
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems
Martin Steffen

INF 5110: Compiler construction
Spring 2024 12. 3. 2024Series 5

Topic: Chapter 6: Attribute grammars (Exercises with hints for solution)

Issued: 12. 3. 2024

Exercise 1 (Post-fix printout) Rewrite the attribute grammar shown below to compute a
postfix string attribute instead of a value val , containing the postfix form for the simple integer
expression.1 For example, the postfix attribute for

(34 − 3) ∗ 42 is ”34 3 − 42 ∗ ”

You may assume a string concatenation operator ∥ and the existence of a number.strval
attribute.2

As “inspiration”, Table 1 reproduces the attribute grammar from the lecture, used to evaluate
expressions.

productions/grammar rules semantic rules
1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2 − term exp1 .val = exp2 .val − term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → (exp) factor .val = exp .val
7 factor → number factor .val = number.val

Table 1: AG for evaluation (from the lecture)

1As a preview for one of the later chapters: in the context of intermediate code generation, we will cover a
specific form of intermediate code, so called p-code (or one address code, etc.) Generating intermediate p-code
from ASTs resembles the task at hand, in that code generation there involves post-fix emission of lines of code,
at least for straight-line code involving expressions. You may also be reminded of the “AST-pretty-printer” of
the oblig: one recommended form of output was basically a prefix -printout of the tree (maybe indented for easier
human consumption).

2Postfix notation is otherwise also known as reverse polish notation, which is actually predates modern elec-
tronic computers (at least the non-reversed Polish notation), but has been kind of popular in certain pocket
calculators (especially Hewlett-Packard). Also in the context of depth-first tree traversal, there is pre-fix/post-
fix/in-order treatment of nodes of the traversal, which is related to the task here, as well.

www.uio.no
http://www.ifi.uio.no

Series 5 (+ Hints for solutions) 12. 3. 2024

Solution: The solution is pretty straightforward, see Table 2. We don’t bother to spell out
whether the (notation for the semantic) string concatenation operator ∥ is meant left-associative
or right-associative. Alternatively, we could use parentheses in the action. All of that does not
matter: string concatenation is semantically associative.

One reason why the solution should be rather straightforward is: the attribute is synthesized
(as was the case for the original AG for evaluating the expression). The attribute is straightfor-
wardly defined “inductively” or “recursively”: the attribute of an expression is defined by the
attributes of its subexpressions.

productions/grammar rules semantic rules
1 exp1 → exp2 + term exp1 .pf = exp2 .pf ∥ term .pf ∥ ” + ”
2 exp1 → exp2 − term exp1 .pf = exp2 .pf ∥ term .pf ∥ ” − ”
3 exp → term exp .pf = term .pf
4 term1 → term2 ∗ factor term1 .pf = term2 .pf ∥ factor .pf ∥ ” ∗ ”
5 term → factor term .pf = factor .pf
6 factor → (exp) factor .pf = exp .pf
7 factor → number factor .pf = number.strval

Table 2: AG for postfix attributes

Exercise 2 (Simple typing via AGs) Consider the following grammar for simple Pascal-
style declarations.

decl → var -list : type
var -list → var -list , id | id

type → integer | real

Write an attribute grammar for the type of a variable.

Solution: This time, it’s no longer purely synthesized (or bottom up). An “inherited” aspect
is often characteristic when using AGs to describe typing rules. We used AGs and inherited
attributes in the lecture in basically the same context as in this task, namely for typing (among
other illustrations). Indeed, type declarations often work like that. We can distinguish the
following situations. The following remarks are general and more or less independent from this
particular exercise, in that the general setting is rather standard:

1. Variables are declared with a type.3

2. Expressions (or in more complex situations, statements, code, etc.) are either elemen-
tary/basic or compound. One of the basic expressions are the use of variables.

Basic expressions: we consider only two kinds of basic expressions: variables and (other)
termininals.

• when a variable is used, its type is determined by the corresponding declaration.
Since typically (but not always) the declaration comes before the use, which
typically also means, the declaration-node occurs “higher up” in the AST than

3Depending on the language, also other “stuff” may be “declared” first, like classes, types, methods, etc. Most
conventional and basic is the declaration of variables, which is also the topic of this exercise.

2

Series 5 (+ Hints for solutions) 12. 3. 2024

the use-node, the type as the attribute is inherited from the declaration “down
to” the use.4

• For terminals: that’s often special insofar they get their attribute in most cases
either from the lexer (from “outside” the AG formalism) or they are constant. In
both cases, they corresponds conceptually or intuitively to synthesized attributes
(the original AG definitions treat them theoretically as inherited). Some accounts
explicitly require that attributes of terminals are not inherited.

Compound expressions: the type of compound expressions (or statements) is deter-
mined by the type if its subexpressions (which are children nodes of the node’s ex-
pressions). Hence, the situation is that of synthesized attributes.

So far for discussing the general background. Specifically for the task, again, the solution is
pretty straightforward.

decl → var -list : type var -list .dtype = type .dtype
var -list1 → var -list2 , id var -list2 .dtype = var -list1 .dtype

id.dtype = var -list1 .dtype
var -list → id id.dtype = var -list .dtype

type → integer type .dtype = integer
type → real type .dtype = real

Table 3: AG for Pascal-style type declarations

A remark on the semantic rule for the 3rd production in Table 3. This clearly indicates an
inherited attribute id.dtype.5 The same remark applies to the two semantic rules of the second
production. For the first rule, this one has a dependency between siblings.

Exercise 3 (Dependency graphs and evaluation) Consider the following attribute gram-
mar.

productions/grammar rules semantic rules
S → ABC B.u = S.u

A.u = B.v + C.v
S.v = A.v

A → a A.v = 2 ∗ A.u
B → b B.v = B.u
C → c C.v = 1

1. Draw the parse tree for the string abc (the only word in the language) and draw the
dependency graph for the associated attributes. Describe a correct order for the evaluation
of the attributes.

4In practical languages, the question what the corresponding declaration is depends on various additional
factors like scoping, on whether one uses static or dynamic binding, whether there is overloading, late binding
etc. In the treatment of AGs, we typically ignore those complications. AGs are not necessarily the formalism of
choice to deal natively with those complications. For instance, one could have more “structured” symbol tables
being able to handle scoping, which could be used as “attributes”, but the scoping issues lie in the definition of
the symbol-table/attribute, not so much in the semantic rules themselves.

5Not that it is disallowed that this attribute of id is treated perhaps by other productions also in a synthesized
manner. An attribute cannot be both.

3

Series 5 (+ Hints for solutions) 12. 3. 2024

2. Suppose that the value 3 is assigned to S.u before attribute evaluation begins. What is
the value of S.v when the evaluation has finished.

3. Suppose the attribute equations are modified as follows:

production/grammar rule semantic rules
S → ABC B.u = S.u

C.u = A.v
A.u = B.v + C.v
S.v = A.v

A → a A.v = 2 ∗ A.u
B → b B.v = B.u
C → c C.v = C.u − 2

What value does S.v have after attribute evaluation, if S.u = 3 before the evaluation
begins?

Solution:

Parse tree and dependency graph: The parse tree should be trivial. As for the dependen-
cies: they are written to the right-hand side of the nodes in the tree. For each dependency,
we have to add an arrow. One semantic rule may give rise to more than one dependency.
That’s the case if there’s more than one attribute mentioned on the right-hand side.
However, we have to be careful: the dependency graph is per parse-tree! The dependencies
can be seen in the semantic rules, but the edges of the graph are per parse-tree which
means: if one symbol (non-terminal or terminal) occurs more than one time in a parse-
tree, an dependency edge may occur more than once. However, this particular grammar
is so trivial —there is no recursion— that there is only 1 tree at all and (related to that),
each symbol occurs not more than once in that tree (exactly once, actually). That means,
one can easily check in the grammar already: we should have 6 dependency arrows.6

Figure 1: Parse tree and dependencies

Evaluation order: If the dependencies are done ok (and acyclic), giving an possible evaluation
order is trivial. Technically, the problem can be understood as “topological sorting” (à
la Dijsktra, for instance), which turns a partial order into a total order. In the tree, the
order is indicated by numbers (see Figure 2). The indicated order is not unique, other
evaluation orders are in general possible, and also in this example, there are alternatives,
as well.

6Note: there are 6 grammar productions. The second production leads to two arrows. The last production
C.v = 1 is not represented as dependency arrow, as 1 is a constant! That gives then the mentioned 6 dependency
arrows.

4

Series 5 (+ Hints for solutions) 12. 3. 2024

Figure 2: One possible order of evaluation

Evaluation: With one particular order fixed, the evaluation is also simple, one just needs to
do the calculation as indicated by the semantic rules in the given order step by step.
Actually, in the absence of side-effects, one could use any evaluation order consistent with
the dependency graph, not just the order given earlier, and the result would be the same.
The integer values of the attributes are given in Figure 3.

Figure 3: Evaluation

Changed AG: One has to do the same as in the first subtask. Now we have more edges than
before (namely 8). Furthermore, the dependency graph has a “loop”(cycle is a better term,
the dependency is cyclic). What’s now the value of S.v now? Well, the proper answer

Figure 4: Changed AG

would be: if there’s a cycle, evaluation makes no sense (in the sense that one cannot

5

Series 5 (+ Hints for solutions) 12. 3. 2024

define an evaluation order to start with). So, without an evaluation possible, there is no
meaningful value after evaluation.

As a side remark and look-ahead: later, when talking about data flow (in partic-
ular in the context of the lecture live-variable analysis): at that point we learn
some techniques which technically can be understood as solving equations such
that as the ones shown in the semantic rules). Under additional assumptions
that’s perfectly fine and well-defined. However, in the setting here, for AGs:
cyclic dependencies are considered meaningless.

Exercise 4 (AG for classes) Consider the following grammar for class declarations:

class → class name { decls }
decls → decls ; decl | decl
decl → variable-decl
decl → method -decl

method -decl → type name (params) body
type → int | bool | void

As usual, terminals are indicated in boldface, where for name, we assume that it represents
names the scanner provides; name is assumed to have an atrribute name.

Methods with the same name as the class they belong to are constructor methods. For those,
the following informal typing “rule” is given:

Constructors need to be specified with the type void.

Design semantical rules for this requirement for the following fragment of an AG.

productions/grammar rules semantic rules
class → class name { decls }
decls → decls ; decl
decls → decl
decl → variable-decl not to be filled out
decl → method -decl

method -decl → type name (params) body
type → int
type → bool
type → void

Solution: This one requires to come up oneself with attribute(s). Partly they are given,
of course, by the task, in particular the attribute type. The basic insight is, probably: when
treating the inside of a class (which here is represented as declarations (non-terminal decls)),
the name of the class must be available. Since the class (which declares the name of the class as
type, in a way) comes higher-up in the parse tree than the treatment of the declarations, it’s a
typical situation of an inherited attribute (like we have seen for declarations of variables). With
this in mind, it’s rather straightforward.

We start by defining the attribute ecn (short for enclosingClassName). An attibute with
this name is used for decls, decl , and for method−decl .

Another point worth mentioning is: the semantic actions deal explicitly with “error situa-
tions”, namely what to do when the type rule is not met. That’s here a form of exceptions.

6

Series 5 (+ Hints for solutions) 12. 3. 2024

productions/grammar rules semantic rules
class → class name { decls } decls .ecn = name.name

decls1 → decls2 ; decl decls2 .ecn = decl 1.ecn
decl .ecn = decl 1.ecn

decls → decl decls .ecn = decls .ecn
decl → variable-decl −
decl → method -decl method -decl .ecn = decl .ecn

method -decl → type name (params) body if (name.name = (method -decl .ecn)
then if (not(type .type = void))

then error(”constructor not of type void”)
type → int type .type = int
type → bool type .type = bool
type → void type .type = void

A solution is shown in Tables 4 and 5.

Table 4: AG for classes (1)

7

Series 5 (+ Hints for solutions) 12. 3. 2024

Table 5: AG for classes (2)

8

