
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems
Martin Steffen

INF 5110: Compiler construction
Spring 2024 26. 2. 2024Series 3

Topic: Chapter 4: grammars (Exercises with hints for solution)

Issued: 26. 2. 2024

Exercise 1 (LL(1)) Check if the following grammar is LL(1)?

S → (S) S | ϵ

Solution: To answer that question we need to calculate the first and the follow sets. One
could notice that the grammar has an ϵ-production. That’s relevant insofar in that it complicates
slightly the check if the grammar is LL(1) or not; but in this case, the given grammar is rather
simple, anyhow. It would be easier without nullable non-terminals and of course, an ϵ-production
makes the corresponding non-terminal on the left-hand side immediately nullable (and in general,
potentially further symbols, as well).

Unlike LR-parsing, LL-parsing, for instance in the form of recursive descent parsing, is
actually pretty simple to understand and to remember, even with nullable symbols. This form
of parsing does a left-most derivation and a top-down build-up of the parse tree. Generally, a
grammar is LL(1), if that kind of derivation can be done deterministically. As mentioned in
the lecture, for derivations in general, there are 2 kinds of sources of non-determinism at each
point: 1) where to apply a production, and 2) which production to apply. Point 1) is irrelevant,
as a left-to-right derivation simply chooses the left-most non-terminal. So we don’t have to
worry about that. Remains the “which-production-to-chose” non-determinism, more precisely:
“which-right-hand-side-to-chose”, because the non-terminal is fixed (it’s the left-most . . .).

How can one make that choice, resp., under which circumstances is a unique choice possible?
Assuming that the non-terminal in question is A, LL(1) top-down parsing relies on one look-
ahead to make unique choices, and we have to check, given the grammar, that this is possible.
Given a non-terminal A with some right-hand sides, the question is roughly if, given two different
right-hand sides, will the ultimately resulting possible words have disjoint sets of terminals to
start with. This is only a rough description, the lecture was more precise (for instance, in the
precise definition, A is not considered in isolation, but as part of a left-most derivation. The
technical term was left sentential form).

In absence of nullable symbols, that makes the check immediate. Actually it means that we
can consider basically the A in isolation: the symbols that the ultimate word can start with are
given by A’s first set, which leads to the following check, based only on the first sets:1

1The property uses the fact that the grammar is “reduced”. We did not cover that in a focused manner
in the lecture. It basically means that the grammar does not contain “useless symbols”, in particular useless
non-terminals. Especially, if A would never appear in any derivation, as it’s unconnected from the start symbol
or no word of terminals could ever be derived from it, then the follow sets of A would be irrelevant and would
have no influence on the question whether the grammar is LL(1) or not.

www.uio.no
http://www.ifi.uio.no

Series 3 (+ Hints for solutions) 26. 2. 2024

Lemma 1 (LL(1) (without nullable symbols)) A reduced context-free grammar without
nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and for all pairs of
productions A → α1 and A → α2 with α1 ̸= α2:

First1(α1) ∩ First1(α2) = ∅ .

In the presence of nullable symbols, things get slightly more tricky: the question what comes
“first” after a right-hand side of A is not only determined by the things derivable from A
(captured by the first-set), but also by what follows A. Thus, in the more complex, general
setting, the check becomes as follows:

Lemma 2 (LL(1)) A reduced context-free grammar is an LL(1)-grammar iff for all non-terminals
A and for all pairs of productions A → α1 and A → α2 with α1 ̸= α2:

First1(α1Follow1(A)) ∩ First1(α2Follow1(A)) = ∅ .

Be carefull with the definition. It’s

First(α1 Follow(A)), not First(α1) Follow(A) .

Without consulting any book and without remembering the lemma here, one way of solving
the current task is: build the LL(1)-parsing table and see of it contains “double entries”. For the
corresponding recipe, see the slide “Construction of the parsing table” in the top-down parsing
section. The LL-table recipe from the lecture, of course, directly embodies the principles of
the lemma.

Assume A → α ∈ P .

1. If a ∈ First(α), then add A → α to M [A, a].

2. If α is nullable and a ∈ Follow(A), then add A → α to M [A, a].

Armed with those reminders, the battle plan concretely for the task is:2

Start by calculating the first- and follow sets.

That gives the following table:

First Follow
S ϵ, ($,)

Afterwards, with that information, make a “decision table” for the non-terminal S. The
following corresponds to the LL(1) parsing table (here very simple, with one line only, as we
have only one non-terminal):

The table has no duplicate entries: for each combination of nonterminal (only S here) and
terminal (the 1-look-ahead), there’s not more than one entry. In more general cases, of course,
some entries may be empty, which would correspond to an error situation, but that would not
indicate ambiguity.

Let’s comment on the table a bit. The very small table has no empty slots, so how does
a parser reject input? Well, just because the table has empty slots does not mean all input is
accepts. In the first column, the slot is S → (S). that means, that the parser expects and eats

2Don’t forget the ϵ for the first set and the $ for the follow set. As might be seen from the above lemmas, in
absence of nullable symbols, one can get away with calucating the first-sets only.

2

Series 3 (+ Hints for solutions) 26. 2. 2024

() $
S S → (S) S S → ϵ S → ϵ

Table 1: LL(1) parsing table

(first. That is guaranteed, because that colums is chosen by the look-ahead of 1, namely in the
case that (is the next token. After successfully parsing S, it expects the matching) afterwards,
and if that is not the case, an error will be raised.

What about) as input, which certainly is syntactically wrong? Well, we have to look more
careful at how the LL(1) parser works, in particular how it rejects input. Initially, the stack
contains S (besides $). The next input is), the stack content S is replaced by ϵ. That means
the stack contains only $. Since the input in not yet finished as well, the parser reports an error.

Here’s how one could write in some form of pseudo-code a recursive descent “parser” (without
AST generation etc.) for that grammar:

Listing 1: recursive descent procedure
1 procedure S () {
2 i f token = ”(”
3 then getToken () ;
4 S ()
5 match (”) ”) ;
6 S ()
7 else skip
8 end
9 end

Similar to the remarks s in connection with the parsing table, we should keep in mind how
a parser accepts or rejects thing. In the same way that the parsing table does not give the
full picture, also the procedure from Listing 1 is not all of the parser. Using the same example
again: using) as input, the procedure simply terminates, but since the input is not yet empty,
the parser reports an error.

As some extra bit of info for the interested (it’s not part of the question): let’s look at the
following grammar:

S → S (S) | ϵ

It’s pretty obvious that this reformulation of the original grammar does not change the
language. Going through the same motions as before and doing the first and follow sets gives

First Follow
S ϵ, ($, (,)

Well, that means this grammar is not LL(1). One can find that out by doing the analogous
table-construction; ultimately, the problem now is the “overlap” on the (-symbol.

The language still is LL(1), of course, since there exists a grammar for the language which is
LL(1), namely the first one. One difference in the grammars is that the latter is left-recursive,
whereas the first one is not. Actually, if a grammar is left-recursive, it can’t be LL(1) or LL(k),
so even without explicitly calculating the first- and follow-sets, the answer could have been clear.

Exercise 2 (Ambiguity) Given the following grammar.

3

Series 3 (+ Hints for solutions) 26. 2. 2024

exp → exp + exp | (exp) | if exp then exp else exp | var
var → . . .

1. Try to come up with an unambiguous grammar for the language of the given grammar,
where

(a) addition is left-associative, and where
(b) if x then y else z + y is meant to mean if x then y else (z + y) .

2. Why don’t we have a dangling else problem here?

Solution:

1. We should also note as an aside: we have seen grammars for conditionals in the lecture,
but they are for conditionals as statements. In the exercise here, we are dealing with
conditional expressions which turn out to be at the root of the problem.
We could start by identifying a plausible cause of the ambiguity problem, and it’s clear
that addition is ambiguous. I’s supposed to be left-associative, so we could add a new
non-terminal, say exp′, and reformulate the grammar as follows:

exp → exp + exp′ | exp′

exp′ → (exp) | if exp then exp else exp | var
var → . . .

This was a solution proposed in some earlier semesters. On closer inspection, though, it
turns out that this grammar is still ambiguous, i.e., addition is not the only reason for
ambiguity! As an example, take the following expression

if a then b else c + d .

With only one addition operation, there is no issue whether + associates to the left or
right. The (remaining) problem is the interplay between addition and the conditional and
the the token stream may be interpreted as

if a then b else (c + d) or as (if a then b else c) + d ,

where the parentheses are used to indicate the parse tree. That means that, in a way,
there is a “dangling-plus” problem. Unlike the dangling-else problem, that’s not standard
terminology. The general situation, however, that an “if-then-else”-construct can be part
of expressions, not just of statements (where expression then include more than just “plus”
of course) is not uncommon.
Maybe this, but the other way around

exp → if exp then exp else exp | exp′

exp′ → exp′ + exp′′ | exp′′

exp′′ → (exp) | var

exp → if exp then exp else exp′ | exp′

exp′ → exp′ + exp′′ | exp′′

exp′′ → (exp) | var

exp → exp + exp′ | exp′

exp′ → if exp then exp else exp′ | exp′′

exp′′ → (exp) | var

4

Series 3 (+ Hints for solutions) 26. 2. 2024

2. That’s easy: unlike the grammars in the lecture, the else part is not optional, but
mandatory. As a consequence, there is no dangling-else problem. Nonetheless, there’s
a “dangling-plus” problem, as described.

Exercise 3 (Ambiguity) Given the following grammar.

exp → exp op exp | (exp) | number
op → + | − | ∗ | / | ↑ | < | =

Do the following things.3

1. The grammar is pretty ambiguous. Make an unambiguous grammar capturing the same
language, under the following side conditions

precedence assoc
↑ highest (3) right
∗, / level 2 left
+, − level 1 left
<, = 0 non-associative

2. Give recursive-descent procedures for each non-terminal to check the grammar (using also
loops, if advisable). Divide the terminals representing op in an appropriate manner

3. Based on the previous point: add tree-building code into the procedures in such a way
that sequences of exponentiations ↑ are treated appropriately in the sense that the tree
reflects the intended right-associativity.

4. Take the unambiguous grammar done in the first point, remove left-recursion, and do
left-factorization (without destroying unambiguity).

5. Check whether the resulting grammar is LL(1).

Solution:

1. Introducing precedences (to deal with the ambiguity) means, there are expressions at
different levels of precedence. One should also remember resp. compare the quite similar
Exercise 3 from the previous Series 2. Compared to that one, the exercise here adds the
non-associative relations at precedence level 0, the rest is unchanged. In the lecture,
there were 2 precedence levels and 3 different levels of expressions (called expressions,
terms, and factors), in the exercises from Series 2, there were 3 precedence levels and we
had, in that earlier exercise, 4 different versions of expressions).
Now we have 4 levels of precedences, still one more, which gives 5 different “kinds” of
expressions.
Note also: the question is kind of not well-formulated. It is not clear what we mean by
non-associativeness, resp. how to deal with it. If it’s dealt with in that the parser should
interpret a 1 = 2 = 4 as both (1 = 2) = 3 and 1 = (2 = 3), then the grammar will be
ambiguous, despite the fact that the task also requires the grammar to be unambiguous.
If we interpret “non-assoc” as “do as you like, left-assoc or alternatively right-assoc, both
are fine”. Then one can make an unambigous grammar.4

3There’s a certain amount of repetition here, we won’t go through everything during class-time, but a proposal
for solution will be available.

4A third interpretation of non-associativity might be: the symbols are non-associative, therefore it’s simply
not allowed to write 1 = 2 = 3, the user has to make it clear what’s meant, using parentheses.

5

Series 3 (+ Hints for solutions) 26. 2. 2024

To reflect the precedences, the grammar needs to introduce new non-terminals to represent
those levels. The original level exp still remains, which mean we end up with the following
“versions” of expressions

exp as originally given
exp1 operands before or after < and =
exp2 operands before, between, or after − and + (“term”)
exp3 operands before, between or after ∗ and / (“factor”)
exp4 operands before, between or after ↑

exp → exp relop exp1 | exp1
exp1 → exp1 addop exp2 | exp2
exp2 → exp2 mulop exp3 | exp3
exp3 → exp4 eop exp3 | exp4
exp4 → (expr) | number

(1)

reformulate

The following is a wrong solution (depending on how one interprets the question), which
had been around for some years (no one, including me the first year, noticed . . .)

exp → exp1 relop exp1 | exp1
exp1 → exp1 addop exp2 | exp2
exp2 → exp2 mulop exp3 | exp3
exp3 → exp4 eop exp3 | exp4
exp4 → (expr) | number

(2)

What is wrong is that an expression

1 = 1 = 1 = 1

cannot be parsed (which was possible in the original grammar). It should be noted: to for-
bid such syntax is in-line with the requirements from the compila language from the oblig,
where it’s specified that such relational expressions are considered as syntactically disal-
lowed. Perhaps one could make the argument: stating that relations are non-associative
implies that 1 = 1 = 1 = 1 is disallowed. In that interpretation, the latter grammar was
not wrong either.
In the grammar the relop represents < and = but is meant as one token (i.e. terminal),
were < and = are two different token values. Alternatively we might have used a non-
terminal relop and more productions. Analogous remarks apply to the treatment of the
other operators.
Besides the precedences: important is to understand how one gets the associativity correct.

2. This is a sketch of code for exp3 as an example. In the code, the ascii representation of the
exponent ↑ is “**”; Note: the exp3 is the right-associative construct, unlike the others.
The lesson here is the comparison with the treatment of the left-associative cases (see
above). Those are kind of easy, they mesh well with the recursive calls. For the right-
associative case, it’s more tricky, it involves a bit fiddling with the trees. Furthermore, we
make use of a while-loop. Anyway, here we go: A typical tree may look like this:

6

Series 3 (+ Hints for solutions) 26. 2. 2024

e3
/ \

e4 e3
| / \
n e4 e3

| / \
n e4 e4

| |
n n

And we need to build them like that (from left to right):

e3 <- old right
/ \

e4 e3 e4 e3
| / \ | / \
n e4 e4 n e4 e4 <- current right

| | | |
n n n n

1 procedure exp3 () : TreeNode {
2 TreeNode oldRight , curRight , newRight , newOp ;
3

4 curRight = exp4 () ; // parsed f i r s t but remembered
5 root = curRight ; o ldRight = n u l l ;
6

7 while token = EOP do { // see how many exponent i a t i on s the re are
8 getToken () ;
9 newRight = exp4 () ;

10 newOp = newOpNode (”∗∗”) ;
11 newOp . r i g h t = newRight ;
12 i f (o ldRight == n u l l) {
13 newOp . l e f t = curRight ;
14 root = newOp ;
15 } else {
16 newOp . l e f t = oldRight . r i g h t ;
17 oldRight . r i g h t = newOp ;
18 }
19 oldRight = newOp ;
20 curRight = newRight ;
21 }
22 return root ;
23 }

The following sketches the build of the AST for the following expression

a∗∗b∗∗c

7

Series 3 (+ Hints for solutions) 26. 2. 2024

The earlier second subtask gave syntax diagrams as a “graphical” way to represent gram-
mar productions. They may be helpful as inspiration for writing recursive descent parsers
(or get an overview over a grammar in general), but they were not really helpful in solving
the “implement ↑ in a right-associative way” question. We could rearrange the syntax
diagram for exp3 slightly in the following way:

That may more directly give inspiration to an implementation, looking as follows:

Listing 2: Alternative for right-assoc. ↑, no tree-building
1 procedure exp3 () {
2 exp4 () ;
3 i f token = EXPOP then {
4 getToken () ;
5 exp3 () ;
6 }
7 }

When building the AST which doing the recursive descent, the code looks as follows

8

Series 3 (+ Hints for solutions) 26. 2. 2024

Listing 3: Alternative for right-assoc. ↑, with tree-building
1 procedure exp3 () : TreeNode {
2 TreeNode root ; OpNode opNode ;
3 root := exp4 () ;
4 i f token = EXPOP then {
5 getToken () ;
6 newRight := exp3 ()
7 root := newOpnode (”∗∗” , root , newRight) ;
8 }
9 re turn root

10 }

3. (left factorization) The starting point is the grammar from equation (2) on page 6. With
the techniques from the lecture for “cleaning up” left-recursion we can transform it to

exp → exp1 exp′

exp′ → relop exp1 | ϵ
exp1 → exp2 exp′

1
exp′

1 → addop exp2 exp′
1 | ϵ

exp2 → exp3 exp′
2

exp′
2 → mulop exp3 exp′

2 | ϵ
exp3 → exp3 exp′

3
exp′

3 → expop exp3 | ϵ
exp4 → (exp) | number

The fact that we keep unambiguity is not easy to see directly, but follows once we have
done the next subtask, where we do the LL(1) check via looking at the first- and follow-sets

4. LL(1) check.

First Follow
exp number, ($,)
exp′ ϵ, relop $,)
exp1 number, ($,), relop
exp′

1 ϵ, addop $,), relop
exp2 number, ($,), relop, addop
exp′

2 ϵ, mulop $,), relop, addop
exp3 number, ($,), relop, addop, mulop
exp′

3 ϵ, expop $,), relop, addop, mulop
exp4 number, ($,), relop, addop, mulop, expop

relop addop mulop expop number () $
exp exp1 exp′ exp1 exp′

exp′ relop exp1 ϵ ϵ

exp1 exp2 exp′
1 exp2 exp′

1
exp′

1 ϵ addop exp2 exp ′
1 ϵ ϵ

exp2 exp3 exp′
2 exp3 exp′

2
exp′

2 ϵ ϵ mulop exp3 exp′
2 ϵ ϵ

exp3 exp4 exp′
3 exp4 exp′

3
exp′

3 ϵ ϵ ϵ expop exp3 ϵ ϵ

exp4 number (exp)

9

Series 3 (+ Hints for solutions) 26. 2. 2024

A better solution would probably be along the lines we have seen in the lecture. . .

10

