them.

Solution: Well, we don’t provide a “solution” for that task.

Exercise 4 (Reflection) The lecture and exercises teaches the standard way to turn regular
expressions into deterministic and minimal finite-state automata, which goes through 3 separate

3Questions like whether parentheses belong officially to the syntax of regular expressions or whether they are
used simply as convention to make the structure more explicit not does not concern us for now. However, similar
questions will concern us in the context of parsing.
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Figure 4: Minimization (1)

Figure 5: Minimization (2)

steps. A lexer (as first stage of most compilers) is typically interested only in the end-result, a
minimal, deterministic FSA. Why do we bother (and why do many lexer/scanner implementa-
tions bother) to go through these 3 different stages, why not go directly from regular expressions
to the end result?

Solution: Also this has no “solution”, it’s more like thinking about it.

Exercise 5 (Determinization) Determinize the automaton visualized in the following graph-
ics. Use for that the powerset construction.

start
a

ϵ

a

ϵ

ϵ

b

Solution: To start, we better make the states better identifiable by labelling them.

1start 3 2

4

a

ϵ

a

ϵ

ϵ

b

The next step is the power set construction. It requires in particular the notion of ϵ-closure.
The resulting deterministic automaton looks as follows.
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1 , 4 , 2start

2 , 3 , 4

4 , 2

a

b

b

b

For minimization, then we need first complete the automaton. Only the 2 accepting states are
not “complete” (insofar that transitions are missing). For completeness sake, also the additional
error state on the right needs completion:

1 , 4 , 2start

2 , 3 , 4

4 , 2

error

a

b

b

b

a

a

a, b

Minimization works via partition refinement, which is a simple iterative algorithm. It starts
with a fixed, initial partitioning, and iteratively refines that until “stabilization”. The initial
partitioning is always the same. The states Q of the automaton are split (or partitioned)
into 2 partitions: the final states on the one hand and the rest on the other. The states
are now “labelled” by sets of numbers, and in the above automaton it gives the partitioning
{{2, 3, 4}, {4, 2}} on the one hand, and {{1, 4, 2}, F}. We might also write and {q{2,3,4}, q{4,2}}
and {q{1,4,2}, qF }, drawing on the “convention” that states are often written as “q” and identified
via a subscript. For a fresh start, we may relabel the states, using a fresh numbering again (this
time using Roman numeral notation, not to confuse it with the original states). With the
initial partitioning as before, namely {{qI , qIV }, {qII , qIII }}, we need to think, if that is already
“stable” or if the algo need further step(s) splitting up the partitioning.

Istart IV

II

III

a

b

b

b

a

a

a, b
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If we collapsed the states, i.e., if we’d put them together into two new states qII ,III and qI ,IV ,
we’d get a 2-state automaton. We also need to have transitions, but they are just “inherited”
from the non-collapsed one. That gives the following automaton:

I , IVstart II , III
a, b

a

a, b b

The problem with that automaton is, of course, that it is not deterministic. Also note: this
automaton is not in general equivalent to the original one. Actually, it’s not really “explicit”
part of the minimization construction. It added here for illustration only.

But it illustrates where we have to split. State II, III is ok, the collapsed state I, IV is not.
If we separate I from IV , we get a 3 state automaton. We cannot split I and IV further, since
they are already consisting of single states. So therefore, that’s the end of it

Istart II , III IV
a, b a

b

a, b

Exercise 6 (Minimization) Minimize the automaton vizualized in the following figure.

start

a

c

b

c

Solution: In the first step, we complete the automaton. Additionally, we add numbers to
the states, for easier identification.

1start

2 4

3 5

E

a

c

b

c

c

a, b a, b, c

a, b
a, b, c

Figure 6: Completed automaton
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This is the automaton, on which the partition refinement algorithm works. The first, initial
partition splits the sets of states Q into two sets, the accepting states and the rest

{1, 2, 3, E} and {4, 5} .

The partitioning is indicated in the picture using two different colors. The starting point of
the partition refinement algo is always the same, starting with a partitioning of 2 sets (final vs.
non-final).

Now, the partitioning will be iteratively “refined” (i.e., existing partitions will be further
split) if need be until no further split is necessary (“stabilization”). At that point, the minimal
deterministic automaton will have been reached. The conditions on splitting have been discussed
in the lecture. Intuitively, one could see it as follows. Taking the initial partitioning into account,
one can consider, if that would give rise to a minimal deterministic automaton already. The
corresponding 2-state automaton is shown in Figure 7. It’s clear that the automaton from that
figure cannot be the minimal deterministic automaton, simply because it’s not deterministic!
The left state has two different c-successors. That’s an indication, that the state {1, 2, 3, E} has
to be split.

1 , 2 , 3 , Estart 4 , 5
c

a, b, c

a, b, c

Figure 7: Initial partitioning

It should be noted that the collapsed automaton from Figure 7 is shown more for illustration
that motivates the splitting condition. The automaton illustrates that the state {1, 2, 3, E} needs
to be split and even that the cause of the split is due to transition labelled c, but it not does not
contain enough information to determine how exactly it needs to be split. We need not consult
the more detailed Figure 6 for that.

Considering the behavior of the “elements” state {1, 2, 3, E} wrt. c (i.e., the states 1, 2, 3,
and E from Figure 6), we see that one needs to split it further (“refine”) into {1, E} and {2, 3}.
Using a collapsed representation again for illustration, this yields the automaton of Figure 8.

1 , Estart

2 , 3

4 , 5

a, b

a, b

c

a, b, c
a, b, c

Figure 8: After one refinement step

Again it’s clear that it cannot be the end of it, state {1, E} behaves non-deterministically
wrt. a resp. b. Now we can split with resp. to a (for example), which gives the automaton from
the next picture 9
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1start
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c
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c

a, b

a, b, c

Figure 9: Stable

It turns out that doing that split wrt. a solved also the non-determinism wrt. b, and the
results is a deterministic automaton, no need for further split.
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