
Universitetet i Oslo
Institutt for Informatikk

Reliable systems
Martin Steffen

INF 5110: Compiler construction
Spring 2024 2. 04. 2024Oblig 2

Issued: 2. 04. 2024

1 Official

The deadline/frist for the second oblig is

Wednesday, 15. May 2024

In this handout, I refer to information in files and directories. Part of the information is contained
in the git-repository that you have cloned for the first oblig already (though it was not relevant
at that time, and I adapted the documentation like this handout and the slides to the 2024 round
in the meantime).

I refer to the root of the repos as

<COMPILAROOT>.

On the net, it corresponds to the browsable version in the repository hosted by github under

https://github.uio.no/compilerconstruction-inf5110/compila

In your own working directory, it will probably carry the name compila00-<xx>, unless you
have chosen to rename it.

2 What and how to hand in

2.1 Git

You will continue with your group’s git-repos you used in the first oblig. Basically, you continue
with your previous code, add the new functionality, push a solution before the deadline, and inform
me when it’s done so that I can pull your solution via git. It’s important to tell me, as I don’t want
to repeatedly update in the hope that it’s done.

In case your previous code of oblig 1 was not fully functional, you of course get first the parser
in a workable state.

If a change in arrangement is needed (merge of groups, or a split of groups), you need to ask for
that re-arrangement (not just announce on the day of the deadline that there is now a new group
. . . ).

See also the Readme of the “patch” under

<COMPILAROOT>/oblig2patch/oblig2patch/Readme.org

www.uio.no
http://www.ifi.uio.no
<COMPILAROOT>/oblig2patch/oblig2patch/Readme.org


Oblig 2 2. 04. 2024

2.2 What to include into a solution

As before, it should be an appropriately commented repos, solving the tasks of oblig 2. In particular
needed is (basically as before)

• A top-level Readme-file1 containing

– containing names and emails of the authors (as before)
– instructions how to build the compiler and how to run it (as before).
– test-output for running the compiler on compila.cmp as input
– of course, all code needed to run your solution
– the Java-classes for the syntax-tree
– the build-script build-oblig2-inspiration.xml (adapted)

Of course, the old code (for lex and yacc-based parsing) is still needed. It’s not needed that both
versions of the grammar, required for oblig 1, are still supported, one working version is enough.

3 Purpose and goal
The goal of the task is to collect more practical experience implementing a compiler, in particular, a
taste of phases after parsing. It’s only a taste, as we don’t have the time to get a full-scale compiler
on its feet. The language we are compiling is (as before) described in the compila 24 language
specification. This time, also the later sections about type checking etc, that were irrelevant for
oblig 1, specify the scope of the task as far as the language features are concerned.

Testing becomes more important than in oblig 1. It’s necessary that a solution is equipped

with “automatic test-cases”

That can be done (as before) via ant targets. Those tests have to be executable on the RHEL
linux pool at the university.2

4 Tools
The tools are basically the same as for the previous oblig, and typically you will continue anyway
with the previous set-up.

5 Task more specifically: Type checking and code generation
The task is to extend the parser and AST generation with type checking and code generation. The
rules governing the type checking and other restrictions are described in the language specification
already (in the later sections). The “semantics” is not specified, but the language is so simple that
it should basically be clear what a compila program is supposed to do.

The target “platform” is described in a separate document (which was already made available
as part of the git-repos). It’s also browsable under

1Many did a Readme.md which is a good format.
2That should actually not be a big restriction, as Java (and the task) is to a big extent platform independent

(“write once, run everywhere” . . . ). Nonetheless: Based on experience with the earlier years (this year actually no
real problems occured on my side in oblig 1, though one group reported that the initial starting point initially did
not work at their side): it’s advised to make this “test” setup early on (not after the deadline), to design the code
with the goal that it runs also at a different place than one’s own platform and to test that this goal is actually met.
The reason for that “testability” requirement is that correction will again not be based on reading much code from
my side, but in first approximation: running the tests. In that sense, it’s also not of primary importance, whether
it’s ant or perhaps make or some script. Important is, that I can execute it by invoking a simple command. I don’t
have the time to figure out how one particular solution is configured, started, etc. And I don’t want to look around
and try whether I find a main method somewhere. . .

2



Oblig 2 2. 04. 2024

<COMPILAROOT>/doc/bytecodeinterpreter/bytecodeinterpreter.pdf

Tests

The tests that need to be successfully run for oblig 2 are

1. testing the type checker resp. semantic analysis

2. testing the code coge generator

The tests are located as follows relative to the COMPILAROOT-directory

./src/tests/semanticanalysis/

./src/tests/fullprograms/runme.cmp

They are already contained in your git-repos at the descibed places (unless you have reorga-
nized it).

Patch

Obtain the patch (as zip-archive) under:

https://github.uio.no/compilerconstruction-inf5110/compila/tree/master/oblig2patch/
oblig2patch.zip

or via an updated clone of the course repos. Read also the Readme.org there, there is more info
about how to start. Note: when you cloned or downloaded the repository in perhaps Februrary there
had been already some oblig2patch as part of the repos. Also that should be more or less usable,
but it reflects the 2024 version. Not much has changed since then (mostly the documentation like
this handout here and the slides, the actual “content” is basically the same.

Why is it called patch?

It’s called patch, because your compiler needs not just new classes for instance for type checking,
some already existing files also need adaptation and changes. For oblig 1, I provided for example
a file Compiler.java, most took it as starting point (but may have adapted it as well). Since I
have no control what individual groups did with that file I cannot hand out an actual patch in
the technical sense. Instead, I give a new version of Compiler.java as part of the patch-package,
that should be used as inpiration of what probably needs to be adapted in your version. The
files Tester.java and FileEndingsFilter.java are meant to be used for testing, in particular
to automate the tests provided. Again, since I don’t control how you solved oblig 1, it’s possible
that they require adapdation. At least they need to be integrated to your implemantation, i.e.,
moved out from the silly directory oblig2patch to a better suited place (and integrated into your
build-set-up).

3

<COMPILAROOT>/doc/bytecodeinterpreter/bytecodeinterpreter.pdf
https://github.uio.no/compilerconstruction-inf5110/compila/tree/master/oblig2patch/oblig2patch.zip
https://github.uio.no/compilerconstruction-inf5110/compila/tree/master/oblig2patch/oblig2patch.zip

	Official 
	What and how to hand in
	Git
	What to include into a solution

	Purpose and goal
	Tools
	Task more specifically: Type checking and code generation
	Why is it called patch?


