
Universitetet i Oslo
Institutt for Informatikk

Reliable Systems
Martin Steffen

INF 5110: Compiler construction
Spring 2024 8. 4. 2024Series 6

Topic: Symbol tables and type checking (Chapter 6) (Exercises with hints for
solution)

Issued: 8. 4. 2024

Exercise 1 (AG: collateral vs. sequential declarations) Extend the grammar of Table 1
into an AG to capture “collateral” (simultaneous) declarations.

S → exp
exp → (exp) | exp + exp | id | num | let dec -list in exp

dec -list → dec -list, decl | decl
decl → id = exp

Table 1: Expression grammar with declarations

As a starting point, use the grammar from the lecture, which is reproduced here. So: Rewrite
the grammar from Table 2 on the next page to use collateral declarations instead of sequential
ones.

Solution: The original definition of the attribute grammar for sequential
declarations from the the lecture is repeated here in Table 2.

The AG looks complex, but actually part of it may be due to the one particular requirement
on AGs which we also was mentioned variously in the exercises and the lecture: AGs are a
declarative or functional formalism! That is slightly different from the “action part” in a parser
generator such as cup or yacc, where the action part (which correspond to the semantic rules
of an AG) can have side effects, one can destructively update a “state”. That’s not allowed in
the semantic rules of an AG. Of course a semantic rule like

exp2 .nestlevel = exp1 .nestlevel

can be interpreted (in an imperative programming language) as

the field nestlevel in object/record exp2 is assigned to the value of the field exp1 .nestlevel,

or in (alternative) programming notation

exp2.nestlevel := exp1.nestlevel .

www.uio.no
http://www.ifi.uio.no

Series 6 (+ Hints for solutions) 8. 4. 2024

Table 2: Sequential declarations (from the lecture)

I use here := for assignments, which is something different from equations.1 That assignments
are not really the same as equations can be seen already from the fact that we know that x = 3
is the same equation than 3 = x, but the same swapping of sides (“commutativity”) cannot be
done for assignments x := 3 . . .

1In the tradition of C and similar, many languages use = for assignments. But in others, it’s := or some symbol
other than = for assignments.

2

Series 6 (+ Hints for solutions) 8. 4. 2024

Another way of seeing it is: we can view an equation of the form x = 3 or exp2 .nestlevel =
exp1 .nestlevel as assignment, but what is not allowed is to assign to the left-hand side again
later! In the terminology of progamming languages (and/or compilers), it a single-assignment
variable. So the difference between equations x = 3 (which correspond to single-assignment
variables in programming languages) and assignments x := 3 is: the first is meant as “x is 3”,
the second one means something more complex, namely

“whatever the value of x was before the assignment, afterwards it’s 3 (up until it
possibly is changed again)”.

Attributes in the AG formalism correspond to variables, but they are of the “mathematical”
kind (i.e., single-assignment).

Now, what consequence does all that have for the AG of sequential variable type declara-
tions? In principle, sequential type declarations using symbol tables are pretty simple: there
is a sequence of type declarations (see the non-terminal dec -list). Then the type checker goes
through the individual declarations (see the production decl → id = exp) one by one. Each
time, it adds the type declaration as binding to the symbol table. In a typical imperative2

implementation of symbol tables (for instance using hash tables), it means updating the symbol
table (by some procedure insert or similar).

Doing so is fairly obvious, but when it comes to the attribute grammar specification, being
a declarative formalism, we cannot destructively update a symbol table. It violates the fact that
the specification is declarative (resp. that variables are “single-assignment”).

The solution to that is simple (once one has seen it): one distinguishes between the symbol
table before the declaration and the symbol table afterwards. So instead of an imperative
view like “add the binding to the symbol table”, the view is “calculate the new symbol table
from the old symbol table by inserting some binding”. So, the fact that we are not allowed to
update an attribute symtab leads to the formulation that there are attributes intab and outtab,
representing the symbol table before the addition and the symbol table after! The way that the
symbol tables are “handed down” in lists of declarations is “left-to-right”. Now in the AST,
“left-to-right” here refers to relationship between siblings, not to parents-children. If we have a
strict interpretation of what inherited and synthesized attributes are, then the attributes may be
neither. Nonetheless, we can classify the intabl and outtab as follows (using the more relaxed
definitions of inherited and synthesized attributes):

symbol attributes kind
exp symtab inherited

nestlevel inherited
err synthesized

dec -list , decl intab inherited
outtab synthesized
nestlevel inherited

id name injected by scanner

The second piece that needs consideration may be the (inherited) attribute nestlevel.
Basically, the declaration list of a let-construct has a nesting level increased by one compared to
the “surrounding context” (represented by exp1 in the corresponding semantic rule). The same
nesting level is for exp2 in the let-construct. In the semantic action, the nesting level for exp2
is inherited from dec -list . This is another instance of “sibling-inheritance”. Alternatively, one
could have inherited the nesting level from exp1 to exp2 (but then increasing the level by one,
of course).

2Imperative means, with side-effects. Note that there are efficient functional implementations of symbol tables,
for instance using red-black trees or similar data structures, even if the dominant and classical implementation
uses imperative hash tables.

3

Series 6 (+ Hints for solutions) 8. 4. 2024

The nesting level is instrumental in the way the symbol tables are used here (for sequential
declarations).

In the particular AG (which is not a full type checker), the nesting level is not used in the
case of variables, when one consults the symbol table, looking up the type of the variable. The
simplified presentation here just checks if the variable is “contained” in the symbol table, but
does not bother to find the type (and consequently does not make use of the nesting level, to find
the proper binding, for instance under lexical scoping). What is done in this exercise is that the
nesting level is used to make sure that are not two declarations in the same scope (i.e., nesting
level).3 In the AG here, the check is done in one of the semantic rules for decl → id = exp: if
the variable is already stored in the ST with the same nesting level, this results in an error.4
With this perspective, the sequential declarations from Table 2 are fairly simple (and discussed
in the lecture as well).

Now, what needs to be changed in order to achieve a “collateral” form of declaration? We
have to achieve that the declararations of a let-construct are added somehow “at once”. Since
the interface of the symbol table does not support “bulk addition” of bindings, we have to
achieve that ourselves. Intuitively, the declarations in the declaration list are checked all with
the same symbol-table (namely the one which is available at the beginning of the let construct).
In absence of “bulk-addition” to the symbol table, we nonetheless need to incrementally add the
bindings of the declaration list to the symbol table. This means intuitively, we need two copies
of the symbol table: the one before the declaration lists starts, and the one we incrementally
extend when walking down the declaration list (provided no error occurs).5 So, in a practical
imperative implementation, we need a copy of the symbol table in the state before walking down
the declaration list, and symbol table updated while walking down that list.6 In the declarative
framework of the attribute grammar, this means we need three attributes representing various
states of the symbol table.

They are called in the solution addintab, addouttab, and readintab.

The first two attributes capture the pre- and post-states of the symbol table while walking down
the declaration list, and readintab is the memorized state of the symbol-table at the beginning
of the declaration list.

With this in mind, the semantic rules from Table 3 capture the desired behavior. Note how
the readintab attribute is simply handed over unchanged when walking down the declaration
list. In contrast, for the “additive” version of that symbol table, the “in-tab” of the rest gets its
value from the “out-tab” of the declarations before (as was done in the original, sequential style
of declaration).

Important is also the treatment of individual declarations, i.e., the treatment of the pro-
duction decl → id = exp. In particular, the symbol table for the expression is readintab, the
“memorized” symbol table. The rest is basically unchanged (modulo the fact that what what
was called intab is now called addintab and analogous for attribute outtab.

The treatment of declarations, i.e., in the last production, mentions P . It’s definition is
shown in equation (1).

3There may be alternative ways to achieve this, for instance using chained symbol tables, where the symbol
table(s) itself takes care that not two entries are added. Instead of increasing a nesting level, the semantic action
my involve creating a new symbol table in the “chain” of symbol tables. Still alternative designs are possible.

4This would be one point which might well be delegated to the symbol table: the ST itself makes sure that no
declarations with the same nesting level are entered. That may be achieved by chaining, or by making the nesting
level part of the key. That design may actually be a better choice, leading to a cleaner attribute grammar.

5The situation corresponds now more directly to a “functional” treatment of symbol tables to start with.
6That may not be the most (memory-)efficient way of doing it. One may choose other ways of achieving the

same short of a full copy.

4

Series 6 (+ Hints for solutions) 8. 4. 2024

1 S → exp
2 exp1 → exp2 + exp3
3 exp1 → (exp2)
4 exp → id
5 exp1 → let dec -list in exp2 dec -list .addintab = exp1 .symbtab

dec -list .readintab = exp1 .symbtab
dec -list .nestlevel = exp1 .nestlevel + 1

exp2 .symbtab = dec -list2.addouttab
exp2 .nestlevel = exp1 .nestlevel + 1

6 dec -list1 → dec -list2, decl dec -list2.addintab = dec -list .addintab
dec -list2.readintab = dec -list1.readintab

decl .addintab = dec -list2.addouttab
decl .readintab = dec -list1.readintab

dec -list1.addouttab = decl .addouttab
dec -list → decl decl .addintab = dec -list .addintab

decl .readintab = dec -list .readintab
decl .nestlevel = dec -list .nestlevel
decl .addouttab = dec -list .addouttab

decl → id = exp exp .agsn = decl .readintab
decl .addouttab = P (decl , id, exp)

Table 3: Simultaneous (collateral) declarations

if ((decl .addintab = errtab)or exp .err)
then errtab
else if (lookup(decl .addintab, id.name) = decl .nestlevel)

then errtab
else insert(decl .addintab, id.name, decl .nestlevel)

(1)

Exercise 2 (AG for expression evaluation) Write an attribute grammar that computes the
value of each expression for the expression grammar Table 1 (it’s the same as in the previous
exercise).

Solution: As discussed in the lecture and as the topic of the previous exercise: declarations
can be interpreted sequential or as “collateral”/simultaneous. That does not just influence
which (syntactically correct) declarations are type correct, it also influences the evaluation.
The difference between the interpretations (sequential vs. collateral) is non-syntactic; both are
based on the same context-free grammar. The difference is in the context-sensitive part (here the
AG). The exercise asks to evaluate expressions as given in the lecture (and not as in the previous
exercise) , which means we assume that the declarations are meant as sequential declarations
(it’s easier to capture anyhow).

Now, what makes this evaluation different from the previous evaluations of expressions in
the lecture is that we have variables and their declarations/definitions! In the same way that
type declaration can “fix” the type for a variable, the let-declaration now can fix the value (via
an expression) of a variable. Note that the language is “single-assignment”, it’s a declarative
language (resp. language fragment): variables cannot be “updated” imperatively.

In the solution, we assume that errors can occur. That happens if one needs the value of a

5

Series 6 (+ Hints for solutions) 8. 4. 2024

variable which has not been declared/defined.7 This means, an expression can have a “standard”
value, which in the grammar is “numerical”, and an exceptional one (here “error”). An error is
injected into the evaluation when looking up a variable in the symbol table for which no value
us found. Once, an error occurs (in that a value becomes error or a value of a symbol table
becomes errtab, the error state will propagate so that the overall expression is erroneous.8

But the rule of declarations of values are the same as for declaration of types! Therefore the
rules very much resemble the ones for type declarations (in the sequential setting).

The solution is shown in Table 4.

Table 4: Evaluation

Exercise 3 (AG: type conversion resp. evaluation) Consider the following (ambiguous)
expression grammar.

exp → exp + exp | exp − exp | exp ∗ exp | exp / exp
| (exp) | num | num . num

7If we assumed that the expression would not have undefined/undeclared variables, the AG would be slightly
simpler. It would not change much in principle as far as the treatment of the attributes/symbol table is concerned.
Basically, we assume there are “standard” values and “error” values.

8That corresponds to exceptions: once an exception is raised (but not caught), it will propagate to the top-level
of the program/expression). We may also not the following: later in the lecture, for code generation, there will be
a section on how to generate code for booleans. At that point the code will often use something like “short-circuit
evaluation”. What we are doing here with evaluating expression via the AG is “non-short-circuiting”.

6

Series 6 (+ Hints for solutions) 8. 4. 2024

Assume you are dealing with two numerical types, for integers and for floats. Suppose that
the rules of C are followed in computing the value of such expressions:

If two subexpressions are of mixed type, then the integer subexpression is converted
to floating point, and the floating-point operator is applied.

Write an attribute grammar that will convert such expressions in expressions that are legal
some languages: conversions from integer to floating point are expressed by applying the FLOAT
function, and the division operator / is considered to be div if both operands are integers.

Solution: The key is to introduce information, i.e., an attribute, keeping track if a numerical
expression is a float or not. That can be interpreted as type information.9 Here, since we have
only two cases —a floating point number or an integer— it is captured by a boolean attribute
isFloat. Apart from that: since we are requested to evaluate the expression, we also add an
attribute val. In this exercise, there are no declarations and variables, so the attribute is purely
synthesized (as isFloat). In the evaluation, we have to convert sometimes integer values to
floats, which is done with FLOAT. In the rule for division, a case distinction is done based on the
“type” of the subexpressions, as required by the exercise.

Note that the “type” exp1 isFloat is determined first and the (sibling) attribute exp .val
depends on it.

The solution is given in Table 5.

Table 5: Evaluation/typing of floating point expression

9Oftentimes, at least in simple settings, the result of the type checker is an (updated) AST, where the nodes
contain the type of the corresponding syntactic element (typically in a field of the node, and the fields can be seen
directly as concrete implementation of attributes. In the task at hand, we have a restricted settting insofar that
we concentrate on numerical expressions only and that we are consequently interested in two types only (floats
and ints).

7

Series 6 (+ Hints for solutions) 8. 4. 2024

Exercise 4 (Type equality and type checking)
Consider the following grammar which in particular features procedure or function declara-

tions (Table 6)

Table 6: Grammar with function declarations

1. Devise a suitable tree structure for the new function type structures, and write a typeEqual
function for two function types.

2. Write semantic rules for the type checking of function declarations and function calls,
represented by a rule

exp → id (exp) ,

Similar to the rules in the slide “Type checking as semantic rules” in the type checking
section of Chapter 7 in the slides.

Solution: The grammar is given in Table 7. It’s a extension of grammars given in the
lecture.

program → var -decls ; fun-decls ; stmts
var -decls → var -decls ; var -decl | var -decl
var -decl → id : type-exp
type-exp → int | bool | array [num] : type-exp

fun-decls → fun id (var -decls) : type-exp ; body
body → exp

stmts → stmts ; stmt | stmt
stmt → if exp then stmt | id := exp
exp → exp + exp | exp or exp | exp [exp] | id (exps)

| num | true | false | id
exps → exps , exp | exp

Table 7: Statements with function declarations

The clauses for function declaration could be represented as tree as shown in Table 8.
Table 9 shows a possible AG for type checking the language, concentrating on the new

language elements. One new element is that the grammar has a clause for exps, i.e., for tuples

8

Series 6 (+ Hints for solutions) 8. 4. 2024

Table 8: Syntax tree for types function declarations

of expression. That’s needed for the arguments of functions. The way that it’s dealt with here
is using an attribute types, representing lists (i.e., tuples) of types.

That’s not the only conceivable solution. Instead of introducing

Table 9: Attribute grammar for typing function declarations

Exercise 5 (Symbol table) Think about the following ambiguity in C expressions. Consider
the expression (A)-x. If x is an integer variable and A is defined in a typedef as equivalent to
double, then this expression casts the value of -x to double. On the other hand, if A is an
integer variable, then this computes the integer difference of the two variables.

1. Describe how the parser might use the symbol table to disambiguate the two interpreta-
tions.

2. Describe how the scanner might use the symbol table disambiguate the two interpretations.

Solution: This one is a bit of a discussion question. However, the situation is not “nice”, the
situation is not a sign of a well-thought-of language design. What is “un-nice” is that the same
surface syntax is interpreted differently depending on the context. In other words, the compiler
needs “context-sensitive” information in order to do the parsing actually. An alternative would

9

Series 6 (+ Hints for solutions) 8. 4. 2024

be to make a node in the AST which covers both interpretations, which is afterwards made
unambiguous by the semantic analysis. Also pragmatically it’s not desirable that it’s hard for
a human to understand “syntax” in such sitations. In any way, the syntactical aspects of a
language (captured by context-free grammars) should not be mixed and messed up by context-
sensitive information. On the “conceptual” side: especially attribute grammars can obviously
not help the parser in that it assists in disambuation while parsing: semantic rule part cannot
influence which rule to take. The AG framework only adds semantic rules to existing grammar
production, but does not influence the parsing itself.

In the parser: Under parsing the parser can consult the symbol-table, looking up A. The sym-
bol table then needs to be designed to contain both names for ordinary variables and
names for types.1011 Based on that information, the parser can create an AST node/tree
representing a type cast or else a node/tree represeting a substraction expression.

In the lexer: Basically, the situation is similar, except that now already the scanner must
consult the symbol table (the parser as well, as the parser is still responsible to add
bindings to the table, like information about A at the point where A is declared, and that
information can be seen then as being “inherited” in the AG way of thinking). Since the
scanner now makes the decision, it would generate two different tokens, depending on
the context-information from the symbol table. Then, the parser can directly generate the
proper syntax tree.

10One can also view names for types as type variables, especially if they are used as type synonyms.
11Alternatively, one may in practice have 2 symbol tables, one for ordinary names and one for names standing

for types, as perhaps the two name spaces (for type names and for variable names) follow different rules.

10

