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The chapter resp. the text about parsing is under re-work. That particular holds
for the section about first-and-follow set. The content will be unchanged, but the
“story-line” (the way definitions are motivated and explained) is being rewritten.
Also some definitions (of the first- and follow sets) are presented simpler. But as
said, the core is unchanged. (9.02.2024)
Later in the semester, an updated version will be replace this one (as currently not
all texts are adapted to the changed presentation, and there are some loose ends).

4.1 Introduction

We have introduced the general concept of context-free grammars, but apart from shortly
mentioning some simple sanitary conditions on the form of the grammar and apart from
discussing ambiguity as an unwelcome property of a grammar, we did not really impose
restrictions on grammars. That will change in this chapter. For parsing, the full expres-
siveness of CFGs and languages is not used. Instead one works with specific subclasses
and/or restrictions on the representations of grammars.

Since almost by definition, the syntax of a language are those aspects covered by a context-
free grammar, a syntax error thereby is a violation of the grammar, something the parser
has to detect and to deal with. Given a CFG, typically given in BNF resp. implemented
by a tool supporting a BNF variant, the parser (in combination with the lexer) must
generate an AST exactly for those programs that adhere to the grammar and must reject
all others. One says, the parser recognizes the given grammar. An important practical
part when rejecting a program is to generate a meaningful error message, giving hints
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about locations of the error and potential reasons. In the most minimal way, the parser
should inform the programmer where the parser tripped, i.e., telling how far, from left to
right, it was able to proceed and informing where it stumbled: “parser error in line xxx/at
character position yyy”). One typically has higher expectations for a real parser than just
the line number, like giving insight into the nature of the syntactic violation, but that’s
the basics.

It may be noted that also the subsequent phase, the semantic analysis, which takes the
abstract syntax tree as input, may report errors. Those are no longer syntax errors but
a more complex kind of errors. One typical kind of error in the semantic phase is a type
error. Also there, the minimal requirement is to indicate the probable location(s) where
the error occurs. To do so, in basically all compilers, the nodes in an abstract syntax
tree will contain information concerning the position in the original file the resp. node
corresponds to (like line-numbers, character positions). If the parser would not add that
information into the AST, the semantic analysis would have no way to relate potential
errors it finds to the original, concrete code in the input. Remember: the compiler goes
in phases, and once the parsing phase is over, there’s no going back to scan or parse the
file again.

lexer parser rest of the
front end

symbol table

source
program

tokentoken

get next

token

AST interm.
rep.

Figure 4.1: Lexer, parser, and the rest

The symbol table is an important data structure, shared between phases. It deals with
keeping information about “symbols”. For instance, names or identifiers. It’s like a “data
base” with relevant information in connection with, say, variable names. It allows to
efficiently store, update, and look-up information about, for instance, variables. Relevant
information about variables includes its type, once the type checker has figured out which
type is connected to which variable. One could store that information also in the abstract
syntax tree, stuffing it directly to the nodes, but that’s impractical for various reasons.
We will discuss symbol tables later.

A central distinction for parsers is top-down vs. bottom-up parsing. All parsers (to-
gether with lexers) work from left-to-right. A sequence of tokens is syntactically correct
if there exists a parse-tree (and for an unambiguous grammar, there exists at most one).
While parser eats through the token stream, it grows, i.e., builds up, at least concep-
tually, the parse tree (and typically the abstract syntax tree, this one for real, not just
conceptually).

A bottom-up parser grows parse trees from the leaves to the root. A top-down
parser grows parse trees from the root to the leaves.
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4.1.1 Parsing restricted classes of CFGs

Parsing should better be efficient, or to say it differently: there is no need in making the
grammar so complex that it requires inefficient parsing techniques. So, the full complexity
of context-free languages is not really needed or aimed at in practice, and by far not. Con-
cerning the need (or the lack of need) for very expressive grammars, one should consider
also the following: if a parser has trouble to figure out if a program has a syntax error
or not (perhaps using back-tracking), probably humans will have similar problems. So
better keep it simple, not just for the sake of the efficiency of parsing, but also for the
understandibility of programs. And execution time in a compiler may be better spent
elsewhere, like for optimization or semantical analysis).

When talking about classification, one can distinguish classes of CF languages vs. classes
of CF grammars. For example, the condition to be free of left-recursion is a condition on a
grammar. Things hang together, though. Ambiguity is initially a condition on grammars.
But a context-free language is inherently ambiguous if there is no unambiguous grammar
for it, only ambiguous one. Similarly for the other conditions. For instance, a CF language
is top-down parseable, if there exists a grammar that allows top-down parsing . . .

Concerning grammar classes, maaaany have been proposed & studied, including their
relationships, parseability, etc. Figure 4.1 mentions a few classes that we will look at in
the lecture. The main distinction is that between top-down and bottom-up parsing.

top-down parsing bottom-up parsing
LL(0) LR(0)
LL(1) LR(1)
recursive descent SLR

LALR(1)

Table 4.1: (Some) classes of CFG grammars/languages

In practice, one can also classify according to the parser or parser generating tools. A
grammar or language that can be parsed by yacc, or a grammar which is parseable by
parser combinators etc.

Actually, the class LALR(1) is the class that is covered by yacc-style tools.

Figure 4.2 shows the hierarchy of some grammar classes in terms of expressiveness. The
picture is about grammars, not languages (though a similar hierarchy also exists there).
The picture is intended to mean that the hierarchy is real in the following sense. For
instance: it’s clear that a grammar that can be parsed top-down with one look-ahead,
can be parsed also with a look-ahead of two. In other words, the set of LL(1) grammars
is contained in the set of LL(2) grammars, etc. But also, LL(1) is properly contained in
LL(2), i.e., there exist an LL(2) which is not an LL(1) grammar. Likewise for the other
shown inclusions. So the hierarchies are infinite. In other words: adding look-ahead really
increases the expressiveness of a grammar class. Another thing one can see on the picture:
with the same amount on look-ahead, bottom-up parsing (the LR-kind) is more expressive
that top-down parsing (the LL-kind).
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unambiguous ambiguous

LR(k)

LR(1)

LALR(1)

SLR

LR(0)
LL(0)

LL(1)

LL(k)

Figure 4.2: Relationship of some grammar (not language) classes (taken from [1])

The picture mentions SLR and LALR(1), positioned between LR(0) and LR(1). The LR-
and the LL-parsers realize, in a way, the concept of bottom-up, resp. top-down parsing in
a pure or canonical way. SLR and LALR(1) are variations of top-down parsing, adding
some extra tricks and checks to LR-parsers, in particular adding them to LR(0) (giving
SLR) resp. modifying LR(1) (giving LALR(1)) to get some extra expressiveness, without
actually paying the price of more look-ahead. We will discuss those classes as well, and,
as said, LALR(1) is the one underlying yacc and friends, so it’s a practically important
class

4.2 Top-down parsing

Top-down parsing is one of the two classes of parsers we cover; the other one being bottom-
upe. Parsing is about the following: given a word (as a sequence of tokens or non-
terminals), determine whether that word can be derived in the given grammar. Being
derivable means there exists a derivation and thus a parse tree. In all but degenerated
cases, each word can be derived in different ways; in particular, there can be different
orders of expansion steps in a derivation. For an unambiguous grammar, however, there
will be only one derivation tree or parse tree for each derivable word; that’s the definition
of being unambiguous. Top-down parsing builds up this parse tree in a top-down manner,
starting with the root of the tree, which is the grammar’s start symbol, a non-terminal.

Maybe saying, that top-down parsers “build” the parse-tree is a bit misleading. Normally
parsers (top-down or otherwise) don’t concretely build or create a data structure called
parse-tree. They build an AST, resembling more or less closely the parse-tree. The parse
tree is more conceptually explored or traversed, rather than actually built. Still, the
traversal is top-down. For bottom-up parsing, the traversal works bottom-up.

Before we look in more detail at how that works, let’s first have a look at a schematic view
of the the parser as machine or automaton (see Figure 4.3).

Note, the machine works concretely on a sequence of tokens not characters (but how the
input pieces are called is not central to the idea of such a machine).
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. . . if 1 + 2 ∗ ( 3 + 4 ) . . .

q0q1

q2

q3 . . .

qn

Finite control

. . .

unbounded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

Figure 4.3: Schematic view on a “parser machine”

The picture hints at a fact about the kind of “machines” needed for parsing. For scanning,
the machines were finite-state automata; see the very similar corresponding schematic
picture for lexers resp. finite state automata from earlier.

For recognizing context-free languages, i.e., for parsing, we don’t define the correspond-
ing machine model in its generality. They are called push-down automata, which are
finite-state automata equipped with an additional component of unbounded memory. The
memory can be read and written to, but only in stack-like manner. So the extra and un-
bounded memory is organized as stack (not as random-access memory). Without going
into details, a pushdown automaton, works on the input stream the same way a finite state
automaton does, eating it strictly from left to right, and moving along between its states
accordingly like a FSA does. The additional power comes from the stack: the machine can
consult the stack, actually only the top of the stack, it cannot look deeper. That top-most
symbol can be used to make decisions into which state to move in step (popping it off).
Additionally, symbols can be pushed to the stack in a transition.

Such machines can accept CFGs, and each CFGs can be accepted by a pushdown machine.
One can analogously as for FSAs define when such a machine is deterministic and when
not. However, not everything carries over. For example, non-deterministic stack-machines
are strictly more expressive than deterministic ones (which implies, there’s no hope to
carry over the powerset construction we encountered earlier to such machines now). For
finite-state automata, as far as expressivity is concerned, there’s no difference between the
non-deterministic and deterministic variants of FSAs, as discussed.

As said, we don’t look into the pushdown automaton formalism. The reason is simple.
Parsing in practice does not cover all CFGs in their generality; already ambiguity needs
to be excluded. In the section here, for top-down parsing, we will later see how it can
be done recursively. This is also called recursive descent parsing. Recursion, of course,
implicitly uses a stack, though one does not explicitly operate with a push-down machine.
Later, for bottom-up parsing, we will indeed work with some automata equipped with a
stack, thus some form of push-down machines. We will, however, be more interested in the
working and construction of the particular ones needed for bottom-up parsing, so neither
there will we introduce the general concept of pushdown automaton.

Next we illustrate parsing and derivations using expressions, more precisely a version of
the expression grammar using factors and terms. We encountered such a formulation
before in the chapter about grammars. There it was introduced in discussing the concept
of precedence cascade. The grammar here, while using factors and terms, is not the
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one mentioned earlier, and actually we are at the moment not interested in discussing
precedence and associativity (again). What is special about the formulation now is that
the grammar avoids left-recursion. That’s important for top-down parsing and will be
dicussed later.

Example 4.2.1 (Derivation (factors and terms)). Let’s assume the following grammar:

exp → term exp′

exp′ → addop term exp′ | ϵ
addop → + | −
term → factor term′

term′ → mulop factor term′ | ϵ
mulop → ∗
factor → ( exp ) | number

(4.1)

Below we show a derivation for the word number + number ∗ ( number + number ),
which could for instance represent the expression 1 + 2 ∗ (4 + 5).

exp ⇒
term exp′ ⇒
factor term′ exp′ ⇒
((((number term′ exp′ ⇒
numberterm′ exp′ ⇒
number�ϵ exp′ ⇒
numberexp′ ⇒
numberaddop term exp′ ⇒
number�+ term exp′ ⇒
number +term exp′ ⇒
number +factor term′ exp′ ⇒
number +((((number term′ exp′ ⇒
number +numberterm′ exp′ ⇒
number +numbermulop factor term′ exp′ ⇒
number +number�∗ factor term′ exp′ ⇒
number +number ∗ ( exp ) term′ exp′ ⇒
number +number ∗ �( exp ) term′ exp′ ⇒
number +number ∗ ( exp ) term′ exp′ ⇒
number +number ∗ ( term exp′ ) term′ exp′ ⇒
number +number ∗ ( factor term′ exp′ ) term′ exp′ ⇒
number +number ∗ (((((number term′ exp′ ) term′ exp′ ⇒
number +number ∗ ( numberterm′ exp′ ) term′ exp′ ⇒
number +number ∗ ( number�ϵ exp′ ) term′ exp′ ⇒
number +number ∗ ( numberexp′ ) term′ exp′ ⇒
number +number ∗ ( numberaddop term exp′ ) term′ exp′ ⇒
number +number ∗ ( number�+ term exp′ ) term′ exp′ ⇒
number +number ∗ ( number + term exp′ ) term′ exp′ ⇒
number +number ∗ ( number + factor term′ exp′ ) term′ exp′ ⇒
number +number ∗ ( number +((((number term′ exp′ ) term′ exp′ ⇒
number +number ∗ ( number + numberterm′ exp′ ) term′ exp′ ⇒
number +number ∗ ( number + number�ϵ exp′ ) term′ exp′ ⇒
number +number ∗ ( number + numberexp′ ) term′ exp′ ⇒
number +number ∗ ( number + number�ϵ ) term′ exp′ ⇒
number +number ∗ ( number + number�) term′ exp′ ⇒
number +number ∗ ( number + number ) term′ exp′ ⇒
number +number ∗ ( number + number ) �ϵ exp′ ⇒
number +number ∗ ( number + number ) exp′ ⇒
number +number ∗ ( number + number ) �ϵ ⇒
number +number ∗ ( number + number )
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The derivation starts with the start symbol expr and derives the target word of terminals
in a finite number of derivation steps. For the notation used here: The underlined part is
the place where the next step takes place. I.e., it indicates the occurrence of non-terminal
where the corresponding grammar production is used. We (((((cross out the terminal or token
when treated by parser. That is when the parser moves on. This moving-ahead will later
be implemented as a match or eat procedure.

The shown deriviation is left-most, and it corresponds to the parse tree of Figure 4.4.
exp

term

factor

n

term′

ε

exp′

addop

+

term

factor

n

term′

mulop

∗

factor

( exp

term

factor

n

term′

ε

exp′

addop

+

term

factor

n

term′

ε

exp′

ε

)

term′

ε

exp′

ε

Figure 4.4: Parse tree

The tree (as usual) no longer contains information, which parts have been expanded first.
In particular, the information that we have concretely done a left-most derivation when
building up the tree in a top-down fashion is not part of the tree.1 The tree is an example
of a parse tree.

In the previous example, we mentioned that we are doing a left-most derivation, without re-
ally explaining what that is. It is easy enough, but before we define it, let’s discuss aspects
of derivations, which leads to the definition of left-most (or right-most etc.) derivations.

In all but uninteresting cases, the language of a grammar is infinite. I.e., there are infinitely
many different derivations, generating infinitely many different words. But parsing is not
about genrating words, it’s about recognizing a specific one (or rejecting it). So the
derivation and the tree is meant not a “free” application of rules in a process of derivation
(or expansion, reduction, generation . . . ) but a reduction of start symbol towards the
target word of terminals, in the example say

exp ⇒∗ 1 + 2 ∗ (3 + 4)

i.e.: input stream of tokens “guides” the derivation process, at least it fixes the target.
But: how much “guidance” does the target word give?

In an unambigous grammar, the input determines the parse tree, but does a given parse
tree determine the derivation? Well, no, in general there are different derivations for a
given derivation tree.2 In general one parse tree corresponds to multiple derivations, as

1The order is not important. Actually, it’s not even important, once finished, that a the tree was done
in a top-down manner.

2Some degenerated grammars (which ones?) may have exactly one derivation per word and per parse-tree,
but it’s an aberration and unintesting
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it does not contain information about the order in which the reduction steps have been
done that resulted in the tree.

So, degenerated grammars aside, a certain amount of non-determinism concerning
which step the parser chooses to do next is unavoidable in the process to derive a given
word, also for unambiguous grammars.

When performing a parse, and if there are choices to be made, there are three points we
want to consider. 1) What kind of decisions are there? 2) If there are alternatives, does
it actually matter which one to take? 3) On what can the parser base its decisions?

The issues hang together, but let’s start with the first item. The general form of a
derivation of a word w is as follows:

S ⇒∗ α
= α1 A α2 ⇒ α1 β α2

⇒∗ w

(4.2)

where the step in focus uses the production A → β. Given a target word to derive w
and having arrived at α in the process, one can distinguish two principle sources of
non-determinism for doing the next step:

There are 2 choices to make:a
1. where, i.e., on which occurrence of a non-terminal in α to apply a

production
2. which production to apply (for the chosen non-terminal).

aThe nitpicking mind could make the argument, that there are 3 choices involved: which non-
terminal, which rule, and where in the sentential form. Fair enough, if one makes decisions in
that order, one can count 3 issues. But our exposition presents it as two decisions: where in
the sentential form, which fixes the non-terminal, and which rule.

Note that α1 and α2 may contain non-terminals, including further occurrences of A. The
word w, however, contains terminals, only.

Let’s look at the where-flavor of non-determinism in the derivation. Given a partial
derivation S ⇒∗ α, the sentential form may generally contain different non-terminals,
including that some terminals may occur multiple times. At any rate, the parser needs
to decide which non-terminal should be expanded next. The good new is: it does not
matter! It’s easy to see that expanding one non-terminal in one derivation step leaves
all other non-terminals untouched and does not prevent them from being expanded later,
leading to the same derivation tree. That’s the essence of being context-free: expanding
a non-terminal is independent from the shape of the surrounding letters. As it does not
matter where to expand, the parser machine could in principle pick randomly. But for
the sake of making a consistent, determinisitic decision, it could uniformely take the first
non-terminal in α. Or perhaps the last one.
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Definition 4.2.2 (Left-most and right-most derivation). A left-most derivation of
a word or a sentential form α is a derivation S ⇒∗ α where each step expands
the left-most non-terminal in the current sentential form. A right-most derivation
chooses analogously the right-most non-terminal. We denote a left-most derivation
step by ⇒l and a right-most one by ⇒r.

Assume a production a production A → β is used in a derivation S ⇒∗ α1 A α2 ⇒
α1 β α2 ⇒∗ w. For a left-most derivation, the derivation is more specifically of the form

S ⇒∗
l w1 A α2 ⇒l w1 β α2 ⇒∗

l w . (4.3)

The prefix w1 contains only terminals, as A is the left-most non-terminal. As mentioned,
the derivation in Example 4.2.1 was left-most.

That was the easy part of non-determinism: for the where-form it does not matter which
choice is made, so the parser can, for instance, follow a left-most strategy. We can spell it
out in a lemma (without proof):

Lemma 4.2.3 (Left or right, who cares). S ⇒∗
l w iff S ⇒∗

r w iff S ⇒∗ w.

When saying that it does not matter where to expand, that’s correct with respect to
the resulting parse-tree(s) for a given word. But it does not mean that all parsers are
working with left-most derivations. It will turn out that bottom-up parser are connected
to right-most derivations. The reasons will be explained when we come there.

Now, what about the other form of non-deterministic choice: which rule to use for the
chosen (for instance left-most) non-terminal? Choosing different rules will lead to different
parse-trees. Assuming an unambiguous grammar, there is only one tree for a given word,
however. So if there is a choice between two productions and assuming that the word of
terminals is ultimately derivable, there is only one right choice, all others would be
wrong.

That’s the core problem of parsing: how to arrive at that right decision?

Let’s assume then for the discussion an unambiguous grammar and let’s focus on the
“which-production-to-apply” non-determinism as the only interesting one. Assume further
a left-most derivation in the form of equation (4.3). Now, what can influence the decision
of choosing A → β as in the derivation over an alternative, say A → γ?

Doing a left-most derivation, the left of the non-terminal A at that point in the derivation
is a word of terminals (called w1 in the derivation from equation (4.3)). The target word
w is of the form w1w2, i.e. w1 is a prefix of w.3 The prefix w1 represents at the point of
decision making, the past of the derivation, and w2 the still-to-parse future. very generally
speaking, with the derivation ending in w = w1w2, the target word w should determine
the next step at each point.

3That’s because we are dealing with context-free grammars. It would also hold for context-sensitive
grammars, but not for the most general grammars (level 0).
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The parser has a memory (states plus an unbounded stack), where it remembers infor-
mation about the past of the parse, and as we insist on deterministic machines, the past
parse determines the current configuration of the parser. The decision of what to do next
is based of course on that configuration, which represents the past, but a parser can and
should also take the “future” into account (in the derivation, the word w2). Looking into
the future is called the look-ahead. As a minimal requirement for a (deterministic) top-
down parser is that taking into account all of the past plus all of the future must determine
the next step. That’s just a reformulation of the requirement that during the derivation,
the word w must determine the next step of the parser.

If that requirement is met, of course each word in the language of the given grammar has
exactly one parse tree (determined by the deterministic parsing process). In other words
the grammar is unambiguous (which is what we assume anyway). However, a parser that
bases its decisions on an unbounded look-ahead (and an unbounded memory to remember
an arbitrarily long past) unrealistic. Realistic parsers use only a quite short fixed amount
of look-ahead, maybe as short as one token.

But we can speculate: a parser with unbounded memory and unbounded look-ahead, with
all information at hand, can such a powerful parser make always the right decision (for an
unambiguous grammar)?

It may seem plausible that a top-down parser with unbounded look-ahead, con-
structing a tree following the derivation as from equation (4.3) when eating through
the input and with full information, the past as well as the future of its input, can
make the right decision at each point, for a given unambigous grammar. What
makes that plausible for an unambigous grammar, there exists at most one parse
tree anyway, and the parse tree is build up by the top-down parsing process. How-
ever: that’s not true!

But: if all information is available, what is missing?

We illustrate that with the following example, where a derivation will show a situation
where even taking into account all information is not enough to make the right decision. A
derivation like the one from the example is sometimes called an oracular derivation. The
illustration is not in itself an explanation what’s missing. With all information available,
there’s nothing really missing, it just illustrates that deterministic top-down parsers cannot
recognize all unambiguous context-free grammars. In particular, being deterministic is a
restriction. The word “oracular” hints at that: there are situations where all information
is not good enough and to complete a parse successfully, the parser must currectly guess
the right production, resp. getting help from an oracle to divinate the right decision. If
one would tolerate non-determinism in such parsing devices, one can parse such examples,
since by definition, a word is recognized by a parser machine, if there exists a successful
parse. In other words, non-deterministic (and thus unpractical) top-down parsers are
strictly more expressive than deterministic ones. This aspect of push-down automata and
context-free languages is in constrast with finite-state automata and regular languages,
where determinism is no restriction.

Example 4.2.4 (Oracular derivation). Consider the following grammar, another variation
on expressions and terms, it’s basically a slightly rewritten version of a expression grammar
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discussed in the chapter about grammars.

exp → exp + term | exp − term | term
term → term ∗ factor | factor

factor → ( exp ) | number

(4.4)

Equation (4.5) shows a derivation of the numerical expression 1+2*3. It’s again a left-most
derviation.

exp ⇒1 ↓ 1 + 2 ∗ 3
exp + term ⇒3 ↓ 1 + 2 ∗ 3
term + term ⇒5 ↓ 1 + 2 ∗ 3
factor + term ⇒7 ↓ 1 + 2 ∗ 3
number + term ↓ 1 + 2 ∗ 3
number + term 1 ↓ +2 ∗ 3
number + term ⇒4 1+ ↓ 2 ∗ 3 !
number + term ∗ factor ⇒5 1+ ↓ 2 ∗ 3 !
number + factor ∗ factor ⇒7 1+ ↓ 2 ∗ 3
number + number ∗ factor 1+ ↓ 2 ∗ 3
number + number ∗ factor 1 + 2 ↓ ∗3
number + number ∗ factor ⇒7 1 + 2∗ ↓ 3
number + number ∗ number 1 + 2∗ ↓ 3
number + number ∗ number 1 + 2 ∗ 3 ↓

(4.5)

Again, the redex, the place where the step occurs, is underlined. In addition, we show on
the right-hand column the input and the current progress on that input. The subscripts
on the derivation arrows indicate which rule is chosen in that particular derivation step,
and the down-arrow ↓ (used just here in this example) indicates where the “head” of the
parser is currently positioned. By convention, the symbol to the right of ↓ is the one
processed next.

The point of the example is the following: Consider lines 7 and 8, and the steps the parser
does. In line 7, it is about to expand term which is the left-most terminal. Looking into
the “future” the unparsed part is 2 * 3. In that situation, the parser chooses production
4 (indicated by ⇒4). In the next line, the left-most non-terminal is term again and also the
non-processed input has not changed. However, in that situation, the “oracular” parser
chooses ⇒5.

What does that mean?

It means: for some grammars, not even perfect foresight (= look-ahead) plus perfect
recall allows the top-down parser to make the right decision!

The parser process could use all look-ahead there is, namely until the very end of the
word and could have remembered all the letters of the word processed so far. And it still
cannot make the right decision with all the knowledge available at that given point. Note
also: choosing wrongly (like ⇒5 instead of ⇒4 or the other way around) would lead to
a failed parse, which would require backtracking. That means, it’s unparseable without
backtracking (and no amount of look-ahead will help). At least we need backtracking, if
we do top-down parsing.4

4Bottom-up parsing later works on different principles, so the particular problem illustrated by this
example will not bother that style of parsing (but there are other challenges then).
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So, what is the problem here? The reason why the parser could not make a uniform
decision in this example (comparing line 7 and 8) comes from the fact that these two
particular lines are connected by the step ⇒4, which corresponds to the production

term → term ∗ factor .

There, the derivation step replaces the non-terminal term by term again without moving
ahead with the input. This form of rule is said to be left-recursive (with recursion on
term). This is something that top-down or recursive descent parsers cannot deal with

We will learn how to transform grammars automatically to remove left-recursion. It’s
an easy construction. Note, however, that the construction not necessarily results in a
grammar that afterwards is top-down parsable. It simple removes a “feature” of the
grammar which definitely cannot be treated by top-down parsing.

So, another lesson from the previous example is:

left-recursion destroys top-down parseability.

At least when based on left-most derivations/left-to-right parsing as it is always done for
top-down parsing.

Side remark 4.2.5 (Nit-picking about silly grammars). As side remark, to split a few
hairs: If a grammar contains left-recursion on a non-terminal which is irrelevant in that
no word will ever lead to a parse involving that particular non-terminal or in that the non-
terminal will never show up in any derivable sentential form, in that case, obviously, left-
recursion does not hurt. Of course, the grammar in that case would be “silly”. We agreed
that in general do not consider such stupid grammars (without bothering to define exactly
what constitutes a non-stupid grammar and what we consider as obviously meaningless
defects). But unless we exclude such silly grammars, the take-home lesson from the
previous example is not 100% true.

That left-recursion is problematic for top-down parsing is one lesson, the other one perhaps
is that making decisions is not easy: not even a machine with perfect recall and with
perfect foresight, i.e., remembering all the past, and working with unbounded look-ahead,
can make deterministic decisions in some cases (at least when doing top-down).

But then, what can be done? We simply put our foot down and rule out grammars where
the decision cannot be done. Let’s assume we are working with a left-most derivation
(which is what top-down parsing resp. LL-parsing does) and assume that the left-most
non-terminal A in a derivation is covered by two rules in the grammar:

A → β | γ

Now consider again the left-most derivation of a word w from equation (4.3). In the step
we focus on replacing the left-most A, the “past” is fixed the “future” is not, and the given
target word w is of the form w = w1w2, with w1 being in the past. For the “future”, there
are two possible continuations:
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Aα2 ⇒l βα2 ⇒∗
l w2 or else Aα2 ⇒l γα2 ⇒∗

l w2 ? (4.6)

Assuming that the grammar is not only means the first production was a correct decision
that the given point, it was the only correct decision (assuming of course β ̸= γ) and
indeed the derivation from equation (4.3) is the only left-most derivation for w. But
that’s just a different way of saying that the grammar is unambiguous.

minimal requirement for top-down parsing: In such a situation, “future tar-
get” w2 must determine which of the rules to take!

That allows deterministic top-down parsing, but it is still impractical, as the “target” from
equation (4.6) w2 corresponds to a look-ahead of unbounded length! In practice, a look-
ahead of length k must be enough resolve the “which-right-hand-side” non-determinism
inspecting only fixed-length prefix of w2 (for all situations as above).

An LL(k)-grammar is a context-free grammar which can be parsed left-to-right
and left-most strategy with a look-ahead of k.

Having defined our expectations for a decent top-down parser, namely that it can make
decisions with a fixed look-ahead, we should realize that this only helps if we can determine
whether or not a grammar meets that requirement. So far it’s a wish rather than a criterion
to apply to a grammar to see whether it works or not.

In the following Section 4.3, we introduce concepts that allow to exactly that: determine
whether a given grammar is LL(k) or not. Whether a grammar is LL(k) is thus decidable.
The concepts are called first- and follow-sets. They will also be helpful in the another
class of parsers, the bottom-up parsers, to decide the analogous question: is a grammar
bottom-up parseable with a fixed look-ahead.

4.3 First- and follow-sets

We had a general look of what a look-ahead is, and how it helps in top-down parsing
(actually and not surprisingly with bottom-up parsing as well). We also saw that left-
recursion is bad for top-down parsing; in particular, there can’t be any look-ahead to help
the parser. The considerations leading to a useful criterion for top-down parsing (and later
also bottom-up parsing) without backtracking will involve the definitions of two related
concepts of first-sets and follow-sets.

The definitions, as mentioned, will help to figure out if a grammar is top-down parseable.
With one look-ahead only, such a grammar will then be called an LL(1) grammar (for
top-down). One could straightforwardly generalize the definition to LL(k) (which would
include generalizations of the first- and follow-sets), but that’s not part of the pensum. As
mentioned, the first- and follow-set definition will also be used when discussing bottom-up
parsing later (which will be called LR-parser).
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The first- and follow-sets is a general concept for grammars and in particular for parsing.
Later we will spell out the concepts more formally (and give algorithms to calculate those
sets). But let’s start by stating informally what they capture.

• The first-set of a symbol X is the set of terminal symbols can appear at the
start of strings derived from X.

• The follow-set of a non-terminal A is the set of terminals that can appear
directly after A when a is mentioned in some sentential form.

Remember that a sentential form is a word derived from grammar’s starting symbol.

The calculation of those sets is mostly straightforward, there will only one slight complica-
tion to watch out for, on connection with empty words ϵ and so-called nullable symbols.

Definition 4.3.1 (Nullable). Given a grammar G. A non-terminal A ∈ ΣN is
nullable, if A ⇒∗ ϵ.

4.3.1 First-sets (only solo)

The first-sets are conceptually simpler than the follow-sets, so let’s start with those. The
following is a straightforward formalization of the informal description from above.

Definition 4.3.2 (First set). Given a grammar G and a symbol X. The first-set
of X, written FirstG(X) is defined as

FirstG(X) = {a | X ⇒∗
G aα, a ∈ ΣT } . (4.7)

Note that for terminal symbols, say a ∈ ΣT , FirstG(a) = {a′ | a ⇒∗
G a′} = {a} and there

is only one ⇒∗
G-derivation, the empty one.

In the following, if the grammar G clear from the context, we write ⇒∗ for ⇒∗
G and First

for FirstG; analogously later for the follow-sets.

The definition, unfortunately is not immediately to calculate the first sets, as it talks
about arbitrary derivations, of which there are in general infinitely many. What we need
is a calculation of the first-sets not based on derivations, but a calculation based on a
grammar itself. It can be done quite easily by looking at a grammar

What we need is a calculation of the first-sets not based on derivations, but a calculation
based on a grammar itself. It can be done quite easily, and we try shed light on the
problem with the help of an example. The following example does not feature nullable
symbols, as this is just a minor complication, adding “special cases”, without changing
the core of the problem.

Example 4.3.3 (Expression grammar). Let’s start with the expression grammar from Ex-
ample 4.2.4 on page 10 (see equation (4.4)). Just by looking at the right hand sides of two
productions for factor

factor → ( exp ) | number
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it’s easy to figure out that the first-set for factor is the two-element set { (, number }.

Actually even “more immediate” is that the first-sets for the terminal symbols, for instance
( resp. number, are the sets { ( } resp. { number }. The treatment of terminals, where
the first set is “most immediate” will serve as base case in a recursive characterization
(resp. as initialization for an iterative algorithm).

Now we proceed to look at term , which has two productions:

term → term ∗ factor | factor

As we have convinced ourselves that the first set of factor is the set { (, number }, also
the first-set for term contains those 2 terminals. And similarly, one can conclude that that
this is also the same set for exp (because of the production exp → term). So in summary,
it’s not hard to figure out that all non-terminals have the same first-set5 (the first sets for
the terminals (, ), number etc. are not shown in this small table):

First
exp { (, number }
term { (, number }
factor { (, number }

The example was simple enough to determine the first-sets by just looking at the grammar.
Actually, when thinking about how to solve the problem algorithmically, the grammar is
too simple, and that’s not just because it does not feature ϵ (which would be a minor
complication). The real aspect why the grammar over-simplistic is something else.

What the example does not show is that calculating the first-set in general may involve
circular dependencies of the different sets. Basically, the example presented the prob-
lem in a way that one starts by determining the first-set for factor first (resp. for the
terminal symbols and, based on that, the first-set for factor . Afterwards, the first-set for
term and then the first-set for exp, and then one is done. This layered calculation reflects
the fact that the first-set of exp depends on the first-set of term, which in turn depends on
the first-set of factor , which only depends on terminals. Note that the first-set of factor
does not depend on the first-set of exp, despite the fact that the in the grammar, one rule
for factor mentions exp on its right-hand side. One could illustrate this way of determining
the first-sets in the examply by the graph of Figure 4.5. We could call graphs like that
a form of dependency graphs. We don’t want to introduce such representations formally
here, we just want to illustrate the problems of first-set calculation in a graphical form.

As said, the previous example is deceptively simply in giving the impression that the first-
sets can be calculated in this “staged” manner, like “bottom up” in the graph of Figure
4.5. That’s not always the case. So we slightly modify the expression grammar to drive
home that point.

5That should actually not be a surprise: the expression-term-factors cascade was a formulation to make a
simple expression grammar unambiguous, by fix precendences and associatvities) and were exp, term,
and factor all represent “expression” only at different levels of precedence.
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exp

term

factor

( number

Figure 4.5: First-set dependencies from the grammar of Example 4.3.3

Example 4.3.4. The following is a minor variation of the expression grammar from Example
4.3.3 (or from Example 4.2.4)

exp → − exp | exp + term | exp − term | term
term → term ∗ factor | factor

factor → ( exp ) | number | exp

(4.8)

We add two additional productions (the first and the last one here), not to make the
grammar more useful in practice, but to illustrate the calculation of first sets on a simple
though artificial example.6

We can illustrat the dependencies of the first sets in an analogous way than before, see
Figure 4.6. Now there is a cycle of dependencies: not only does the first-set for expressions
depends on the first-set for terms and the first set for terms depends on that for factors,
but also, and that is new, the first set of factor depends on the first set of exp, closing
the cycle. The figure also shows that the first-set of exp depends “on itself” and the same
for term. Those small self-loops should actually have been present also in the previous
Figure 4.5. But we left them out and glossed over that to keep the line of argument simple
(cheating a little thereby).

With the new, more complex grammar, it’s still straightforward to determine the first sets
by just looking at it. The following table summarizes the results for the non-terminals:

First
exp { (, number, − }
term { (, number, − }
factor { (, number, − }

Table 4.2: First-set for the non-terminals

But how to algorithmically approach the problem and to calculate the first sets? In face
of the cyclic nature of the problem, more precisely the cyclic dependency of the first-set

6You may remember: the expression grammar from Examples 4.2.4 resp. 4.3.3 (without those two extra
productions) used terminals exp, term, and factor as a way do avoid ambiguity by fixing operator
precedence and (left) associativy. The additional two rules make the grammar ambiguous again, thus
the split into expressions, terms and factors makes no real sense here. But the purpose of the grammar
is to discuss the first-sets, not ambiguity or precedence, etc.
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Figure 4.6: First-set dependencies

solutions for the different symbols, there is no starting point or natural order in which
to proceed. That’s unlike in the graph from Figure 4.5 where we could proceed with the
calculation of the results from bottom to top.7 For the cyclic dependencies , one could
calculate the result as follows:
F_factor := { " ( " , } ∪ { " number " }
F_term := F_factor
F_expr := { "−" } ∪ F_term
F_factor := F_factor ∪ F_exp // update with new i n f o

F_term := F_factor
F_expr := { "−" } ∪ F_term

The first three lines set the three variables F_factor, F_term, and F_exp to sets of
terminals. For the simpler grammar, i.e., the non-cyclic graph from earlier (Figure 4.5),
this propagation of information would be all we need. Now, that the result for factors
depends additionally on the result for expressions (i.e. the value of F_factor depends
on the value of F_exp), the original value of F_factor, set in the first line, needs to
be improved and updated with the information of the first-set information for F_exp
(which includes −). In this small example F_factor is assigned to twice.

In this way, one can arrange the calculation of the first-sets for this example, but it’s
not a real algorithm yet. But it shows a crucial aspect of an algorithmic treatment:
arriving at a solution collects the information gradually, and requires sometimes to update
previously calculated approximations of a previosly calculated estimation. In the simple
example, and with the chosen order, F_factor had to be updated twice, but if we
started at a different point in the cycle of dependencies, an analogous improvement of
a previosuly calcuated estimation would have happened elsewhere. For more complex
grammars (maybe with multiple cyclic dependencies), it can lead to situations, where
particular estimations need multiple times.

How often one needs to update the current estimations depends on the grammar (and on
the order in which one treats the dependencies and updates). Consequently, the algorithm
needs to know when it’s enough, i.e., when the approximations are not longer approximate,
but reflect the correct first-sets. In the above simple example, we simply stopped after

7If we ignore the fact that we have left out the “self-dependencies” which are not shown in the graph.
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having updated F_factor the second time. But for an algorithm, we need a general
termation criterion, to end the approximation loop or to end a corresponding recursive
formulation.

Next we spell out which conditions between the first sets of the different symbols of a
grammar, similar to the informal treatment in the previous example, where for instance
the first set of factor most contain the first-set of exp due to the production factor → exp
from the grammar.

Before we do that, we point out which role nullability plays for that. That’s easy enough.
For a production A → Xβ, where the right-hand side starts with symbol X, all elements
from First(X) must be contained in First(A). In a situation like A → αXβ, we need to
take First(X) into account for First(A) nonetheless, if α is nullable. As a special case,
that covers that α = ϵ. This leads to the following formulation:

Definition 4.3.5 (First-set constraints). Given a grammar G, The first-set of a
symbol X, written First(X), satisfies the following conditions:

1. If X ∈ ΣT , then First(X) ⊇ {X}.
2. If A ∈ ΣN : For each production, if A → αXβ where α is nullable, then

First(A) ⊇ First(X).

This is a set of constraints, specifying conditions that a solution must have (the solution
being first-sets for each symbol, which play the role of variables for which a satisfying
solution needs to be found). Constraint solving is a broad field in itself (and many problems
in compilers can be phrased a constraints or also as constraints with the requirement of
finding an optimal or at least good solution). Techniques for contraint solving depend on
the form of constraints and the domain over which one tries to look for solutions (here
sets of symbols): special cases allows for for specialized solving techniques.

For us it’s good enough to know that our problem can be seen a some (actually simple)
form of constraints.

As discussed or sketched in connection with the last Example 4.3.4, an approach to cal-
culate the first-sets involves updating current estimations, enlarging previously obtained
approximations. One open issue was the termination criterion, i.e., when to stop the
updating of the current estimation. The answer is: one stops when the all constraints are
satified, in other words:

terminate when the constraint system is solved!

So an algorithm must, by repeatedly going through some loop, increase current estimations
of the first sets by enlarging them, until the constraint system is solved. There’s just one
(maybe less obvious) open issue, not really addressed in the example, namely where to
start? What should be the initial values for the first-sets, i.e., the program variables
used to store the first-set information?

Initially, without exploring the rules of the grammar, there’s no information available, and
the first-sets for all non-terminals are set to be empty. For each terminal symbol a, the
initial first-set is { a }. Since that information is never updated, it’s not only the initial
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information, but at the same time also the final one and one which directly corresponds
to “base” case 1 from the constraints of Definition 4.3.5.

A an algorithm based on the presented ideas is shown in Listing 4.1.
for all a ∈ ΣT do F i r s t [ a ] := {a } ;
for all A ∈ ΣN do F i r s t [A] := { } ;
end ;

while F i r s t [A] ⊂ F i r s t [ X ] for some product ion A → αXβ where α i s n u l l a b l e
do

F i r s t [A] := F i r s t [A] ∪ F i r s t [ X ]
end ;

end

Listing 4.1: First sets

As data structure, we assume an arrow First, indexed by the symbols of the grammar,
and initialized in the first two lines as described. The main body updates and increased
the information for non-terminals, as long as there are productions and combinations of
symbols where the conditional constraint from case 2 of Definition 4.3.5 is violated. Upon
termination, the negation of the loop condition hold, which means, when terminating the
array First contains a solution to the constraint system, and we have calculated the
first-sets. Another (but equivalent way) to perceive when to stop is the following: starting
from minimal estimations of the first sets, the loop body increase locally the informat-
ing for some non-terminal A. Since the update is done when First(A) ⊂ First(X) (and
where there is a production A → αXβ), the assignment properly increases the first-
set for that non-terminal (as opposed to have no effect). So each iteration properly
increases the information about first sets and the process stops, in that doing updates
First[A] := First[A] ∪ First[X] (under the given side conditions) has no effect. Basically,
one iterates and increases the amount of information, until continuing that way brings no
more improvements (which is the point one has solved the constraints . . . ).

Side remark 4.3.6 (Constraint solving). The (non-deterministic) algorithm basically
describes a method for constraint solving for constraints of a particular form. Other kinds
of constraints would require different (often more complex) constraint solving techniques.
We won’t dig deeper like explaining under which circumstances and for which kind of
constraints the shown approach works and for which not. It will at least also work for
the follow-set calculation. Actually it is an approach that can be used for many problems
inside a compiler. In this lecture we will encounter live variable analysis that falls into
this category, It is a problem that does not belong to parsing, but to later stages of a
compiler, and is an example of a general class of analyses known as data-flow analyses.

4.3.2 Follow-set (only solo)

Next we discuss the follow-sets, starting off by giving a more concise definition. Compared
to the informal definition from page 14, a small detail is added, the use of some additional
symbol $ to represent the “end-of-parse”. Files are often terminated by an end-of-file
marker (EOF); here we represent the end of the words (a parser in practice would handle
a token stream) my a special symbol $, which is treated as an extra terminal symbol.
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Definition 4.3.7 (Follow set). Given a grammar G with start symbol S, and a
non-terminal A. The follow-set of A, written FollowG(A), is

FollowG(A) = {a | S $ ⇒∗
G α1Aaα2, a ∈ ΣT + { $ }} . (4.9)

As we did for the first-sets, the following is contraint formulation, i.e. giving conditions
that the follows sets for non-terminal symbols of a grammar have to satisfy.

Definition 4.3.8 (Follow set). Given a grammar G and nonterminal A. The
Follow-set of A, written Follow(A) has to satisfy:

1. If A is the start symbol, then Follow(A) contains $.
2. If there is a production B → αAβ, then Follow(A) ⊆ First(β).
3. If there is a production B → αAβ such that β is nullable, then Follow(A) ⊆

Follow(B).

The “base” case stipulates that the start symbol is followed by $ (case 1). For an A
occurring on the right-hand side of a production with some β to its right, what follows
A depends on the first set of β (case 2). Case 3 covers the case where β to the right of
A is nullable. In that case, since A can appear at the end of words derived from B, the
follow-set of A contains the follow-set of B from the left-hand side.
i n i t i a l i z e ( Follow ) ;

while
the re e x i s t s a product ion B → αAβ s . t .

( Follow [A] ⊂ F i r s t [ β ] )
or

(β n u l l a b l e and Follow [A] ⊂ Follow [ B ] )
do

Follow [A] := Follow [A] ∪ F i r s t [ β ] )
i f β n u l l a b l e , Follow [A] := Follow [A] ∪ Follow [ B ] )

end

Listing 4.2: Follow sets (polish that formulation)

4.4 Massaging grammars

We discussed first- and follow-sets as “tools” to capture relevant aspects of a grammar. In
particular. the follow-set is connected with the notion of look-ahead, on which we have
touched upon earlier when sketching how generally a parser works. Looking ahead helps
to make decisions which step to take and to build up the parse tree, while eating through
the token stream. The general picture applies to both bottom-up and top-down parsing,
which implies, the first- and follow-sets play a role as diagnosis instrument for both kinds
of parsing methods. By diagnosis, I mean in particular:

the first- and in particular the follow-sets can be used to check whether or not
it’s possible to deterministically parse a given grammar with a look-ahead of one
symbol.
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That could be generalized for longer look-ahead: top-down parsing or bottom-up parsing
with a look-ahead of k would require appropriate generalizations of the first-sets and
follow-sets to speak about longer words, rather than one symbol. In practice, one is often
content with k = 1, so we don’t bother about generalizing the setting.

As said, the first- and follow sets are relevant for both top-down and bottom-up parsers.
Here, however, we continue covering top-down parsing, which has slightly different
challenges than bottom-up. Before we come actually to top-down parsing, we discuss,
what are problematic patterns in grammars, i.e., patterns that top-down parser have
troubles with, and we use the notions follow sets to shed light on that.

The two troublesome pattern for top-down parsing we will discuss that way are
left-recursive grammars and grammars with common left factors.

We will also discuss, how to massage such troublesome grammars in a way that gets rid
of those patterns.

Definition 4.4.1 (Left-recursion and common left-factors.). A left-recursive pro-
duction is of the form

A → Aα (4.10)

Two productions have a common left factor if they are of the form

A → αβ1 | αβ2 where α ̸= ϵ (4.11)

For equation (4.10), one should more precisely speak of immediate left-recursion. Indirect
left-recursion, involving more than one rule, is equally bad for top-down parsing.

At the current point in the presentation, the importance of those conditions might not yet
be clear, but we mentioned it already: top-down parsing does not work with left-recursive
grammars.8

Why common left-factors are undesirable should at least intuitively be clear: we see this
in the example below with the two forms of conditionals. It’s intuitively clear, that a
parser, when encountering an if (and the following boolean condition and perhaps the
then clause) cannot decide immediately which rule applies. It should also be intuitively
clear that that’s what a parser does: inputting a stream of tokens and trying to figure
out which sequence of rules are responsible for that stream (or else reject the input). The
amount of additional information, at each point of the parsing process, to determine which
rule is responsible next is called the look-ahead. Of course, if the grammar is ambiguous,
no unique decision may be possible (no matter the look-ahead).

At a very high level, the situation can be compared with the situation for regular lan-
guages/automata. Non-deterministic automata may be ok for specifying a language (they

8Remember also the discussion around “oracular” derivations, which was about grammars where no
amount of look-ahead would disambiguate a situation in a top-down parse, and which involved left-
recursion.
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can more easily be connected to regular expressions), but they are not so useful for spec-
ifying a scanner program. There, deterministic automata are necessary. Here, grammars
with left-recursion, grammars with common factors, or even ambiguous grammars may
be ok for specifying a context-free language. For instance, ambiguity may be caused by
unspecified precedences or non-associativity. Nonetheless, how to obtain a grammar rep-
resentation more suitable to be more or less directly translated to a parser is an issue less
clear-cut compared to regular languages. Already ambiguity of grammars is undecidable
in general. If a grammar is ambiguous, there’d be no point in trying to turn it into a
practical parser. Also the question, what’s an acceptable form of grammar depends on
what class of parsers one is after (like a top-down parser or a bottom-up parser).

Example 4.4.2 (Left recursion and common left factors). We have seen various examples
already for both phenomena left-recursion. Here for instance a typical production for
expressions, which is left recursive.

exp → exp + term .

A classical example for common left factors are rules for conditionals for instance like the
following:

if -stmt → if ( exp ) stmt end
| if ( exp ) stmt else stmt end .

Next an expression grammar we have seen before in the chapter about grammars.

Example 4.4.3 (Removing left recursion). The grammar from equation (??) is obviously
left recursive. The grammar was used when discussing ambiguity, resp. how to make an
ambiguous grammar unambigous by a concept called precedence cascade, which realizes
associativity and operator precedences

The grammar can be formulated equivalently as follows:

exp → term exp′

exp′ → addop term exp′ | ϵ
addop → + | −
term → factor term′

term′ → mulop factor term′ | ϵ
mulop → ∗
factor → ( exp ) | number

(4.12)

When saying that formulation is equivalent, we mean, the same set of words is accepted.
So as far as the language (as sets of accepted words) is concerned the two grammars are
equivalent. But far far as the parse trees are concerned they are not, because the associa-
tivity has changed! Note also, the alternative formulation works now with ϵ-productions,
which does not make it more readable. Otherwise, the grammar is still unambiguous.

The following Section 4.4.1 presents a systematic way to remove left-recursion from a
grammar.
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4.4.1 Left-recursion removal

Next we present a transformation to turn a context-free grammar into an (language-
)equivalent one without left recursion. The price for that transformation will be that the
transformed grammar uses (additional) ϵ-productions. Another disadvantage is that if
the grammar embodies associativities, in particular left-associativity, which is connected
to left-recursion, the transformation changes the associativity.

Let’s start with the removal of left-recursion illustrated in a simplified situation, resp. for
a special case of recursion, immediate recursion. The following transformation removes
immediate left-recursion on A in the presence of a second production involving A, which
is assumed not to exhibit left recursion.

A → Aα | β (4.13) A → βA′

A′ → αA′ | ϵ
(4.14)

The transformation is easy enough, introducing a new non-terminal, which uses a right-
recursive procedure instead. The effect of the transformation on the shape of corresponding
parse trees is illustrated in Figure 4.7.
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Figure 4.7: Left-recursion removal

Both grammars generate the same context-free language, i.e., the same set of words over
terminals.

The previous situation was simplified: It dealt with immediate left-recursion, and addition-
ally there was only one production suffering from direct left-recursion for the considered
non-terminal. The following definition covers the general case.

Definition 4.4.4 (Left-recursion removal: immediate recursion). The transformation for
removal of immediate left recursion is as follows:
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A → Aα1 | . . . | Aαn

| β1 | . . . | βm

before

A → β1A′ | . . . | βmA′

A′ → α1A′ | . . . | αnA′

| ϵ

after

Indirect recursion is a bit more tricky, and it uses the removal of direct left recursion as
subroutine. See Definition 4.4.5 resp. Listing 4.3.

Definition 4.4.5 (Left-recursion removal: indirect recursion). Left recursion is
removed by the code from Listing 4.3 (which also involves removing direct recursion
from Definition 4.4.4).

for i := 1 to m do
for j := 1 to i −1 do

replace each grammar rule of the form Ai → Ajβ by // j < i
rule Ai → α1β | α2β | . . . | αkβ

where Aj → α1 | α2 | . . . | αk

is the current rule(s) for Aj // cur rent
end
{ corresponds to i = j }
remove, if necessary, immediate left recursion for Ai

end

Listing 4.3: Removal of left recursion (indirect case)

To deal with indirect recursion, we need to look at productions Ai → Ajβ as this could
indicate indirect left recursion. This include the situation i = j, which of course is direct
left recursion. In Listing 4.3, direct left recursion is handled at the end of the code, after
the main part of the algorithm, which consists of two loops, going through combinations of
Ai and Aj . The inner body of the two loops handles combinations of Ai and Aj with j < i
are handleBy “current rules” it’s meant the rules at the current stage of the algorithm.

Let’s illustrate the procedure with a small example.

Example 4.4.6 (Left recursion removal). Consider the following grammar, which contains
direct and indirect left recursion:

A → Ba | Aa | c
B → Bb | Ab | d

Assume further the two non-terminals ordered as A = A1, B = A2.

The following three grammars are the “transformation stages” of the grammar. With only
2 symbols, there are 3 combinations of non-terminals to be treated: A1, A1, A2, A1, and
A2, A2 (resp A, A, A, B, and B, B).
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A → BaA′ | cA′

A′ → aA′ | ϵ
B → Bb | Ab | d

A → BaA′ | cA′

A′ → aA′ | ϵ
B → Bb | BaA′b | cA′b | d

A → BaA′ | cA′

A′ → aA′ | ϵ
B → cA′bB′ | dB′

B′ → bB′ | aA′bB′ | ϵ

With only two non-terminals, the algorithm for indirect recursion is used only in the second
step. The outer loop over iterates over i ∈ {1, 2}, i.e., the only case where the inner loop
is non-empty is for i = 2, in which case j can take the value i. Besides the inner loop for
indirect recursion, there is also the case the treatment of direct recursion for the symbol
Ai.

In the example, the first step treats direct recursion for A, the indirect recursion for for
the case where B makes use of A, in that A occurs on the left of a right-hand side of a
production of B. In the example, there is one situation like that. Finally, in the last step,
the direct recursion of B is treated.

4.4.2 Left factor removal

Common left factors are likewise undesirable. Let’s look at a simple situation:

A → αβ | αγ | . . . (4.15)

Let’s assume that the two shown rules are the only one with a common left factor α ( ̸= ϵ
of course). The grammar can easily enough be transformed, “factoring out” the common
prefix α:

A → αA′ | . . .
A′ → β | γ

(4.16)

It’s assumed that α is the longest common prefix, otherwise the resulting production for
A′ would still have a common left factor. Let’s look at some examples that could in this
or similar form occur in the syntax of programming languages.

Example 4.4.7 (Sequence of statements). The grammar on the left represents non-empty
sequences of statements, with semicolon as separator.

stmts → stmt ; stmts
| stmt

stmts → stmt stmts′

stmts′ → ; stmts | ϵ

The grammar on the right-hand side has the common prefix of the two right-hand sides
factored out.

Example 4.4.8 (Conditionals). The following grammar covers conditionals supporting a
one-armed and a two-armed variant.

if -stmt → if ( exp ) stmts
| if ( exp ) stmts else stmts

(4.17)
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That can be rewritten as follows:

if -stmt → if ( exp ) stmts else-or-empty
else-or-empty → else stmts | ϵ

(4.18)

As you may remember, that the last versions of the conditionals suffer from being am-
biguous and it’s known as the dangling-else problem. The next slight variation requires
that branches are terminated by an end-marker. That’s one way to address the dangling-
else problem. Still, there is the common left factor, and the transformation is completely
analogous to the previous one.

if -stmt → if ( exp ) stmts end
| if ( exp ) stmts else stmts end

(4.19)

The one without a common left factor looks as follows:

if -stmt → if ( exp ) stmts else-or-end
else-or-end → else stmts end | end

(4.20)

The previous examples were straightforward enough, and in many concrete grammars the
sketched step may do the job. In the general case, however, not all factorization is doable
in one step. The following artificial example illustrates that.

Example 4.4.9 (Left-factorization). As starting point, take the grammar on the left. Now
there are three productions for a non-terminal with a common left-factor. Actually, some
have a longer shared prefix, and some a shorter.

A → abcB | abC | aE A → abA′ | aE
A′ → cB | C

A → aA′′

A′′ → bA′ | E
A′ → cB | C

Note: we choose the longest left factor, i.e., the longest common prefix in the first
transformation step, not the maximal number of rules changed by the step.

The observation just made about choosing the longest left factor is what’s done one the
algorithm from Listing 4.4.

while there are changes to the grammar do
for each nonterminal A do

let α be a prefix of max. length that is shared
by two or more productions for A

i f α ̸= ϵ
then

let A → α1 | . . . | αn be all
prod. for A and suppose that α1, . . . , αk share α
so that A → αβ1 | . . . | αβk | αk+1 | . . . | αn ,
that the βj ’s share no common prefix, and
that the αk+1, . . . , αn do not share α.

replace rule A → α1 | . . . | αn by the rules
A → αA′ | αk+1 | . . . | αn

A′ → β1 | . . . | βk

end



4 Parsing
4.5 LL-parsing, mostly LL(1) 27

end
end

Listing 4.4: Left factorization

The algorithm is pretty straightforward (despite all the indices). The only thing to keep
in mind is that what is called α in the pseudo-code is the longest comment prefix and the
β’s must include all right-hand sides that start with that (common longest prefix) α.

4.5 LL-parsing, mostly LL(1)

After having covered the more technical definitions of the first and follow sets and trans-
formations to remove left-recursion resp. common left factors, we go back to top-down
parsing, in particular to the specific form of LL(1) parsing. Additionally, we discuss issues
about abstract syntax trees vs. parse trees. Actually, we have not even yet said, what
LL-actually stands for. LL stands for left-to-right parsing for a left-most derivation. Ba-
sically, it represents standard top-down parsing. In this lecture, we don’t do LL(k) with
k > 1. LL(1) is particularly easy to understand and to implement (efficiently). It is not
as expressive than LR(1) (see later), but still kind of decent.

LL(1) parsing principle: Parse from 1) left-to-right (as always anyway), do a 2)
left-most derivation and resolve the “which-right-hand-side” non-determinism by
3) looking 1 symbol ahead.

We present to realizations of LL(1) resp. top-down parsing here: recursive descent and
table-based LL(1) parser. They are different realizations of the same principles.

To be precise: it’s recursive descent with one look-ahead and without backtracking (i.e.,
it’s predictive). It’s the most common case for recursive descent parsers.

To do top-down parsing with a look ahead (for grammars that are LL(1)-parseable) is
straightforward. A look ahead of 1 is not much of a look-ahead anyway, it’s just the next
token. So, the parser does something rather unspectacular, it eats through the tokens
left-to-right one by one, it reads the next token, looks at that current token and based
on that, makes a decision. There’s the special situation when there are no more tokens.
So the behavior is to read the next token if there is one, decide based on the token or else
make a decision based on the fact that there’s none left. One typically uses the special
terminal $ to mark the end (as mentioned in the context of the follow-sets).

Example 4.5.1 (Factors and terms (again)). Let’s revisit one of the expression grammars
involving terms and factors, for instance in Example 4.4.3. Let’s focus for now on the
non-terminal factor , which is covered by 2 productions:

factor → ( exp ) | number (4.21)

When parsing an input expecting a factor next, the decision that needs to be done whether
it’s a parenthetic expression or a number. The decision is more or less trivial to do: the
parser looks at the token: if it’s (, then it’s the first case and if it’s number, the second.
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In the first case the parser will continue its actions trying to parse the rest as expression
exp and, when that succeeds, parsing the rest as ). If we assumed that factor would be the
start symbol, the parser would finally check if ) is followed by the end-of-parse marker. In
case the parse of factor does not start with ( or number (or something else goes wrong
later), an error will have to be raised. So, treating factors is pretty straight forward, but
sometimes it will not be so obvious.

The general setup for recursive descent parsing is as follows: The parser has access to
the current token. Perhaps a variable, say, tok keeps that token or a pointer to the
current token. The parser can also advance that to the next token (if there’s one). A
general pattern to arrange the parse is

For each non-terminal nonterm, write one procedure (perhaps called nonterm
or similar) which:

• succeeds, if starting at the current token position, the “rest” of the to-
ken stream starts with a syntactically correct word of terminals representing
nonterm, and

• fail otherwise.

The different procedures for the different non-terminals will call each other in a pattern of
mutual recursion, reflecting the typically mutually recursive structure of the grammar.
With that in mind, we have another indication that left-recursion will not be parseable, at
least not in this way. For instance, an immediate left-recursive grammar rule is represented
by a corresponding procedure that immediately calls itself, which leads to an infinite
recursion, resp. the parser will fail with a stack-overflow (and indirect left recursion has
the analogous problem).

Example 4.5.2 (Recursive descent). Let us have a look how the productions for factors from
Example 4.5.1 can be parsed, let’s say in a Java-like or C-like language. For concreteness
sake, we sketch also implementation for the tokens, here contansts (with the keyword
final), all would be arranged in classes, but that’s not shown here, as it’s a sketch.

f i n a l int LPAREN=1,RPAREN=2,NUMBER=3,
PLUS=4,MINUS=5,TIMES=6;

Listing 4.5: Data types for the tokens

void factor ( ) {
switch ( tok ) {
case LPAREN: eat (LPAREN) ; expr ( ) ; eat (RPAREN) ;
case NUMBER: eat (NUMBER) ;
}

}

Listing 4.6: Recursive descent for factors

The code shows only the function or method for the non-terminal factor, calling the
corresponding function for expression. The one for expressions and others are not shown,
so in the shown code, there is no recursion visible. A more complete grammar would
contain (indirect or direct) recursion on the productions, and consequently that would
lead to a set of function using indirect and/or direct recursion.
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In a functional language, we could formulate the procedure as follows.
type token = LPAREN | RPAREN | NUMBER

| PLUS | MINUS | TIMES

Listing 4.7: Data types for the tokens

let f a c t o r ( ) = (∗ f unc t i on f o r f a c t o r s ∗)
match ! tok with

LPAREN −> eat (LPAREN) ; expr ( ) ; eat (RPAREN)
| NUMBER −> eat (NUMBER)
| _ −> ( ) (∗ r a i s e an error ∗)

Listing 4.8: Recursive descent for factors

We ignored tha that when doing a successful parse, the functions are supposed to give back
the abstract syntax tree for the accepted non-terminal. Also the shown code snippets
don’t give back anything resp. the the value of unit-type in the ocaml version.

Before addressing abstract syntax trees, we first continue with top-down parsing itself.
The situation is not always as immediate as in the previous example with the two rules
for factor . That LL(1) parsing works, as said earlier, a unique decision must be possible
based on the first non-terminal of words derivable from the current token. For the non-
terminal factor with the two productions from equation (4.21), it’s immediate from the
two right-hand sides, which start with two different terminals. But right-hand sides can
also start with non-terminals. That’s exactly where the first-sets come in handy.

But that’s not all. It can be the case that the non-terminal in question is nullable, i.e., it
has no initial terminal. In such a situation, the parser additionally has to consult the
follow-set to make the decision.

We start by ignoring nullable non-terminals and first cover the simplified setting of gram-
mars without ϵ-productions. In this case, the decision can be made looking at the first-sets,
only, in case that there is no overlap in those sets for the right-hand sides of a given non-
terminal. If there’s an overlap, the grammar cannot be LL-(1)-parsed

Lemma 4.5.3 (LL(1) (without nullable symbols)). A reduced context-free grammar
without nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and
for all pairs of productions A → α1 and A → α2 with α1 ̸= α2:

First1(α1) ∩ First1(α2) = ∅ .

And here the definition for the general case, for grammars that may contain nullable
symbols.

Lemma 4.5.4 (LL(1)). A reduced context-free grammar is an LL(1)-grammar iff
for all non-terminals A and for all pairs of productions A → α1 and A → α2 with
α1 ̸= α2:

First1(α1Follow1(A)) ∩ First1(α2Follow1(A)) = ∅ .
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The characterization mentions that the grammar has to be reduced. We don’t bother
to formally define it. At some point earlier, we have said, grammars can be “silly”,
like containing productions that are never used or containing similar such defects. That
characterization of LL(1) only applies to grammars which are not defective in that sense.

We have mentioned earlier forms of grammars where we’d expect problems. One was gram-
mars with productions with common left factors. The other problem was left-recursion.

For the latter problem, we have repeatedly mentioned it: top-down parsing does not work
for left-recursive grammars. The first glimpse why left-recursion is problematic was the
example and discussion about oracular derivations (see Example 4.2.4). Now that we
have a feeling of how one can make use of recursive procedures for top-down parsing, it’s
also clear that left-recursion (direct or indirect) does not work: a procedure that directly
calls itself in a situation of a production with direct left-recursion will diverge. Same for
productions with indirect left recursion.

Let’s revisit these situations with the LL(1)-criterion at hand. For instance the grammar
for conditionals from equation (4.17) from Example 4.4.8 with a common left factor
of

if ( exp ) stmt

cannot be disambiguated with a look-ahead of one. Equation (4.18) from the same example
is the left-factored version of that piece of syntax. It can also perhaps more clearly written
in extended BNF as

if -stmt → if ( exp ) stmt[else stmt]

That could lead to a recursive-descend code as sketched in Listing 4.9.
procedure ifstmt ( )

begin
match ( " i f " ) ;
match ( " ( " ) ;
exp ( ) ;
match ( " ) " ) ;
stmt ( ) ;
i f token = " else "
then match ( " else " ) ;

stmt ( )
end

end ;

Listing 4.9: Recursive descent for left-factored if -stmt from equation (4.18)

Likewise, left recursion is a no-go.

Example 4.5.5 (Factors and terms (again)). We can take again the expression grammar
for factors and terms from earlier. Now consider treatment of exp, i.e., the productions

exp → exp addop term | term

It’s clear that whatever is in First(term), is in First(exp). So according to the criterion
from Lemma 4.5.3 the grammar is not LL(1)-parseable (and actually no amount of look-
ahead would help).
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Transforming the grammar by removing left-recursion may help. After the transformation,
the production for exp is replaced by the following:

exp → term exp′

exp′ → addop term exp′ | ϵ

The two non-terminal can be covered by the following procedures:

procedure exp ( )
begin

term ( ) ;
exp′ ( )

end

Listing 4.10: Procedure for exp

procedure exp′ ( )
begin

case token of
"+" : match ( " + " ) ;

term ( ) ;
exp′ ( )

" −": match ( " − " ) ;
term ( ) ;
exp′ ( )

end
end

Listing 4.11: Procedure for exp′

While kind of massaging may help with making the grammar LL-parseable, it’s problem-
atic. One issue may be that the parse trees certainly gets more messy. See the one for
the transformed grammar from Figure 4.4. Of course, we are talking about parse trees,
not ASTs. At least for the AST, one would opt for a leaner presentation, in particular one
certainly does not want to have ϵ-nodes.

For comparison, here a parse-tree according to the grammar, where the left-recursion has
not been removed (for the expression 1 + 2 ∗ (3 + 4)). Trees like that certainly would look
nicer. Of course, as said, that tree is for the grammar with left-recursion and that does
not work for top-down parsing.
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Figure 4.8: Parse tree for 1 + 2 ∗ (3 + 4) for the left-recursive version of the grammar

Parse trees from the “flat” formulation of the grammar, without the cascade of terms and
factors, look even a bit nicer (see Figure 4.9). But then the grammar is ambiguous, and
thus likewise unsuitable for parsing.

Nicer or less nice is one thing, but there is another more serious problem. We know
already that, when parsing binary operations like the ones used for expression here, there
is a connection between associativity and the form of recursion. For right-recursive
formulations, the operators associate to the right, analogously for left associativity. That
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Figure 4.9: Parse tree for 1 + 2 ∗ (3 + 4) for the “flat” grammar

was discussed in connection with the concept of precedence cascade. If a production
uses left- and right-recursion, then the operation can associate to the left and the right,
which makes the grammar ambiguous. The precedence cascade used the expressions,
factors and terms only in a left-recursive manner, which fixed the associativity as intended,
namely to the left, and additionally fixed the precedences.

Cf. again the expression-terms-factor grammar earlier. So the left recursive grammar parses
an expression 3+4+5 resp. 3−4−5 as “as” (3+4)+5 resp. (3−4)−5. The corresponding
trees are shown in Figure 4.10.
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Figure 4.10: Factors and terms: left-associative parse trees

Thus, it should not come as surprise that the repair concerning left-recursion causes
headache: the repair replaces left-recursion by right-recursion (using additional non-
terminals and ϵ-productions). That changes the associativity from left- to right-
associativity. I.e., the given expressions are now parsed “as” 3 + (4 + 5) and 3 − (4 − 5).
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Figure 4.11: Factors and terms: right-associative parse tree for 3 − 4 − 5

For parse trees, there’s not much one can do about that: right-recursion corresponds to
right-associativity in the parse tree. But one is not primarily interested in the parse-
tree and what the parser gives back is the abstract syntax tree. Thus, one needs a
way to build a left-associative AST from a recursively descending parser run, doing a
right-associative parse tree.
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4.5.1 On the design of ASTs and how to build them

So far we have focused on parse-trees. In the following section we not only discuss how to
repair situations where the parse trees reflect an unwanted associativity. We also take the
opportunity to say a bit about abstract syntax trees in general. Abstract syntax trees are
not specific for top-down or recursive descent parsing, so those remarks are independent
from that particular parsing style. But let’s start by seeing how to repair associativity.

How to repair ill-associated parse-trees and more on ASTs

We have seen situations when the associativity of a parse tree does not match the intended
one. Building an abstract syntax tree straight-forwardly reflecting more or less the parse
tree thus also leads to an ill-associated tree. That can be repaired by handing over an
extra argument to the recursive procedures of the top-down parser.

We illustrate the mechanism not for the situation when the parser returns an AST, but
for evaluating the expression. So, the parsers returns an integer, not a tree, and likewise
the additional argument we mentioned will be an integer, not a tree.

Example 4.5.6 (Evaluating a expression with correct associativity). We use the same right-
recursive expression-term-factor-grammar from before.

As illustration, we use the expression

3 − 4 − 5

which should be parsed, resp. evaluated as (3 − 4) − 5 not as 3 − (4 − 5). If we had the
left-associative parse-tree from Figure 4.10b, evaluating the expression would be very easy.
However, the parse-tree represents right-associativity, see Figure 4.11 and a straightfor-
ward, bottom-up evaluation will give the wrong result. The idea of the correct evaluation
is shown in Figure 4.12.
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Figure 4.12: Repairing associativity (evaluation)

In the picture, the red arrows show the extra argument as input to the recursion, and
the blue one, going upwards, the returned result. In this case, evaluating the expressions,
the extra information is integers, as said.

The code for that idea is given in Listing 4.12 (at least the part dealing with exp′).
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function exp′ ( v a l s o f a r : int ) : int ;
begin

i f token = '+ ' or token = ' − '
then

case token of
'+ ' : match ( ' + ' ) ;

v a l s o f a r := v a l s o f a r + term ;
' − ' : match ( ' − ' ) ;

v a l s o f a r := v a l s o f a r − term ;
end case ;
return exp′ ( v a l s o f a r ) ;

else return v a l s o f a r
end ;

Listing 4.12: Code to evaluate ill-associated such trees correctly

The example used as extra “accumulator” argument valsofar, representing the accumu-
lated integer value. Instead of evaluating the expression, one could build the AST with the
appropriate associativity instead: instead of valsofar, one had rootoftreesofar.

The example parses expressions and evaluates them while doing that. In most cases
in a f parser, one needs an AST, not a number, but the problem is analogous and the
“accumulator”-pattern illustrated here in the evaluation setting can help out with ASTs.

Some more words on ASTs, while at it. We have discussed the difference between parse
trees and AST earlier and mentioned it’s a design issue, and trade-offs can be made.
Before looking at ASTs, let’s start by talking about general design issues concerning a
languages, resp. a language’s syntax.

It starts already with the design of the language itself, it’s concrete syntax: How much of
the syntax is left implicit? Lisp for instance, is famous/notorious in that its surface syntax
is more or less an explicit notation for the ASTs.9 It also depends on which grammar class
to use: Is LL(1) good enough (or LALR(1)), or does one feel the need for something more
expressive. Does one parse top-down or bottom?

Once, the language and its grammar for parsing are fixed, the parse trees are fixed, as
well. The ASTs are typically built on-the fly, i.e., built while the parser parses.

the parser “builds” the AST data structure while “doing” the parse tree.

Since the AST is the only thing relevant for later phases, it’s a good idea to have clean
structure; we mentioned that earlier. It’s also possible to have the AST being basically
equivalent to the CST, in which case the AST becomes straightforward. At least if the
grammar for parsing is not designed “weirdly” or having the wrong associativity.

For instance, looking at the parse tree of Figure 4.11, even if we would accept that it’s
right-associative, with all the ϵ nodes and inner nodes representing term′ and exp′, it’s
not a nice structure. So, parse trees like that, even if their associativity is acceptable, are
better cleaned up as AST.

9Not that it was originally planned like this . . . One can see some comments by McCarthy at http:
//www-formal.stanford.edu/jmc/history/lisp/lisp.html.

http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
http://www-formal.stanford.edu/jmc/history/lisp/lisp.html
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Figure 4.13: Different more or less abstract trees

But anyway, the figures are just illustrations how one can imagine that an AST could look
like. In a concrete implementation, one has to choose and define concrete data types,
classes etc., that realize those trees. In the following we sketch how one could do it in
Java, or another class-based object-oriented language with inheritance and sub-typing. It’s
based on using abstract classes for non-terminals, and concrete classes for different
productions for a given non-terminal. Those classes, one for each production, extend the
corresponding abstract class. In functional languages, one would one inductive data
types instead (most functional languages support those).

Let’s use expressions again, and assume, one has a “non-weird” grammar. We have seen
that formulation in the previous chapter and repeat it here.

exp → exp op exp | ( exp ) | number
op → + | − | ∗

Abstract syntax trees are trees, so here we use the BNF notation not as specification for
the parser, but as description of the structure of abstract syntax trees. Therefore it
does not bother us that the grammar is highly ambiguous and not useful for parsing. To
represent that as data structure, this is how it’s done:

Recipe:
• turn each non-terminal to an abstract class.
• turn each right-hand side of a given non-terminal as (non-abstract) subclass

of the class for considered non-terminal.
• chose fields & constructors of concrete classes appropriately.
• terminal: concrete class as well, with a field for token’s value and a corre-

sponding constructor

Following that recipe results in the following code. By choosing the classes to be public,
each class would have to reside in a separate file, of course, like Exp.java, BinExp.java
etc. One could do that also differently if preferred. But it’s one way to routinely capture
a grammar as shown, almost without thinking.
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abstract public class Exp {
}

public class BinExp extends Exp { // exp −> exp op exp
public Exp l e f t , r i g h t ;
public Op op ;
public BinExp (Exp l , Op o , Exp r ) {

l e f t=l ; op=o ; r i g h t=r ; }
}

public class ParentheticExp extends Exp { // exp −> ( op )
public Exp exp ;
public ParentheticExp (Exp e ) {exp = l ; }

}

public class NumberExp extends Exp { // exp −> NUMBER
public number ; // token va lue
public Number( int i ) {number = i ; }

}

abstract public class Op { // non−t ermina l = a b s t r a c t
}

public class Plus extends Op { // op −> "+"
}

public class Minus extends Op { // op −> "−"
}

public class Times extends Op { // op −> "∗"
}

The following shows how to build an abstract syntax tree for expressions, with the corre-
sponding constructors. That’s basically what the parser should do during its run:
Exp e = new BinExp (

new NumberExp ( 3 ) ,
new Minus ( ) ,
new Parenthet icExpr (

new BinExp (
new NumberExp ( 4 ) ,
new Minus ( ) ,
new NumberExp ( 5 ) ) ) )

Listing 4.13: AST for 3 − (4 − 5)

Having a recipe as guiding line is nice, one might however choose not to follow it slavishly.
For instance, the last classes, one class per operator, are perhaps pushing the recipy too
far, one could also choose to solve that differently and perhaps one get better efficiency
if one would not make classes / objects out of everything, though. So one could do some
pragmatic deviations from the recipe. It’s nice to have a guiding principle, but no need
to carry it too far . . . To the very least: the ParentheticExpr is completely without
purpose: grouping is captured by the tree structure, so that class is not needed. Some
might prefer an implementation of the operators

op → + | − | ∗

as simply integers, for instance arranged as follows
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public class BinExp extends Exp { // exp −> exp op exp
public Exp l e f t , r i g h t ;
public int op ;
public BinExp (Exp l , int o , Exp r ) {

pos=p ; l e f t=l ; oper=o ; r i g h t=r ; }
public f i n a l stat ic int PLUS=0, MINUS=1, TIMES=2;

}

and used as BinExpr.PLUS etc.

Some final words for the recipe. Space considerations for AST representations are not top
priority nowadays in most cases. In my eyes, clarity and cleanness trumps quick hacks
and “squeezing bits”. To which extent one follows the recipe or at all:

Do it systematically: A clean grammar is the specification of the syntax of
the language and thus the parser. It is also a means of communicating with
humans what the syntax of the language is, at least communicating with pros,
like participants of a compiler course, who of course can read BNF . . . A clean
grammar is a very systematic and structured thing which consequently can and
should be systematically and cleanly represented in an AST, including judicious
and systematic choice of names and conventions (the non-terminal exp is represented
by class Exp, the non-terminal stmt by class Stmt, etc.)

Building ASTs

Let’s have a look how to produce “something” during recursive descent parsing. So far we
look at recursive-descent, i.e., a top-down (parse-)tree traversal via recursive procedures.10

The possible outcome was termination or failure. Now: instead of returning “nothing”
(return type void or similar), we want to return some meaningful, and build that up
during traversal.

Example 4.5.7 (Evaluating an exp during RD parsing). For illustration, let’s sketch a pro-
cedure for evaluating expression. So after a successful parse, a integer value is returned.
function exp ( ) : int ;
var temp : int
begin

temp := term ( ) ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"

case token of
"+" : match ( " + " ) ;

temp := temp + term ( ) ;
" −": match (" −")

temp := temp − term ( ) ;
end

end
return temp ;

end

Listing 4.14: Evaluating expressions

10Modulo the fact that the tree being traversed is “conceptual” and not the input of the traversal procedure;
instead, the traversal is “steered” by stream of tokens.
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Conceptually, building of an AST is not much harder
function exp ( ) : syntaxTree ;
var temp , newtemp : syntaxTree
begin

temp := term ( ) ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"

case token of
"+" : match ( " + " ) ;

newtemp := makeOpNode ( " + " ) ;
l e f t C h i l d ( newtemp ) := temp ;
r i g h t C h i l d ( newtemp ) := term ( ) ;
temp := newtemp ;

" −": match (" −")
newtemp := makeOpNode ( " − " ) ;
l e f t C h i l d ( newtemp ) := temp ;
r i g h t C h i l d ( newtemp ) := term ( ) ;
temp := newtemp ;

end
end
return temp ;

end

Listing 4.15: Building ASTs for expression

note: the use of temp and the while loop

factor → ( exp ) | number

function factor ( ) : syntaxTree ;
var f a c t : syntaxTree
begin

case token of
" ( " : match ( " ( " ) ;

f a c t := exp ( ) ;
match ( " ) " ) ;

number :
match ( number )
f a c t := makeNumberNode( number ) ;

else : e r r o r . . . // f a l l through
end
return f a c t ;

end

Listing 4.16: Building and AST (factor)

if -stmt → if ( exp ) stmt [else stmt]

function ifStmt ( ) : syntaxTree ;
var temp : syntaxTree
begin

match ( " i f " ) ;
match ( " ( " ) ;
temp := makeStmtNode ( " i f " )
t e s t C h i l d ( temp ) := exp ( ) ;
match ( " ) " ) ;
thenChi ld ( temp ) := stmt ( ) ;
i f token = " else "
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then match " else " ;
e l s e C h i l d ( temp ) := stmt ( ) ;

else e l s e C h i l d ( temp ) := ni l ;
end
return temp ;

end

Listing 4.17: Building ASTs (conditionals)

In summary: the recursive descent parser do have one procedure/function/method per
each specific non-terminal. It decides on alternatives, looking only at the current token.
Upon entry of function A for non-terminal A, the first terminal symbol for A in token.
Upon exit of the procedure, the parser is at the first terminal symbol after the unit
derived from A in token. match("a") : checks for "a" in token and eats the token
(if matched).

The fact that the parsing proceeds based on the first terminal in each procedure corre-
sponds to the fact that LL(1)-parseability. We have a closer look at conditions when LL(1)
parsing is possible in the following.

4.5.2 LL(1) parsing principle and table-based parsing

For the rest of the top-down parsing section, we look at a variation, not in principle but as
far as the implementation is concerned. Instead of doing a recursive solution, one condenses
the relevant information in tabular form. This data structure is called an LL(1) table.
That table is easily constructed making use of the First- and Follow-sets, and instead of
mutually recursive calls, the algo is iterative, manipulating an explicit stack. As a look
forward: also the bottom-up parsers will make use of a table, which look slightly different
and which will be an LR-table or one of its variants.

Now, using an explicit stack, the decision-making based on the next terminal symbol is
collated into the so-called LL(1) parsing table. Remember also the characterization of
LL(1)-parseable grammars from Lemma 4.5.3 (for grammars without ϵ-productions). The
LL(1) parsing table is a finite data structure M , e.g., a two-dimensional array

M : ΣN × ΣT → ((ΣN × Σ∗) + error)

For looking up entries, we use the notation M [A, a] = w. In the following, we assume pure
BNF, not any of the extended forms.

Side remark 4.5.8. Sometimes, depending on the presentation, the entry in the parse
table does not contain a full rule as here, needed is only the right-hand-side. In that case
the table is of type ΣN × ΣT → (Σ∗ +error).

Construction of the parsing table

We present two versions of the same recipe. The second one is based on the concept of
the first- and follows sets.
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Earlier, we have have seen a characterization of when a grammar is LL(1) parseable (see
Lemma 4.5.3 for the restricted setting of a grammar without ϵ). One can see the recipe
here, how to make a LL(1) table as another, but equivalent way of figuring whether a
grammar is LL(1) or not, namely: build a table following the recipe, and if that table
contains double-entries, then it’s not LL(1) parseable. A recursive decent parser, using
that table, would not know what to do. Such a double entry is called a conflict, here an
LL(1)-conflict.

1. If A → α ∈ P and α ⇒∗ aβ, then add A → α to table entry M [A, a]
2. If A → α ∈ P and α ⇒∗ ϵ and S $ ⇒∗ βAaγ (where a is a token (=non-

terminal) or $), then add A → α to table entry M [A, a]

Table 4.3: Recipe for LL(1) parsing table

Assume A → α ∈ P .
1. If a ∈ First(α), then add A → α to M [A, a].
2. If α is nullable and a ∈ Follow(A), then add A → α to M [A, a].

Table 4.4: Recipe for LL(1) parsing table

The two recipes are equivalent. One can use the recipes to fill out LL(1) table, we will
do that in the following. In case a slot in such a table means that the grammar is not
LL(1)-parseable, i.e., the LL(1) parsing principle is violated. One may compare that also
to Lemma 4.5.3.

Example 4.5.9 (If-statements). Consider the following grammar for conditionals:

stmt → if -stmt | other
if -stmt → if ( exp ) stmt else−part

else−part → else stmt | ϵ
exp → 0 | 1

The grammars is left-factored and not left-recursive. See also the corresponding grammars
from Example 4.4.8.

First Follow
stmt other, if $, else
if -stmt if $, else
else−part else, ϵ $, else
exp 0, 1 )

Table 4.5: First- and follow sets

The table lists the first and follow set for all non-terminals (as was the basic definition for
those concepts). In the recipe, though, we actually need the first-set of words, namely for
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the right-hand sides of the productions (for the follow-set, the definition for non-terminals
is good enough). Therefore, one might, before filling out the LL(1)-table also list the
first set of all right-hand sides of the grammar. On the other hand, it’s not a big step,
especially in this grammar.

With this information, we can construct the LL(1) parsing table.

Table 4.6: LL(1) parsing table

The highlighted slot contains two productions. Thus it’s not a proper an LL(1) table, and
it’s not an LL(1) grammar. Note therefore, removing left-recursion and left-factoring did
not help!

Side remark 4.5.10. Saying that it’s “not-an-LL(1)-table” is perhaps a bit nitpicking.
The shape is according to the required format. It’s only that in one slot, there is more
than one rule, actually tow. That’s a conflict and makes it at least not a legal LL(1) table.
So, if in an exam question in a written exam, the task is “build the LL(1)-table for the
following grammar . . . .. Is the grammar LL(1)?”. Then one is supposed to fill up a table
like that, and then point out, if there is a double entry, which is the symptom that the
grammar is not LL(1), that this is the case.

Similar remarks apply later for LR-parsers and corresponding tables. Actually, for LR-
parsers, tools like yacc build up a table (not an LL-table, but an version of an LR-table)
and, in case of double entries, making a choice which one to include. The user, in those
cases, will receive a warning about the grammar containing a corresponding conflict, as
information that the grammar is problematic.

Conflicts are typically to be avoided, though upon analyzing it carefully, there may be
cases, were one can “live with it”, that the parser makes a particular choice and ignore
another. What kind of situations might that be? Actually, the one here in the example
is one. The given grammar “suffers” from the ambiguity called dangling-else problem.
Anyway, the conflict in the table puts the finger onto that problem: when trying to
parse an else-part and seeing the else-keyword next, the top-down parser would not
know, if the else belongs to the last “dangling” conditional or to some older one (if that
existed). Typically, the parser would choose the first alternative, i.e., the first production
for the else-part. If one is sure of the parser’s behavior (namely always choosing the first
alternative, in case of a conflict) and if one convinces oneself that this is the intended
behavior of a dangling-else (in that it should belong to the last open conditional), then
one may “live with it”. But it’s a bit brittle.
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With an LL(1)-table at hand, it’s straightforward to formulate an algorithm based on
that, see Listing 4.18.
push the s t a r t symbol of the par s ing s tack ;
while the top of the parsing stack ̸= $

and the next input ̸= $
i f the top of the parsing stack is terminal a

and the next input token = a
then

pop the parsing stack ;
advance the input ; // ``match ' ' `` eat ' '

else i f the top the parsing is non-terminal A
and the next input token is a terminal or $
and parsing table M [A, a] contains

production A → X1X2 . . . Xn

then (∗ generate ∗)
pop the parsing stack
for i := n to 1 do
push Xi onto the stack ;

else error
i f the top of the stack = $

and the next input token is $
then accept
else error ;

end

Listing 4.18: LL(1) table-based algorithm

Table 4.7: Illustration of a run of the algo

The most interesting steps are of course those dealing with the dangling else situation.
Those are the line with the non-terminal else−part at the top of the stack and the else
as next input, (in the picture, abbreviated as L and e). That’s where the LL(1) table is
ambiguous. In principle, with else−part on top of the stack , the parser table allows always
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to make the decision that the “current statement” resp “current conditional” is done. In
the derivation, we see the choice which is done: the reduction picks else−part → else stmt
and not the alternative else−part → ϵ. That matches the slot in the table, under the
assumption that the algo takes the first one listed, and ignores later alternatives (“first
match”). As far as the dangling else situation is concerned, this leads to the intended
behavior: an else part associates to the last open if-construct.

Let’s do another example; more can be found in the exercises and earlier written exams.

Example 4.5.11 (Expressions). The example is the expression grammar, namely the version
where the precedences are ok and left recursions has been replaced by right-recursion

The first- and follow sets are summarized in the following table.

First Follow
exp (, number $, )
exp′ +, −, ϵ $, )
addop +, − (, number
term (, number $, ), +, −
term′ ∗, ϵ $, ), +, −
mulop ∗ (, number
factor (, number $, ), +, −, ∗

Table 4.8: First- and follow-sets

Table 4.9: LL(1) parse table

4.6 Error handling (no pensum)

The error handling section is not part of the pensum (it never was), and it will not be
asked in the exam, written or otherwise. The slides are not presented in detail in class.
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That does not mean that we don’t expect some halfway decent error handling for the
compiler in the oblig. Parsers (and lexers) are built on some robust, established and
well-understood theoretical foundations. That’s less the case for how to deal with errors,
where it’s more of an art, and more pragmatics enter the pictures. It does not mean it’s
unimportant, it’s just that the topic is less conceptually clarified. So, while certainly there
is research on error handling, in practice it’s mostly done “by common sense”. Parsers
(and compilers) can certainly be tested systematically, finding out if the parser detects
all syntactically erroneous situations. Whether the corresponding feedback is useful for
debugging, that is a question of whether humans can make sense out of the feedback.
Different parser technologies (bottom-up vs. top-down for instance) may have different
challenges to provide decent feedback. One core challenge may be the disconnect between
the technicalities of the internal workings of the parser (which the programmer may not be
aware of) and the source-level representation. A parser runs into trouble, like encountering
an unexpected symbol, when currently looking at a field in the LL- or LR-table. That
constitutes some “syntactic error” and should be reported, but it’s not even clear what
the “real cause” of an error is. Error localization as such cannot be formally solved, since
one cannot properly define was the source of an error is in general or speculate what the
programmer had in mind or should have written instead of what actually has been coded.
So, we focus here more on general “advice”.

At the least: do an understandable error message, i.e., give an indication of line / character
or region responsible for the error in the source file. Potentially, stop the parsing. Some
compilers do error recovery. Also there, give an understandable error message (as
minimum), continue reading input , until it’s plausible to resume parsing. That allows to
find more errors in one compilation attempt. Of course, when finding at least one error,
there’s no code to generate. It’s fair to say, that resuming in a meaningful way after a
syntax error is not easy.

Concerning error messages: report errors as early as possible, if possible at the first point
where the program cannot be extended to a correct program. If doing error recovery, try
to avoid error messages that only occur because of an already reported error! Make sure
that, after an error, one doesn’t end up in an infinite loop without reading any input
symbols.

It is not alway clear what a good error message is, resp. find a way that clearest for
the programmer under all circumstances. As illustration, assume that the recursive parse
function factor() chooses the alternative ( exp ) but that, when control returns from
method exp(), it fails to encounter a parenthesis ). That’s of course a syntax error, and
the parser could report

right parenthesis missing!

That sounds clear enough, but it can also be confusing. What if the program text is

( a + b c )

Here, the exp() parse function will terminate after ( a + b, as c cannot extend the
expression. But the syntax error is not repaired by adding a right-parenthesis. The error
may be in the extra c or perhaps that the programmer had forgotten some operator
between b and c or something else. The parser cannot know, but a better message could
be error in expression, or right parenthesis missing.
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4.7 Bottom-up parsing

4.7.1 Introduction

This section covers the second general class of parsers, the bottom-up ones. As indicated in
Figure 4.2, with the same amount of look-ahead, bottom-up parsers are more powerful than
their top-down counter-parts. Bottom-up parsers or LR-parsers are probably the most
common and default parser technology, realized by tools like yacc (and CUP . . . ). Another
name for that kind of parsing is shift-reduce parsing. While top-down parsing and
recursive descent-parsers are conceptually straightforward, LR-parsing is more subtle.

Let’s start with what LR abbreviates: The “L” stands, as in LL, for left-to-right and

the “R” in LR stands for right-most derivation.

We cover different LR-parsers, starting with LR(0), i.e. shift-reduce parsing without look-
ahead. All versions are based on the same principles and construction, but they differ in
the amount of look-ahead, resp. the way they deal with the available information.

LR-parsing and its subclasses

The LR(0) and the LR(1) are the pure forms: no look-ahead and a look-ahead of one.
LR(0)-parsers are quite weak and thus really useful (but not as ridiculously weak as LL(0)).
Still we cover them because the principles of shift-reduce parsing can be understood already
in this situation. Besides the two “pure” forms LR(0) and LR(1), we discuss two variations,
SLR and LALR(1). They are positioned in their expressiveness between LR(0) and LR(1),
and in particular LALR(1) is the method of choice, underlying yacc and friends.

Table 4.10 shows an overview over the covered techniques. The information about LR(0)
seems a bit contradictory: if LR(0) is so weak that it works only for unreasonably simple
languages, why is it said that LR(0) automata for standard languages have 300 states or so;
after all, standard languages don’t use LR(0)? The answer is, the more expressive parsers
SLR(1) and LALR(1) use the same number of states (LR(1) has significantly more).

4.7.2 Principles of bottom-up resp. shift-reduce parsing

Top-down parsers like LL(1) can straightforwardly be hand-coded. LR parsing is more
subtle and typically for those, one relies on tool-support. Typical tools are the parser
generators like yacc and friends (bison, CUP, etc.)

That style of parsing is best based on a parsing table and an explicit stack. Thankfully,
unlike in LL-parsing, left-recursion is no longer problematic.

Also for top-down parsers, we looked at table-based realizations, namely LL(1)-tables.
Those represent a different angle on the idea of recursively descending the parse-tree. In
some general way, the tables here will play a similar role: they are consulted by the parser,
determining the reaction, which can be to read an input and proceed, pushing the input to
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LR(0) • only for very simple grammars
• approx. 300 states for standard programming languages
• only as warm-up for SLR(1) and LALR(1)

SLR(1) • expressive enough for many grammars for standard PLs
• same number of states as LR(0)

LALR(1)
• slightly more expressive than SLR(1)
• same number of states as LR(0)
• we look at ideas behind that method, as well

LR(1) • covers all grammars, which can in principle be top-down parsed by
looking at the next token

Table 4.10: LR or shift-reduce parsers

LR parsing tablestates

tokens + non-terms

Figure 4.14: LR parsing table (schematic)

the stack, or removing symbols from the stack. The format of the LR-tables is different,
though. We will see the exact format later, but already from Figure 4.14, we see that the
lines corresponds to states and the columns to terminals (i.e., tokens) and non-terminals
.

Indeed, it probably went unnoticed: very abstractly, we mentioned that context-free gram-
mars can be parsed by so-called push-down automata or stack-automata, i.e., finite-state
automata with an aditional stack. The illustrative pictures showed that those automata
read input can manipulate the stack and move between their states until reaction. This
section will describe in detail how the LR-table is filled.

Example 4.7.1 (Example grammar). Let’s take an artificial grammar for illustration.

S′ → S
S → ABt7 | . . .
A → t4t5 | t1B | . . .
B → t2t3 | At6 | . . .

(4.22)
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Assume the grammar unambigous and let’s take as input the word

t1t2 . . . t7

Generally, we assume for bottom-up parsing that the start symbol never occurs on the
right-hand side of a production. If that happens we add another “extra” start-symbol,
(here S′). The fact that the start symbol never occurs on the right-hand side of a produc-
tion will later be relied upon when constructing a DFA for “scanning” the stack, to control
the reactions of the stack machine. This restriction leads to a unique, well-defined initial
state. Everything just smoother (and the construction of the LR-automaton is slightly
more straighforward) if one obeys that convention.

S′

S

A

t1

B

t2 t3

B

A

t4 t5 t6 t7

Figure 4.15: Parse tree for t1 . . . t7

Let’s start by recalling the definitions of derivations and of sentential forms. A word from
Σ∗ derivable from the start-symbol is called a sententional form. Consequently, if derivable
with a right-most derivation, it’s called a right-sentential form:

S ⇒∗
r α . (4.23)

For such a derivation α is of the form α′ a1a2 . . . an, where all the ai’s are terminals
or tokens. The notion of derivations (left-most, right-most, or otherwise) is top-down:
replacing non-terminals (parent nodes) by right-hand sides (children-nodes). But when
building the tree bottom-up, the “replacement” goes the other way around: replacing
right-hand sides of a production, the children nodes, but a left-hand side (a non-terminal
and the parent node). The whole parsing process, building the tree, starts at the bottom
of the tree. In other words, when doing the parse, the parser (implicitly) builds a right-
most derivation in reverse and the parse progresses bottom-up. Let’s illustrate that
on some small example, one of the expression grammars once again

Example 4.7.2 (Building the parse tree). Let’s revisit one version of the expression gram-
mar, the one with terms and factors. A parse tree of a simple expression like 1 + 2 is
shown in Figure 4.16.

The slides version shows in a series of overlays, how the parse-tree is growing, here we
only show the completed parse-tree. The parser processes the input number ∗ number,
which are the leaves of the parse tree, and it treats the terminal leaves from left to right,
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of course. Doing so, it builds up the parse-tree bottom up, until until having reached the
start symbol as root of the tree. That stepwise process of transforming the input into the
start-symbols is called reduction. That’s the reverse direction compared to generating
or deriving words and which corresponds to the direction of how top-down parsers work.

exp

term

term

factor

number ∗

factor

number

Figure 4.16: Parse tree

See Figure 4.17 for the processes of reduction resp. derivation. The underlined parts

n ∗ n ↪→ factor ∗ n
↪→ term ∗ n
↪→ term ∗ factor
↪→ term
↪→ exp

(a) Reduction

n ∗ n ⇐r factor ∗ n
⇐r term ∗ n
⇐r term ∗ factor
⇐r term
⇐r exp

(b) Right derivation

Figure 4.17

are different in the reduction and the derivation, but they represent in both cases the
“part being replaced” in the corresponding step. The derivation replaces in each step the
right-most non-terminal, i.e., it’s a right-most derivation. Consequently are all interme-
diate words right-sentential forms (of course only in case of a successful parse). For the
reduction, the underlined part is connected with the notion of handle.

So, the example illustrated:

reduction in reverse = right-most derivation

Definition 4.7.3 (Handle). Assume S ⇒∗
r αAw ⇒r αβw. A production A → β at

position k following α is a handle of αβw. We write ⟨A → β, k⟩ for such a handle.

Remember the schematic picture of a parser machine, from Figure 4.3. Note, the word w
corresponds to the future input still to be parsed, so the symbols to the right-hand side of a
handle contain only terminals. The part αβ will correspond to the stack content, where
β is the part of the stack touched by the reduction step. Note also that the “handle”-part
β can be empty, i.e. β can be ϵ. As said, right-most derivation steps ⇒r correspond
to reduction steps in reverse (for which we here write ↪→ ). Those steps corresponds



4 Parsing
4.7 Bottom-up parsing 49

also to one of two possible kinds of steps of of the parser stack machine. Remember that
LR-parsing is also called shift-reduce parsing, and ↪→ corresponds, of course, to a reduce-
step. That form of steps replaces β on the stack by A.11 In the parse-tree, A is a parent
node to the children that correspond to β. Thus, the reduce step is the code bottom-up
movement of the parser.

What then about the other kinds of steps of a bottom-up parser, the shift-steps? They eat
the next input letter, a terminal, and push it on the stack. A reduce step using a grammar
production A → β is possible if the current stack contains β on top. Of course, there may
be different rules with the same right-hand side that match in this way, and it may also be
that the is another rule A′ → β′β. If the top of the stack contains α′β, then both grammar
rules can be used for a reduce step. If that occurs it’s called a reduce-reduce conflict.
A shift-step may seem always possible, as long as there is still input. A situation where a
shift and a reduce is possible at the same time will be called shift-reduce-conflict.

The discussion about conflicts so far is a bit simplified and neglected that the parser
machine has also states; it’s a stack machine, i.e., an automaton with finitely many states
plus a stack. If a reduce steps is possible does not just depend on the top of the stack,
but also on which state the machine is in. Same for shift-steps. Otherwise, as hinted at,
a shift step would always be an option and any possible reduce step would be in conflict
with the unconditionally possible shift step.

The trick will be: how to construct the states of the parser machine!

The construction comes later, we first continue describing generally the parser behavior,
without concretely showing the individual states or how they are constructed.

Example 4.7.4 (Run of a bottom-up parser). Let’s revisit the artificial grammar from
Example 4.7.1. Table 4.11 contains schematically the steps of a shift-reduce parser for the
parse-tree of Figure 4.15.

The table contains two columns, the one on the left represents the stack-content, the one
on the right the remaining input. We assume $ as the end of the input, i.e., the end
of the token stream. The same symbol is also used for representing the stack content,
representing the “bottom” of the stack.

The parser starts with an empty stack, i.e., the stack consists of only $, and the full input
t1 . . . t7, terminated by $, still ahead. In each step, either the first symbol of the input
pushed to the stack, shortening the remaining input by one: the token is shifted from the
input to the stack. The reduce steps don’t shorten the remaining input, but they replace
the top of the stack according to one production. For instance, in the 3rd step, the stack
content is $ t1t2t3. Applying production B → t2t3 results in the stack content of $ t1B
after that reduce-step.

Apart from the fact that it ignored the states of the parser machine, the example should
have given a good general impression what shifting and reducing means, and how the
11Saying that the step replaces stack content sounds a bit silly if β is ϵ, . In that case, A appears or is

pushed onto the stack, without actually replacing any symbol.
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stack rest of input
$ t1t2t3t4t5t6t7 $
$ t1 t2t3t4t5t6t7 $
$ t1t2 t3t4t5t6t7 $
$ t1t2t3 t4t5t6t7 $
$ t1B t4t5t6t7 $
$ A t4t5t6t7 $
$ At4 t5t6t7 $
$ At4t5 t6t7 $
$ AA t6t7 $
$ AAt6 t7 $
$ AB t7 $
$ ABt7 $
$ S $
$ S′ $

Table 4.11: Schematic run (reduction from top to bottom)

configuration of such a parser evolves during a parse. To summarize the observations:
A configuration consists of 3 ingredients.

1) A stack, containing terminals and non-terminals (and $ at the bottom). It
represents what has been read already but not yet fully “processed”. 2) the word
of terminals not yet read. And 3), the state of the machine (not shown in the
example).

As mentioned, the state of the parser was not illustrated in the previous example and
will neither be covered in the following schematic illustration. That the machine is in
particular states during the run is central to make decisions wether to do a shift step or
a reduce step, resp. which reduce step to take. The states will also be part of the parser
table (remember Figure 4.14).

Since for the moment, we explain aspects of LR-parsing without referring to the state,
we assume in the following, that the parse tree is somehow already known and we show
runs where the machines simply does the right decisions that leads to the intended parse-
tree. We did a similar assumption earlier, discussing oracular derivations. Obviously
the trick ultimately will be: how do achieve the same without that tree already given, just
parsing left-to-right. So far, we also won’t mention of look-ahead, i.e., the decision making
also is helped by looking at the next token(s), also that will play a role in the concrete
construction.

To sum up the two kinds of steps of an LR-parser:
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Shift: move the next input symbol (terminal) over to the top of the stack (“push”).

Reduce: (more concretely, reduce using a particular production A → β): remove
the symbols from β from the stack (children) and replace it by A (parent).

The replacement of the top of the stack β by A, moving up the tree, can also be interpreted
as a combination of “pop + push”: popping β followed by pushing A.

That’s the general behavior, but later we need to address the question, how the parser
makes its decisions: Should it do a shift or a reduce and if the latter, reduce with which
rule. If one assumes the “target” parse-tree as already given (as we currently do in our
presentation) then the parse tree embodies those decisions: it’s the result of those de-
cisions. In particular, a children-parent situation, where the parser progresses upwards,
corresponds to a reduce step. Of course, the tree is not given a priori, it’s the parser’s task
to build the tree (at least implicitly) by making those decisions about what the next step
is (shift or reduce).

Example 4.7.5 (LR parse for “+”, given the tree). Consider the following grammar:

E′ → E
E → E + n | n

(4.24)

Note that the very simply expression grammer is left-recursive and that there are no
ambiguity issues with associativity and precedence: there is only addition as operator and
the grammar enforces left-associativity.

E′

E

E

n + n

(a) Parse tree

parse stack input action
1 $ n + n $ shift
2 $ n + n $ red:. E → n
3 $ E + n $ shift
4 $ E + n $ shift
5 $ E + n $ red. E → E + n
6 $ E $ red.: E′ → E
7 $ E′ $ accept

(b) run resp. reduction

Figure 4.18

Figure 4.18 shows a parse tree for a simple expression like 1 + 2 and a corresponding run
of a shift-reduce parser. The run in Figure 4.18b in reverse, i.e., from the last to the first
line, corresponds to the derivation:

E′ ⇒ E ⇒ E + n ⇒ n + n . (4.25)

The grammar is so simple that sentential forms contain only one non-terminal or none.
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So the derivation from equation (4.25) is a right-most derivation, it just not so visible, as
it’s also a left-most derivation, resp. the only possible derivation anyway.12

The message of the example is, however, not the connection between reduction and deriva-
tions, but to shed light on how the machine can make decisions.

For that, one should compare the situation in stage 3 and state 6. In both situations, the
machine has the same stack content, containing only the end-marker and E on top of
the stack. At stage 3, the machine does a shift, whereas in stage 6, it does a reduce. In the
tree, the two situations correspond to the to E-nodes in the tree. In the first case, the E
cannot immediately be treated in isolation. After shifting the two terminals to the stack,
the stack-content is E + n. That corresponds to the right-hand side of production 2, and
at that point, a reduction step can be done that corresponds to the tree structure. In the
situation corresponding to line 6, with the other E-node, doing the reduction according
to the first production.

The stack content (representing the “past” of the parse, i.e., the already processed input)
is the identical in both cases. We will see that in more detail later how it concretely works
but a few general remarks about the stack content. As said, it represents the past of the
current parser run, i.e., what it has handled so far. It will play the role of the memory of
the parser. Actually, it’s not a perfect memory.

The way the states of the LR-parser will be constructed entails that the parser machine
is necessarily in the same state in both stages, which means, it cannot be the state that
makes the difference. What then? In the example, the form of the parse tree shows what
the parser should do. But of course the tree is not available. Instead (and not surprisingly),
if the past input alone cannot be used to make the distinction, one also takes the “future”
input into accounnt. Maybe not all of it, but part of it. That’s of course the concept of
look-ahead, we have encountered also for top-down parsing. Look-head will not yet be
done for LR(0), as that form is without look-ahead.

Let’s have a look at another example, this one with ϵ-transitions.

Example 4.7.6 (Example with ϵ-transitions: parentheses). Let’s have a look at the follow-
ing grammar for parentheses:

S′ → S
S → ( S ) S | ϵ

(4.26)

As a side remark: unlike the previous grammar, the grammar here has productions with
two non-terminals on the right. Consequently, there is now a difference between left-most
and right-most derivations (and mixed ones).

Note in particular the 2 reduce steps for the ϵ production. Those steps simply add or push
the non-terminal S to the stack. The right-most derivation and right-sentential forms that
correspond to the reduce-steps in reverse are:

S′ ⇒r S ⇒r ( S ) S ⇒r ( S ) ⇒r ( ) . (4.27)

12The grammar is an example of a left-linear grammar. Left-linear context free grammars can only express
regular languages. Same for right-linear ones.
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S′

S

(

S

ϵ )

S

ϵ

(a) parse tree

parse stack input action
1 $ ( ) $ shift
2 $ ( ) $ reduce S → ϵ
3 $ ( S ) $ shift
4 $ ( S ) $ reduce S → ϵ
5 $ ( S ) S $ reduce S → ( S ) S
6 $ S $ reduce S′ → S
7 $ S′ $ accept

(b) Run resp. reduction

Figure 4.19: parentheses

After the examples, let’s have a further look into the form of the reductions and the
corresponding derivations and the configurations of the stack machines. Sentential forms,
as introduced earlier are words from Σ∗ derivable from start-symbol. For LR-parsing, we
are in particular dealing with right-sentential forms, i.e., those derivable by a right-most
derivation:

S ⇒∗
r α

Let’s revisit the addition Example 4.7.5 again.

Example 4.7.7 (Right-sentential forms and parser configurations). Figure 4.18b showed the
run and the configurations of shift-reduce parser. For clarity, we show here the right-most
derivation (on the left) and the correspond reduction sequence (on the right).

E′ ⇒r E ⇒r E + n ⇒r n + n (4.28) n + n ↪→ E + n ↪→ E ↪→ E′ (4.29)

All the words are right-sentential forms. Looking at configurations from Figure 4.18b, we
see that the forms show up in the configurations as part of the run, but split between
stack on the left and input on the right.

The derivation from (4.28) (which is reproduced here from equation (4.25)) “contains”
only the reduce-steps from the run of Figure 4.18b, the shift-steps (in reverse) are not
part of the derivation. Also, only the reduce-step correspond to growing the parse-tree.

For the discussion here, let’s introduce some ad-hoc notation to illustrate the separation
between the parse stack on the left and the future input on the right. With . for this
notation and ∼s to indicate a shift step that does not grow the parse tree, we can write
the derivation sequence from equation (4.28) more detailed as follows:

E′. ⇒r E. ⇒r E + n. ∼s E + .n ∼s E. + n ⇒r n. + n ∼s .n + n (4.30)



54 4 Parsing
4.7 Bottom-up parsing

Figure 4.20 shows conceptually the status of a parser, halfway through the parse. We still
assume that the parse tree is given, it’s shown in the picture. So the left-lower part of the
overall parse tree has already been processed by the parser, i.e., the first tokens have been
eaten already by a number of shift steps. But processing those triggered already some
reduce-steps as well, which means . . .

Figure 4.20: A typical situation during LR-parsing

So far we clarified the general working of a shift-reduce parser, its stack and how it grows
the parse tree in a bottom-up fashion, but omitted the role of the states. States are
important for the decision-making of the maching, i.e., to decide whether to shift, or to
reduce (and perhaps reduce according to which producion, of more than one is possible.
The decision-making was brushed under the rug by assuming in the examples that the
parse tree is somehow known, and the parser just the appropriate step to obtain that tree.
Without having that tree at hand: which criteria can the parser base its decision on for
the next step?

1. the top of the stack (handle)
2. the look-ahead on the input
3. the state

As far as the look-ahead is concerned: the first construction we concretely present will be
that for LR(0) parsers in Section 4.7.3. Those won’t even have a look-ahead. But what
are the states of an LR-parser?

It will be a subtle construction, and it is connected to a strange property of push-down
automata. Push-down automata as general mechanism accept context-free languages. The
language refers of course to the words accepted as input. This is done with the help of
the stack, that growns and shrinks during the run of the machine. A language being
accepted as input of such machines is context-free, of course. The stack which accepting a
word from the input contains words of symbols as well, namely words over terminals and
non-terminals (the input of course contains only terminals). That means, given a PDA,
the possible stack contents forms a language. It’s a strange and beautiful fact that such
stack languages (aka pushdown store languages) are regular!
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General fact: For push-down automata in general (and in particular for the LR-
parser machine), the “stack-language”

Stacks(G) = {α | α may occur on the stack during
LR-parsing of a sentence in L(G) }

is regular! The states of parser machines are the states of an NFA (and ultimately
DFA) which works on the stack (not the input). The alphabet consists of terminals
and non-terminals ΣT ∪ ΣN . The trick will be to construct that automaton.

That the language of stack contents is regular is not a restriction, it’s a subtle observation
on what the stack can contain.

4.7.3 LR(0) parsing as easy pre-stage

Now, let’s get real and show a parser construction including the states for real, the one
for LR(0). In practice, those parsers are too simple and not expressive enough for realistic
languages, but construction is an easy step towards the variants wich take more look-ahead
into account, like LR(1), SLR(1) etc. Actually, already LR(1) is good enough in practice,
so that LR(k) is not used for k > 1. Indeed the most well-known class of parser generators,
yacc and friends, is not even LR(1), but the weaker class LALR(1).

Even if not expressive enough, the construction of LR(0) parsers underlies directly or at
least conceptually the more complex parser constructions to come. In particular: for LR(0)
parsing, the core of the construction is the so-called LR(0)-DFA, based on LR(0)-items.
This construction is directly also used for SLR-parsing.

An LR(0)-item is a production with specific “parser position” marker . in its right-hand
side. The “.” is not part of the production.

Definition 4.7.8 (LR(0) item). An LR(0) item for a production A → βγ is of
the form

A → β.γ

Items with dot at the beginning are called initial items, those with with the dot at
the end are called complete items.

Being part of a right-hand side of a production, β and γ are words containing terminals
and non-terminals and can be empty words, including the case, where both are empty (for
an ϵ-production).

Let’s use some of the previous grammars for illustration. They should make the concept
of items clear enough. The only point to keep in mind is the treatment of the ϵ symbol.

Example 4.7.9 (Items). For the grammars from Example 4.7.5 (parentheses) resp. from
Example 4.7.6 (addition), the lists of items look as follows:
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E′ → .E
E′ → E.
E → .E + number
E → E. + number
E → E + .number
E → E + number.
E → .number
E → number.

S′ → .S
S′ → S.
S → . ( S ) S
S → ( .S ) S
S → ( S. ) S
S → ( S ) .S
S → ( S ) S.
S → .

Both grammars lead (coincidentally) to altogether 8 items. Note that the production
S → ϵ from the second example gives S → . as item, and not two items S → ϵ. and
S → .ϵ). As a side remark for later: it will turn out, both grammars are not LR(0).

The LR(0)-DFA now uses items as states, resp. sets of items as states. As said, the DFA
does not operates on the input, but (understood as) operating on the stack. As alphabet
therefore it uses terminal as well as non-terminal symbols.

To construct the DFA, one can go two routes, either one does a NFA, which is afterwards
made deterministic, or one constructs the DFA directly. We show both ways.

LR(0)-NFA

Let’s do the NFA-construction first, i.e., we construct an automaton whose states are
single LR(0)-items; the states of the corresponding DFA will be sets of items. So, states
are of the form

A → β.γ

where A → βγ is a production of the given grammar. The marker . is meant to represent
the split between the current stack content as the “past” and the expected future input, if
we visualize the stack on the left and the rest of the input on the right. More precisely, the
β is supposed to be the current top of the stack, and γ is the part of input to be treated
next. That can be compared with the derivation from equation (4.30), where we used a
dot to make that split visible.13

Note that both β and γ can contain terminals and non-terminals. The latter point require
some explanation, since of course the input consists of terminal symbols, the tokens from
the scanner. We come back to this point after introducing the transitions of the NFA, and
we see how it works also in the examples later.

With the states of the NFA fixed, next we define its transitions. The transitions between
the “item-states” are shown in Figure 4.21.

The distinction is based on the position of the .-marker, i.e., whether it’s in front of
a terminal symbol or a non-terminal. Let’s start with transitions for terminals from
Figure 4.21a. The marker is right in fron of a terminal symbol. Remember that the
marker is intended to represent the position of the parser-machine. So in the start-state
13There, the notation was meant informally, it’s not a derivation consisting of items, though it’s connected.
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A → α.aη A → αa.η
a

(a) terminal

A → α.Bη A → αB.η
B

(b) non-terminal

A → α.Bη B → .β
ε

(c) non-terminal (for production B → β)

Figure 4.21: Transitions of the LR(0)-NFA

of that transition, the reading had is in front of a terminal symbol, which is consumed
and it the state afterwards, the symbol a is on the left of the .-marker, i.e., the transition
corresponds to shift-step:

A parser in state A → α.aη has α on the top-most part of it’s stack. It can do a
shift-step, pushing a to its stack, and move to state A → αa.η

The non-terminal A, mentioned in the states, is not (yet) on the stack. Doing steps, at
least those corresponding to the transitions from Figure 4.21a and 4.21b, moves the . step
by step further to the left, until it reaches the end, i.e., until the machine is in the state
A → αaη. with the marker at the end. Btw: that’s a complete item. At that point, the
whole right-hand side of the considered production for A has been pushed on top of the
stack. In other words, at that point, a reduce-step is possible for production A → αaη.
That step replaces on the stack the production’s right-hand side αaη by its left-hand side
A.

That brings us the the treatment of non-terminals, covered by Figures 4.21b and 4.21c.
We have also to answer the slight puzzle what it means that the .-marker in an item stands
in front of a non-terminal. In first approximation, we mentioned, that intuitively means
the parser head right in front of the symbol mentioned after the marker. That’s a proper
intuitition for terminals, and then the transition corresponds to a shift step.

Of course, the intuition is slightly misleading in that on the actual input, the token stream,
the are only terminals. We should not forget: the NFA does not actually operate on
the input, like a scanner-automaton would to! It describes the allowed stack-contents
and the stack-content, (with the help of the NFA, resp. ultimately the DFA), determines
the state of the parser. So in case of a shift-step, the parser puts the symbol to the stack,
and the NFA (or DFA) then moves to a (potentially) different state reflecting the change
in stack content. For the shift-steps, that actually make the NFA behave like scanner
would do, because in a FSA-state with, say outgoing transitions labelled b and c, the
parser would accept either of the two terminals as legal one-step continuation of the parse,
doing a shift-step step, but when presented with a different letter d, it would reject it and
stop the parse.

What about the non-terminals? That might be clearer when looking at the ϵ transition
in Figure 4.21c and the role it plays in connection with reduce-moves of the parser.
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The step can be done when the . stands in front of a non-terminal say B. Let’s make it
a bit more concrete than the general transitions for non-terminals in Figures 4.21b and
4.21c, and assume a item state of the form

A → α.B a (4.31)

i.e., the non-terminal in question is immediately followed by one terminal a. Being in
this item-state is currently means for the NFA: on the lower part of the stack there is α,
and on top of the stack, when continuing “scanning” the stack successfully following the
transitions, it would do the following steps:

A → α.B a
B−→ A → αB. a

a−→ A → αB a . (4.32)

The B-step in the middle has no effect on the real input, it’s just the internal book-keeping
over the stack content, but the subsequent a-transition corresponds to shift step. I.e. the
behavior of equation (4.32) states that the next token on the input is a. That’s not the
only possible behavior starting from the state of equation (4.31). Alternatively it could
start with a ϵ-transition according to Figure 4.21c:

A → α.B a
ϵ−→ B → .β (4.33)

Concerning the stack that means, the top of the stack α is (assumed to be) replaced by
β. That of course describes a reduce-step of the parser-machine.Being in the item-state
(4.31) means α is actually on the stack, with the . after α. In the initial state B → .β
afterward, the . is in frontI say “assumed”

and moving to the item .B places the . in front of the right-hand sides B of any production
for the non-terminal B. Note that item-states A → α.Bη have at least kinds of outgoing
transitions, one according Figure 4.21b and an ϵ-transition according to Figure 4.21c,
according to each production of B. (4.31)

Example 4.7.10 (LR(0)-NFA for parentheses grammar). Let’s do the construction for the
parethesis from Example 4.7.6. The corresponding LR(0)-NFA is shown in Figure 4.22a.
We also show the DFA in Figure 4.22b, though we are currently just discussing the NFA.

S′ → .S S′ → S.

S → . ( S ) S S → . S → ( S ) S.

S → ( .S ) S S → ( S. ) S

S → ( S ) .S

S

ε
ε

( ε
ε

S

)

S

ε

ε

(a) NFA: parentheses

S′ → .S

S → . ( S ) S

S → .

0

S′ → S.

1

S → ( .S ) S

S → . ( S ) S

S → .

2

S → ( S. ) S

3

S → ( S ) .S

S → . ( S ) S

S → .

4

S → ( S ) S.

5

S

(

S
(

)

(

S

(b) DFA: parentheses

Figure 4.22: Parentheses
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In the (NFA) figure, we use colors for illustration, they are not officially part of the con-
struction. We use “reddish” for complete items, “blueish” for initial items, and “violet’ish”
for states that are both initial and complete.

Furthermore, you may notice in Figure 4.22a: there is one initial item state per production
of the grammar.14 The initial items is where the ϵ-transisitions go into (as defined in
Figure 4.21c), but with exception of the initial state (with S′-production). And there
are no outgoing edges from those complete item states. Note the uniformity of the ϵ-
transitions in the following sense. For each production with a given non-terminal (for
instance S in the given example), there is one ingoing ϵ-transition from each state/item
where the . is in front of said non-terminal (three ingoing ϵ transitions into the states with
items S → .S ( S ) and S → . ).

The initial state, as indicated in the figures of the example, is determined by the start-
symbol of the grammar, resp. the corresponding initial item. Remember the assumption
that the start symbol does not occur on the right-hand side of any production. That’s
often assured by augmenting the grammar by one extra start symbol say S′.

The initial state of the NFA (and the parser machine) is the initial item S′ → .S
as (only) of the

Side remark 4.7.11 (Nitpicking). The nitpicking mind may comment: for the automa-
ton from Figure 4.22a, we did not mention any accepting states. That would mean the
automaton accepts not words.

Well, the machine that accepts input is not the NFA (or DFA), but the parse machine, the
stack automaton. The NFA here is a vehicle to construct and define the states of the stack
automaton, “working” on the stack content. It’s best to imagine that all states in the NFA
(or DFA later) are accepting. Often that is left out, as more important in the overall pictue
are the concepts of initial-items and complete-item states, and the stack-parser maching
will have a specific acceptance condition.

The acceptance condition of the overall machine: a bit more complex

The input must be empty, stack must be empty except the (new) start symbol $, the
NFA has a word to say about acceptance, but not in form of being in an accepting
statea, but and accepting action (see later).

aAs mentioned, one may see all NFA-states as accepting.

Example 4.7.12 (LR(0)-NFA for the addition grammar). Let’s show the construction also
for the addition grammar from Example 4.7.5. Figure 4.23a shows the corresponding
LR(0)-NFA (and for comparison, we show alsp a deterministic machine in Figure 4.23b.

14If the grammar is not “silly”.
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E′ → .E E′ → E.

E → .E + n E → .n E → n.

E → E.+ n E → E + .n E → E + n.

E

ε
ε

ε
ε

E

n

+ n

(a) NFA

E′ → .E

E → .E + n
E → .n

0

E′ → E.

E → E. + n

1

E → n.

2
E → E + .n

3
E → E + n.

4

E

n +

n

(b) DFA

Figure 4.23: Addition

The parser stack machine will not work with non-deterministic automata, but with a
deterministic version. In that case, the stack content determines the state of the au-
tomaton.15 In the examples with the LR(0)-NFAs, we also showed the corresponding
DFAs.16 We have covered the way to turn an NFA to a DFA earlier in the context of scan-
ning, the so called subset-construction. For the deterministic version, states then contain
sets of items, and an important concept was also the so-called ϵ-closure. Next, we show a
direct construction of the LR(0)-DFA, (without the detour over NFAs).

Direct construction of an LR(0)-DFA

The direct construction of a deterministic LR(0) automaton is not harder that the con-
struction of the NFA. For the constructed NFAs, there are no situations like q0

a−→ q1
and q1

a−→ q2 with q1 ̸= q2, and the same for transitions involving non-terminals. The
only symptom of non-determinism are the ϵ-transitions, and so the key for the direct
construction is build-in the ϵ-closure directly

ϵ-closure: if A → α.Bγ is an item in a state, and the grammar has productions
B → β1 | β2 . . . . Then add items B → .β1 , B → .β2 . . . to the state. Continue
that process, until saturation.

The initial state and the transitions are shown in Figures 4.24a and 4.24b. The symbol X
represents a terminal or a non-terminal. Both are treated uniformely.

In Figure 4.24b, the picture is meant to indicate that all items of the form A → α.Xβ
must be included in the post-state and all others (indicated by “. . . ”) in the pre-state,
are not included in the post-state (unless they happen to be added by in the closure).

One can re-check the previous examples first doing the NFA, then the DFA), in particular
Figures 4.22b and 4.23b: the outcome is the same.
15At the same time, if the construction does suffer from no so-called conflicts, the parsed input determines

the overall state of the parser machine. We encountered conflicts for top-down parsers. A symptom for
such conflicts were non-unique slots in the LL-parse table. That will be analogous for LR-parse tables
and the tables are nothing else than a tabular representation of the DFAs. So char

16We don’t show a total transition function, we left out the error state.
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S′ → .S

plus closure

(a) initial state

. . .

A1 → α1.Xβ1

. . .

A2 → α2.Xβ2

. . .

A1 → α1X.β1

A2 → α2X.β2

plus closure

X

(b) transitions

Figure 4.24: LR(0)-DFA

The LR(0) parser stack automaton

No we have seen the bottom-up parse tree generation, the general working of shift- and
reduce-steps, we have seen the stack and the input as part of the parser’s configuration,
and finally the construction of the LR(0)-DFA.

We need then to interpret the “set-of-item-states” in the light of the stack content and
define reaction in terms of transitions in the stack automaton, stack manipulations and
shift and reduce step, its acceptance condition. Since we are doing parsing without look-
head in LR(0), the content input is not taken into accound when deciding the reaction.
If the decision is to do a shift step, the next letter is shifted to the stack independent of
what letter it is. However, different letters may lead to different successor states.

Let’s start with the LR(0)-automaton. As said, it “operates” on the stack, which contains
words over Σ∗. The DFA operates deterministically on such words, when feeding the stack
content into the automaton, starting with the oldest symbol (not in a LIFO manner) and
starting with the DFA’s initial state, i.e., the stack content determines state of the DFA.
Of course, each prefix of the stack also determines uniquely a state and the state after
scanning the complete stack content is also called top state. The top state is taken
as state current overall state of the LR(0) parser machine and it is crucial when
determining reaction of that machine.

Figure 4.25 shows three different situations allowing three different reactions. The “source”
state labelled s is interpreted here in the discussion as top-state.

. . .

X → α.aβ
. . .

s
. . .

X → αa.β

. . .

t

a

(a) shift

. . .

X → α.Bβ

s
. . .

X → αB.β

t
B

(b) “goto”

. . .

A → γ.

s

(c) Reduce

Figure 4.25: Parser machine transitions

The state of Figure 4.25a contains an item X → α. a β as source and, assuming that’s the
top-state, a shift is allowed. After eating a and pushing it to the stack, the machine is in
the new (top-)-state t. What happens if the next symbol in the input would not be a but
b and if the state s would not contain another transition labelled b? We are currently
doing LR(0), without look-ahead. That means, the overall machine can do a reduce step
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independent from the next letter. In case of an a, the next (top) state would be t, in case
of b or another unexpected non-terminal, the shift-step would result in an error step.17

Transitions for non-terminals work similar. State s in Figure 4.25b contains an item
X → α.Bβ and when following the shown transition, the input is left unchanged. Those
kind of transitions are also called goto-steps, and will show up under this name in the
LR-parse tables later.

Figure 4.25c shows a state containing a complete-item. That is characteristic for reduce-
steps. Since reduce-steps are not reflected as transitions in the LR(0)-automaton, the
figure shows no transitions. Of course, doing a “reduce” is a step or transition of the
parser-machine, namely a transition that replaces the right-hand side of a production by
the non-terminal on the production’s left-hand side. So in the situation of Figure 4.25c,
with a top-state as shown, the stack contains a full right-hand side (“handle”) γ for the
non-terminal A on the stack. A reduce step using that production replaces γ by A on the
stack. With A on top of the stack instead of γ, there will be in general a new top state!
So, if a reduce happens, the parser engine changes state!18 This state change, however, is
not represented by a transition in the DFA (or NFA for that matter). In particular, the
reduce step is not represented by outgoing arrows of completed items.

Example 4.7.13 (Example: LR parsing for addition). Let’s revisit Example 4.7.5, which
we used to illustrate shift-reduce parsing assuming the parse-tree given. This was done
for the addition-expressions from the grammar from equation (4.24). The parser run was
shown in Figure 4.18b. In the meantime, we have constructed the LR(0)-DFA from Figure
4.23b, so we can re-run the example with the states from that DFA.

Previously, at each point the decision was clear, with the tree at hand. Of course, the
LR(0)-parser does not have the tree available, the only thing it has is “the past” which
is represented (partially) by the stack content. As discussed for Figure 4.18b, interesting
in the run are stages 3 and 6, which have the same stack content. That also means,
the parser is in the same state of its LR(0)-DFA. In the automaton from Figure 4.23b
that’s state 1. State 1 illustrates a shift/reduce conflict. Remember: reduce-steps are
not represented in the LR(0)-automaton via transitions and only implicitly represented
by complete items. So such conflicts are characterized by an outgoing edge (labelled
by a terminal symbol), starting at a state containing a complete item.

The point being made when looking at state 1 is the following: the state is a state con-
taining a complete item. Besides that, there is an outgoing edge labelled with a terminal.
That means, in that state, there are two reactions possible: a shift (following the edge) and
a reduce, as indicated by the complete item. That indicates a conflict-situation, especially
if we don’t make use of look-aheads, as we do currently, when discussing LR(0). The
conflict-situation is called, not surprisingly, a “shift-reduce-conflict”, more precisely an
LR(0)-shift/reduce conflict. The qualification LR(0) is necessary, as sometimes, a closer
look at the situation and taking a look-ahead into account may defuse the conflict. Those
17If the DFA is complete, the situation “no b transition starting from s” would rather be a b transition

to an error state in theory. In practice, some exception would be raised.
18At least in general. There may be situations, where the the parser happens to move from one state to

the same state again.
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more fine-grainend considerations will lead to extensions of the plain LR(0)-parsing (like
SLR(0), or LR(1) and LALR(1)).

Let’s have a look at another example. Compared to an earlier Example 4.7.6 involving
parentheses, te next example captures a more simplistic use of parentheses.

Example 4.7.14 (Simple parentheses). Consider the following simple grammar:

A → ( A ) | a (4.34)

Figure 4.26a shows the LR(0)-DFA for the grammar, and Figure 4.26b possible reactions
for each each (top)-state. For completeness sake, we show also the corresponding NFA in
Figure 4.27.

A′ → .A

A → . ( A )
A → .a

0

A′ → A.

1

A → ( .A )
A → . ( A )
A → .a

3

A → a.

2

A → ( A. )
4

A → ( A ) .

5

A

a(

(
a

A

)

(a) LR(0)-DFA

state possible action
0 only shift
1 only red. (with A′ → A)
2 only red. (with A → a)
3 only shift
4 only shift
5 only red. (with A → ( A ))

(b) (Re-)action per state

Figure 4.26: Simple parentheses

A′ → .A A′ → A.

A → . ( A ) A → .a

A → ( .A ) A → ( A. )

A → a.

A → ( A ) .

A

ε
ε

ε
ε

(

a

A )

Figure 4.27: NFA for simple parentheses (bonus)

In the same way as for scanning automata, the reactions of the machine can also be
represented in tabular form, here called LR(0) parsing table. Later there will be table
variants for SLR(1), LALR(1), and LR(1), which are slightly different and incorporate
more information in connection with the look-ahead of course. Let’s simply look at how
the tables look for the examples just presented.
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Example 4.7.15 (LR(0)-table for simple parentheses). The syntax for the simple parenthe-
ses have been defined in Example 4.7.14. The parse table from Table 4.12 is nothing else
than the LR(0)-DFA from Figure 4.26a in tabular form.

state action rule input goto
( a ) A

0 shift 3 2 1
1 reduce A′ → A
2 reduce A → a
3 shift 3 2 4
4 shift 5
5 reduce A → ( A )

Table 4.12: LR(0) parsing table (cf. Figure 4.26a)

The shift-steps are listed under the “input”-columns. The reaction on non-terminal(s),
here only A, is listed in the “goto”-column(s), here only one. Note there is no goto-
transition for the extra starting state A′. It’s a consequence that we agreed that the start
state should never occur on the right-hand side of a production.

The table contains a definite reaction per state. It’s either a shift-transition, or else a
reduce reaction and in the latter case, there is exactly one production to be used in the
reduce-step. So that makes the table a legit LR(0)-table, in other words, the simple
parentheses grammar is LR(0) parseable.

Figure 4.28a shows a run or parse of the machine. As before, the stack shown on the
left, the remaining input on the right. For the stack, also the state of the machine is
indicated as sub-script after the corresponding prefix of the stack. In particular, the
top-state, i.e., current state of the parser machine is shown on the right-most end of the
stack. Initially, the stack is empty, and consequently the top-state is the DFA’s initial
state, here numbered 0. Of course, the left-most column is just line numbers (“stage”
of the computation), it’s not the state. Note also the accept-action. It corresponds to
doing a reduce wrt. A′ → A and reaching “empty” stack (empty apart from $ and A′

after that accept-reduction step).

As discussed earlier, the reduction “contains” the parse-tree, it builds it bottom up and
reduction in reverse corresponds to a right-most derivation (which is “top-down”). The
corresponding parse tree is shown in Figure 4.28b.

The LR-table shown contains empty slots. Another way to see it is that for the deter-
ministic automata, like the one from Figure 4.26a is not complete, i.e., it has not explicit
error state resp. we did not bother to show it. The DFA is constructed to define the legal
stack content. Thus, hitting an empty slot means stumbling upon a parse error.

As an important general invariant for LR-parsing: never put something “illegal”
onto the stack.

Let’s illustrate that, using again the same simple parenthesis grammar.
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stage parsing stack input action

1 $0 ( ( a ) ) $ shift
2 $0(3 ( a ) ) $ shift
3 $0(3(3 a ) ) $ shift
4 $0(3(3a2 ) ) $ reduce A → a
5 $0(3(3A4 ) ) $ shift
6 $0(3(3A4)5 ) $ reduce A → ( A )
7 $0(3A4 ) $ shift
8 $0(3A4)5 $ reduce A → ( A )
9 $0A1 $ accept(= reduce A′ → A)

(a) Run

A′

A

(

A

(

A

a ) )

(b) Parse tree

Figure 4.28: Simple parentheses

Example 4.7.16 (Simple parentheses: parsing of erroneous input). Let’s pick up on the
simple parenthesis syntax again from Example 4.7.14. Figure 4.29 shows two erronous
situations.

stage parsing stack input action
1 $0 ( ( a ) $ shift
2 $0(3 ( a ) $ shift
3 $0(3(3 a ) $ shift
4 $0(3(3a2 ) $ reduce A → a
5 $0(3(3A4 ) $ shift
6 $0(3(3A4)5 $ reduce A → ( A )
7 $0(3A4 $ ????

(a) Unbalanced ( ( a )

stage parsing stack input action
1 $0 ( ) $ shift
2 $0(3 ) $ ?????

(b) Unexpected input

Figure 4.29: Parse errors

Figure 4.30 summarizes the steps of an LR(0)-parser machine.

Let’s conclude the section about LR(0)-parsing with two more examples.

Example 4.7.17 (DFA (non-simple) parentheses again: is it LR(0)?). Let’s revistit the
non-simple parentheses from Example 4.7.6 and the grammar from equation (4.26). See
in particular the LR(0)-DFA from Figure 4.22b. In this DFA, the states 0, 2, and 4
contain complete items and additionally have outgoing edges labelled by a non-terminal
(concretely by (). That means, when being in one of those states, the machine can do a
reduce step or a shift-step with ). In other words, there is a shift-reduce conflict in those
three states and the grammar is not LR(0).

Example 4.7.18 (DFA addition again: is it LR(0)?). Let’s revistit the addition-expressions
from Example 4.7.5 and the grammar from equation (4.24). See in particular the LR(0)-
DFA from Figure 4.23b.



66 4 Parsing
4.7 Bottom-up parsing

let s be the current state, on top of the parse stack
1. s contains A → α.Xβ, where X is a terminal

• shift X from input to top of stack. The new state pushed on the stack:
state t where s

X−→ t
• else: if s does not have such a transition: error

2. s contains a complete item (say A → γ.): reduce by rule A → γ:
• A reduction by S′ → S: accept, if input is empty; else error:
• else:

pop: remove γ (including “its” states from the stack)
back up: assume to be in state u which is now head state
push: push A to the stack, new head state t where u

A−→ t (in the DFA)

Figure 4.30: Steps of the LR(0) parser machine

State 1 in that DFA contains a complete item and an outgoing edge labelled +, so that
state suffers from a LR(0) shift/reduce conflict.

To prepare for the following sections, we can consider whether it’s possible to make the
correct decision, given a concrete input. For Example 4.7.5, Figure 4.18a showed a parser
run for number + number as input and pointed out that the stack content in stage 3
and 6 is the same, namely E , which corresponds to state 1 as (top)-state of the parser.

Concerning the rest of the input: in stage 3, the input continues with +, in stage 6,
the input is parsed completely, i.e., the next symbol is $. Taking that one symbol look-
ahead into account the parser can make the correct decision: shift in state 1 with + as
next symbol, and reduce, with $ as next symbol. Doing that systematically will lead to
SLR-parsing and later to LR(1) and LALR(1) parsing.

4.7.4 SLR parsing

LR(0) is too weak to be useful in practice. Basing decisions not just on the stack-content,
but additionally on the next token(s), the look-ahead, increases expressiveness, and the
more look-ahead, the more powerful the parser. Of course, no amount of look-ahead can
resolve all conflicts, there will always be grammars with shift-reduce conflicts, not matter
the amount of look-ahead. Besides having more or less look-ahead, there are also variations
of how a look-ahead is taken into account.

Next we will present SRL(1) parsing [2] (simple LR-parsing), a minor variation of
LR(0). The construction adds a bit of look-ahead in a particular way, which helps to
avoid some conflicts when doing a parse with the LR(0)-DFA. SLR(1) is only moderately
more powerful than LR(0) and for realistic languages, it’s mostly still seen as too weak,
in particular since with LALR(1), there’s a better alternative available, which does not
require more resources during parsing.

SLR-parsers are based on the same principles as LR(0), but the format of the parse tables is
slightly different. The parser machine, however, is still based on LR(0)-DFAs. The idea
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is simple: When in doubt (i.e., when facing an LR(0)-conflict), look at the next symbol,
perhaps that’s enough to resolve the issue. That’s what look-ahead is about anyway.

Why is that not LR(1), i.e., LR-parsing with one look-ahead? It’s thew simplistic way
how look-ahead is used in SLR. We illustrated LR parsing for the simplest case of LR(0)-
parsing. There, the automaton is built using so-called LR(0)-items. Indepedent from the
details of how that it done, important is that the DFA is built over the stack-content,
which can be seen as an abstraction of the past of the bottom-up parse. But the states of
the automaton do not contain information about the future of the parse, i.e., a look-ahead.
That’s why the items are called LR(0)-items and the machine an LR(0)-DFA. Also SLR
uses this LR(0)-automaton construction, i.e., it uses a deterministic automaton machine
without look-ahead. But, and that’s the trick, it uses the look-ahead to disambiguate
(some) situations, given a LR(0)-DFA state. The difference to full LR(1) is: LR(1) builds
an automaton, whose states contains information about the past (as is the case LR(0))
and the future, in the form of the next symbol look-ahead. So, for LR(1), the look-ahead
information is already used to construct the automaton, and that blows up the number
of states resp. the size of the parser table considerably. SLR(1), instead works with the
smaller LR(0)-DFA, but tries do defuse some conflicts, if possible. I

There are reduce-reduce and shift-reduce conflicts and both conflict situations involve a
reduce step (there is no such thing as a shift-shift conflict). In the LR(0)-DFA, reduce
steps are possible in states which contains complete items, i.e., items of the form A → α.
with the dot at the end. Containing that dotted item is a sign that the word α is on
top of the stack, and that a reduce step is possible. In a reduce-reduce conflict, there
are two complete items in a state, say A → α. and B → β. (A and B may be the same
non-terminal) (see Figure 4.31a). It also means that the top of the stack contains α and
β; that’s possible only one is a proper prefix of the other or both are the same word.19

At any rate, the follow sets for the two non-terminals A and B contain all non-terminals
(including $) that may occur in a sential form, following immedately occurences of A, resp.
occurrences of B. If there is a shared symbol, contained both in both follow sets, then the
conflict remains unresolved. If, on the other hand, the two follow sets are disjoint, then
the look-ahead to the next symbol can be used to make a decision whether to reduce with
production A → α. or with B → β.. Of course, if there are more than two productions,
one needs to check all pairs for that disjointness-condition.

Checking resp. defusing shift-reduce conflicts works similarly (see Figure 4.31b). The
symptom for a shift-reduce conflict is a state in the LR(0)-DFA containing a complete item
A → α. and a non-complete item A → α1. a α2. Such a state has also an outgoing edge
labelled with a, which corresponds to a shift-step. In such a situation, the LR(0)-DFA
has a choice between a shift-step with a and a reduce with the mentioned production. If
a is not in the follow-set of A, then the conflict is resolved.

The LR(0)-conflicts from Figure 4.31 are resolved in SRL(1), if for reduce-reduce, resp.
for the shift-reduce situation, the following conditions hold respectively:

19You may reflect on why that is.
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. . .

A → α.

. . .

B → β.

(a) Reduce-reduce

. . .

A → α.

. . .

B1 → β1.b1γ1

B2 → β2.b2γ2

b1

b2

(b) Shift-reduce

Figure 4.31: LR(0) conflicts

Follow(A) ∩ Follow(B) = ∅ resp. Follow(A) ∩ {b1, b2, . . .} = ∅ (4.35)

In both cases, one has to check the follow sets of the involved non-terminals. If the
respective intersection of sets are empty, there is no SLR(1)-conflict, otherwise there is.
For the reduce-reduce situation as in Figure 4.31a, next symbol in the token input stream
decides: if t ∈ Follow(A) then reduce using A → α, if t ∈ Follow(B) then reduce using
B → β. Similar for the shift-reduce situation as in Figure 4.31b: If t ∈ Follow(A) then
reduce using A → α, if t ∈ {b1, b2, . . .}, then shift.

Example 4.7.19 (SLR and SLR-table: addition (one more time)). Let’s revisit the addition
example one more time. As hinted at already in Example 4.7.5 and as visible in the
LR(0)-DFA from Figure 4.23b, the grammar is not LR(0): the state numbered 1 contains
a complete item and and outgoing edge labelled +.

But is there an SLR-conflict? The complete item in state 1 is E′ → E.. So to apply
the SLR-conditions, we need to calculate the follow set for E′. The follow-set for the
(extra) start symbol is Follow(E′) = {$}.20 So according to the condition for possible
shift-reduce conflicts from equation (4.35), there is no SRL(1)-conflict, the grammar is
SLR(1) parseable. Concretely, in state 1, the machine does a shift for +, and a reduce on
rule E′ → E for $ (which corresponds to accept, in case the stack is empty).

Table 4.13 shows the SLR(1) table that corresponds to the LR(0)-DFA. Conceptually,
it’s in the same format than the LR(0)-table. However, in an ok LR(0) table, i.e., one
without conflicts, and it is arranged a bit different. Without LR(0)-conflict, the reaction
for a given state is either a reduce (with one particular rule) (or an error) or else qa shift
(though different symbols may lead to different successor states) (or an error).

Now, with SLR(1), there can be states where both shifts or reduces are possible, depending
on the input. In the table, that’s state number 1. Remember, the accepting action
corresponds to a particular reduce-step. So the line labelled with 1 contains a shift and a
reduce (the one that correspond to acceptance). What would also be possible, though not
relevant in this example are states or lines with different reduce steps, depending on the
input. That would correspond to a automaton, where reduce-reduce conflicts are resolved
by the follow set criteria we discussed (see equation (4.35)).

A parser-run is shown in Figure 4.32a resulting in a parse tree from Figure 4.32b.
20As a side remark: we don’t need here to bother about the algorithms for the follow set and the first set.

Under the convention that the (extra) start symbol never occurs on the right-hand side of a production,
it’s immediately clear that $ is the only symbol in its follow set.
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state input goto
n + $ E

0 s : 2 1
1 s : 3 accept
2 r : (E → n)
3 s : 4
4 r : (E → E + n) r : (E → E + n)

Table 4.13: SLR(1) parsing table (addition)

stage parsing stack input action

1 $0 n + n + n $ shift: 2
2 $0n2 + n + n $ reduce: E → n
3 $0E1 + n + n $ shift: 3
4 $0E1+3 n + n $ shift: 4
5 $0E1+3n4 + n $ reduce: E → E + n
6 $0E1 n $ shift 3
7 $0E1+3 n $ shift 4
8 $0E1+3n4 $ reduce: E → E + n
9 $0E1 $ accept

(a) Parser-run (reduction)

E′

E

E

E

number + number + number

(b) Corresponding parse tree

Figure 4.32: Addition grammar

Let’s have another look at the construction again, alo with a grammar seen before.

Example 4.7.20 (SLR(1): parentheses again). Let’s revisit the grammar for parentheses
from equation (4.26) and Example 4.7.6. The LR(0)-DFA for the grammar has already
been presented in Figure 4.22b.

The follow-set of the non-terminal S is

Follow(S) = {), $} . (4.36)

The SLR(1)-parsing table is shown in Figure 4.33a and a run of the parser machine in
Figure 4.33b.

As seen in the examples, SLR(1) parsing tables look rather similar to the LR(0) ones.
Both tables have the same number of rows in the table, as they are based on the same
DFA. Only the colums “arranged” differently. The LR(0) parser react uniformely per
state resp. per row: it’s either a shift (resp. goto) or else a reduce step (with given rule).
The SRL(1)-version can react non-uniformely, dependent on the input.
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state input goto
( ) $ S

0 s : 2 r : S → ϵ r : S → ϵ 1
1 accept
2 s : 2 r : S → ϵ r : S → ϵ 3
3 s : 4
4 s : 2 r : S → ϵ r : S → ϵ 5
5 r : S → ( S ) S r : S → ( S ) S

(a) SLR(1) parse table (parentheses)

parsing stack input action
1 $0 ( ) ( ) $ shift: 2
2 $0(2 ) ( ) $ red.: S → ϵ
3 $0(2S3 ) ( ) $ shift: 4
4 $0(2S3)4 ( ) $ shift: 2
5 $0(2S3)4(2 ) $ red.: S → ϵ
6 $0(2S3)4(2S3 ) $ shift: 4
7 $0(2S3)4(2S3)4 $ red.: S → ϵ
8 $0(2S3)4(2S3)4S5 $ red.: S → ( S ) S
9 $0(2S3)4S5 $ red.: S → ( S ) S
10 $0S1 $ accept

(b) Parser run (“reduction”)

Figure 4.33: Parentheses

It should be obvious, SLR(1) may resolve LR(0) conflicts, but if the follow-set conditions
are not met, there are SLR(1) reduce-reduce and/or SLR(1) shift-reduce conflicts. That
would result in non-unique entries in the slots of the SLR(1)-table.21

Figure 4.34 shows the steps of a SRL(1)-parser machine. It’s a minor variation of the steps
for the LR(0) variant from Figure 4.30.

Let s be the current state, on top of the parse stack
1. s contains A → α.Xβ, where X is a terminal and X is the next token on

the input, then
• shift X from input to top of stack. The new state pushed on the stack:

state t where s
X−→ t

2. s contains a complete item (say A → γ.) and the next token in the input
is in Follow(A): reduce by rule A → γ:

• A reduction by S′ → S: accept, if input is empty
• else:

pop: remove γ

back up: assume to be in state u which is now head state
push: push A to the stack, new head state t where u

A−→ t

3. if next token is such that neither 1. or 2. applies: error

Figure 4.34: SLR(1) algorithm

Ambiguity & living with conflicts in LR-parsing

We have mentioned it multiple times: if the grammar is ambiguous, it’s not useful for
parsing; in particular it leads to conflicts, for bottom-up parsing as well as top-down
parsing, and no matter the look-ahead. But there are ways to live with ambiguity and
21By which it, strictly speaking, would no longer be an SLR(1)-table :-)



4 Parsing
4.7 Bottom-up parsing 71

conflicts. One is, in some situations, to simply state that one wants certain associativies
or precedences in an otherwise ambiguous grammar. If that works (which means, it makes
sense and is understandable to speak about associativity an precedence, and one uses a tool
like a parser generator that supports that, that’s s nice, and one can get rid of conflicts
without massaging the grammar (or even redesigning the language). In that case, the
parser generator will also not issue any warnings of potential conflicts; they are gone.

In the following we also discuss a different approach, this time really “living with a conflict”,
by prioritizing actions in case of conflicting situations; resp. letting the tool prioritize
among them. A parser, when confronted with a conflict in the parser table, say, an LR-
table, will not try out all possibilities, to find out which works, resp. if more than one
works, it will not give back multiple parse trees, resp. multiple ASTs. It simply makes
a choice. If the compiler writer knows how that choice is done, and if the programmer
additionally know what consequence it has for the parse tree, resp. the AST (and can
live with the consequences), then it may be acceptable. For example, in an ambiguous
expression grammar (we had some of those), one particular choice could make addition
left-associative, and another, different one, could make it right-associative. If it’s known
the implementation always leads to a left-associative choice, maybe it’s acceptable. But
it’s risky. And the parser generator will complain about it in the form of a warning. So,
I would rather not recommend it. . .

We discuss in the following a (well-known) situation, where the traditional choice a parser
generator does leads to a desired outcome. The traditional choice of a bottom-up parser
generator for shift-reduce conflict is shift takes priority. The example we use for illus-
tration is the ambiguous grammar with dangling elses. With the grammar, in a nested
situation of conditionals, the else-part may or may belong to different open conditionals,
it “dangles”. The convention says, in such a situation, it should belong to the closest open
conditional. As it turns out, prioritizing shifts over reduce steps does exactly that.

In case of reduce-reduce conflict, also the parser generator makes a choice, conventionally
preferring a production written earlier over alternatives written later in the grammar (like
in a “first-match”).

Generally, warnings about conflicts are not a good sign. So instead of thinking hard
whether the conflict is resolved in an acceptable way, one should probably try to get rid
of conflicts. So the example is better not read as advice how to deal with conflicts, but
rather an opportinity to get more insight what consequence reduce- and shift-steps have
in shaping the parse tree (and thereby the AST).

Example 4.7.21 (Ambiguous grammar (dangling else again)). We have seen the grammar
illustrating the situation of dangling-else in the chapter about grammars. Let’s repeat the
the essence of that grammar, simplifying it a bit to keep the pictures smaller.

The grammar is given in (4.37), resp. in expanded form with the productions numbered
in equation (4.38). The follow sets of the non-terminals are given in Table (4.14)

S → I | other
I → if S | if S else S

(4.37) S → I (1)
| other (2)

I → if S (3)
| ifS else S (4)

(4.38)
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Follow
S′ {$}
S {$, else}
I {$, else}

Table 4.14: Follow sets

Figure 4.35 shows the LR(0)-DFA for the grammar. Since the grammar is ambiguous,
there must be at least one SLR(1) conflict somewhere (and of course a LR(0), as well).

S′ → .S

S → .I

S → .other
I → .if S

I → .if S else S

0

S → I.

2

S′ → S.

1

S → other.

3

I → if .S

I → if .S else S

S → .I

S → .other
I → .if S

I → .if S else S

4

I → if S else .S

S → .I

S → .other
I → .if S

I → .if S else S

6

I → if S .

I → if S .else S

5

I → if S else S.

7

S

I

other

if

I

other

S
else

if

I

Sif
other

Figure 4.35: DFA of LR(0) items

Checking the previously shown conditions for SLR(1) parsing, one sees that there is a
SLR(1) shift-reduce conflict in state 5: the follow-set of the left-hand side non-terminal
I contains else (which represents the shift-step). In Table 4.15, only the shift-reaction
is added in the corresponding slot (not both shift and reduce action), since that is the
default reaction of a parser tool, when facing a shift-reduce conflict.

state input goto
if else other $ S I

0 s : 4 s : 3 1 2
1 accept
2 r : 1 r : 1
3 r : 2 r : 2
4 s : 4 s : 3 5 2
5 s : 6 r : 3
6 s : 4 s : 3 7 2
7 r : 4 r : 4

Table 4.15: SLR(1) parse table, conflict “resolved”
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The shift-reduce conflict in state 5 is between a reduce with rule 3 (not shown in the table)
vs. a shift (to state 6), so the conflict is resolved in favor of shift. Note: the extra start
symbol is left out from the table.

Figure 4.36 shows a run of the parser for nested conditionals, i.e., in a dangling-else
situation. The machine resolves the conflict in favor of a shift. Figure 4.37 shows an
similar run, this time favoring the reduce step.

stage parsing stack input action
1 $0 if if other else other $ shift: 4
2 $0if 4 if other else other $ shift: 4
3 $0if 4if 4 other else other $ shift: 3
4 $0if 4if 4other3 else other $ reduce: 2
5 $0if 4if 4S5 else other $ shift 6
6 $0if 4if 4S5else6 other $ shift: 3
7 $0if 4if 4S5else6other3 $ reduce: 2
8 $0if 4if 4S5else6S7 $ reduce: 4
9 $0if 4I2 $ reduce: 1

10 $0S1 $ accept

Figure 4.36: Parser run: preference on shift

stage parsing stack input action
1 $0 if if other else other $ shift: 4
2 $0if 4 if other else other $ shift: 4
3 $0if 4if 4 other else other $ shift: 3
4 $0if 4if 4other3 else other $ reduce: 2
5 $0if 4if 4S5 else other $ reduce 3
6 $0if 4I2 else other $ reduce 1
7 $0if 4S5 else other $ shift 6
8 $0if 4S5else6 other $ shift 3
9 $0if 4S5else6other3 $ reduce 2

10 $0if 4S5else6S7 $ reduce 4
11 $0S1 $ accept

Figure 4.37: Parser run: preference on reduce

Finally, Figure 4.38 shows the corresponding parse trees resulting from the two different
ways to resolve the shift-reduce conflict. The one favoring the shift corresponds to the
standard “dangling else” convention, that an else belongs to the last previous, still open
(= dangling) if-clause.

The example serves two purposes: it sheds a light on how the dangling else problem
can be “solved” by preferring as shift over a reduce reaction. More generally and more
importantly, it should give a feeling how generally a shift-vs-reduce changes the structure
of the parse-tree (and indirectly most probably also the AST). It’s an issue of associativity
and precedence (at least when dealing with binary operators), and we will see that in the
following standard setting of expressions.
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S

if

I

if

S

other else

S

other

(a) shift-precedence: conventional

S

if

I

if

S

other else

S

other

(b) “wrong” tree

Figure 4.38: Parse trees for the “simple conditionals”

Using ambiguous grammars may have the advantages that they are often simpler.
Of course, an ambiguous grammar is guaranteed to have conflicts. Sometimes, ambiguous
parts of a grammar can be resolved by specifying precedence and associativity, as discussed
earlier, and doing so is also supported by tools like yacc and CUP . . .

One can also do by instructing the parser to explicitly instruct the parser what to do in
a conflicting situation. In the dangling-else example, preferring shift over reduce leads to
the intended outcome, and next example shows how different conflict resolution decisions
lead to different associativities and precedences. That is illustrated in the next example.

Example 4.7.22 (Precedences and associativity). Consider the following expression gram-
mar:

E′ → E
E → E + E | E ∗ E | number

(4.39)

The corresponding LR(0)-DFA is shown in Figure 4.39.

E′ → .E

E → .E+E

E → .E ∗E

E → .n

0

E′ → E.

E → E.+E

E → E.∗E

1

E → E+ .E

E → .E+E

E → .E ∗E

E → .n

3

E → E+E.

E → E.+E

E → E.∗E

5

E → E ∗E.

E → E.+E

E → E.∗E

6

E → n.

2
E → E ∗ .E

E → .E+E

E → .E ∗E

E → .n

4

E

n

+

∗

n

E

∗

∗

+

E

+

n

Figure 4.39: DFA for + and ×

Let’s look at two states with conflicts. In state 5, the parser is in a state that contains
E + E on top as can be seen from the complete item it “contains”. So that means a reduce
steps is possible, and also a shift step, namely with + and with ∗. Based on the next
symbol, i.e., by manually making the decision for the parser based on that automaton, a +
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as input should resolve the shift-reduce conflict by reduce, to achieve left-associativity of
addition. For a ∗, the machine should do a shift, to achieve precedence of multiplication
over addition. Finally, for $, the machine must do a reduce, a shift is anyway not allowed.22

State 6 is analogous: the stack contains E ∗ E on top, and again there is a shift-reduce
conflict and for the intended behavior, the machine should do the following. For $ as
input: do a reduce, of course. For input +, do a reduce, as ∗ has precedence over +,
and for input ∗, do a reduce, as ∗ is left-associative. The corresponding parse table is
shown in Table 4.16.

state input goto
n + ∗ $ E

0 s : 2 1
1 s : 3 s : 4 accept
2 r : E → n r : E → n r : E → n
3 s : 2 5
4 s : 2 6
5 r : E → E + E s : 4 r : E → E + E
6 r : E → E ∗ E r : E → E ∗ E r : E → E ∗ E

Table 4.16: Parse table for + and ∗

The exercises extend that example to additionally deal with exponentiation, which has
still a higher precendence than multiplication and is conventionally right-associative.

The previous example showed in a typical situation, how to fiddle with the parse-table of
an ambiguous grammar to obtain the intended disambiguations. We know from earlier
sections, that for examples like that, one can obtain the intended associativies and prece-
dences also by massaging the grammar with a technique known as precedence cascade.
Let’s do the previous example with this technique as well, just for comparison.

Example 4.7.23 (Unambiguous grammar). The grammar from equation (4.40) is a refor-
mulation of the language specified by the ambigous grammar from equation (4.39) into an
unambigous one. The table on the right-hand shows the follow-sets for the involved non-
terminals (we come back to the right-hand column named “states” afterwards). Note, the
grammar uses E′ as an extra start-symbols, something that is necessary for the LR(0)-DFA
construction. As a consequence, E′ has $ as the only member in its follow-set.

E′ → E
E → E + T | T
T → T ∗ n | n

(4.40) Follow states

E′ {$} 1
E {$, +} 4, 6
T {$, +, ∗} 3, 7

Figure 4.40 shows the corresponding LR(0)-DFA.

On closer inspection, the DFA now is SLR(1). We don’t elaborate the argument for that
fully (for example by filling out a SLR(1)-table and check for duplicate entries). To check
it one should in particular check states with complete items. Those are the states 1,4,6,3,
22LR(0)-DFAs never show transitions labelled by $. However, LR(0)-tables or SLR(1)-tables contain a

column for $.
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E′ → .E

E → .E+T

E → .T

E → .T ∗n
E → .n

0

E′ → E.

E → E.+T

1
E → E+ .T

T → .T ∗n
T → .n

2

T → n.

3

E → T .

T → T .∗n

4

T → T ∗ .n
5

E → E+T .

T → T .∗n

6

T → T ∗n.
7

E

n

T

+

n
T

∗
n

∗

Figure 4.40: DFA for unambiguous grammar for + and ×

and 7. The above table lists the follow-sets for all the non-terminals. The last column in
the table indicates for which state(s) of the automaton the particular follow set is relevant.
For example, the follow set {$, +} for E is relevant for states 4 and 6, and since there is
no overlap with symbol ∗ that labels the outgoing edges from those two states, there is
no SRL(1) shift-reduce conflict (only a LR(0) shift-reduce conflict). Same for the other
states. Since there are no states containing two complete items, there’s no need to check
the corresponding SLR(1) criterion, and so the grammar is SRL(1).

4.7.5 LR(1) parsing

LR(1) parsing is top-down shift-reduce parsing with one look-ahead. It is usually
considered as unecessarily complex in that it leads to parser machines with too many states
and often one is content with LALR(1), which we discuss afterwards. Indeed, LR(1) can
be understood as stepping-stone towards LALR(1).

To get that out of the way. We just discussed SLR(1), a parser technique using a DFA
that takes into account as look-ahead of 1 to resolve some conflicts, isn’t that shift-reduce
parsing with one look-head and thus LR(1)? Indeed, SLR(1) uses a look-ahead, but only
after it has built a non-look-ahead DFA based on LR(0)-items. And LR(1) parser in
contrast generalizes the idea of the LR-DFA by using a look-ahead of 1 already in the
construction. The states of such an LR(1)-DFA is based not on LR(0)-items, but on so-
called LR(1)-items. That normally leads to a machine with many more states than a
LR(0)-DFA (but based on the same principles). LALR(1)-parsing (presented later) takes
that larger machine, and strips-off the extra look-ahead information, collapsing it to an
automaton that has the same amount of states than the LR(0)-one, but still can make
more fine-grained decisions than an LR(0)- or SLR(1)-parser. One might say:

SLR(1) is improved LR(0)-parsing, LALR(1) is crippled LR(1)-parsing.
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Let’s illustrate the LR(1) construction with the help of an example.

Example 4.7.24 (Assignment grammar fragment). Let’s take the following grammar(s).
The one on the left could be a fragment of a grammar for some programming language.
For the construction, we focus on some simplified subset of that, shown in equation (4.41).

stmt → call-stmt | assign-stmt
call-stmt → identifier

assign-stmt → var := exp
var → [ exp ] | identifier
exp → var | number

S → id | V := E
V → id
E → V | n

(4.41)

Table 4.17 shows the follow-sets for the non-terminals, and Figure 4.41 shows some portion
of the LR(0)-DFA for the grammar.

First Follow
S id $
V id $, :=
E id, number $

Table 4.17: Follow sets

S′ → .S

S → .id

S → .V :=E

V → .id

S → id.

V → id.

. . .

. . .

S

id

V

(a) LR(0) with SLR(1) criterion

S′ → .S

S → .id

S → .V :=E

V → .id

S → id. $

V → id. $, :=

. . .

. . .

S

id

V

(b) Extra follow-set information

Figure 4.41: Transitions of the LR(0)-NFA

The reddish state in Figure 4.41a has an LR(0) reduce-reduce conflict, and that cannot be
resolved by looking at the follow-sets, especially the follow-sets of E and V , and thus there
is also an SRL(1) reduce-reduce conflict (on the symbol $). This shows that SLR-parsing
runs into trouble with rather simple common notations found in different programming
languages. The example here is inspired by Pascal, but analogous problems exist in C or
similar, so it’s not an esoteric or artificial illustration of a situation, where SLR(1) is not
good enough. The problem in the larger of the two grammars, as we will see, concerns
identifiers (resp. variables as left-hand side of an assignment or as a call expression). In
the simplified grammar, there’s no call-statement, but the problem is the same.

Figure 4.41b shows the same part of the automaton, with follow-set information added.
The red terminals are not part of the state, they are just shown for illustration (represent-
ing the follow symbols of S resp. of V ). The LR(1) construction sketched in the following
builds in one additional look-ahead symbol officially as parts of the items and thus states.
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Let’s look at Figures 4.42. The (sketch of the) automaton here looks pretty similar to the

S′ → .S $

S → .id $

S → .V :=E $

V → .id :=

S → id. $

V → id. :=

. . .

. . .

S

id

V

Figure 4.42: Look-ahead information as part of the items

previous one. However, we should think now of the non-terminals as officially part of the
items. The interesting piece in this example is the id-transition from the initial state to the
state containing the items S → id. and V → id., the state which previously suffered the
reduce/reduce conflict on the following symbol $. Now, without showing the construction
in detail, the interesting situation is, in the first state, the item S → .V := E, $. With
the . in front of the V , that’s when we have to take the ϵ-closure into account, basically
adding also the initial items (here one initial item) for the productions for V .

Now, when adding that item V → .id, we can use the additional “look-ahead piece
of information” in that item to mark that V was added to the closure when being in
front of a :=. That leads (in this situation) to the item of the form [V → .id, :=].

This information is more specific than the general follow-set of V , which contains both
:= and $. Now, by recording that extra piece of information in the closure, the state
“remembers” that the only thing at the current state that is allowed to follow the V is
the :=. That will defuse the conflict: if we follow the id-edge, we end up in the state on the
right-hand side. Such a transition does not touch the additional look-ahead information
(here the $ respṫhe := symbol). See also the corresponding NFA-rule later. Thus, in the
state at the right-hand side, the reduce-reduce conflict isappeared!

So that’s the core of LR(1) parser automata: adding precision in the states of the automa-
ton already: Instead of using look-ahead as afterthought to an LR(0)-construction with
the help of the follow sets for states containing complete items, it’s more expressive by
with more fine-grained items from the very start. This is done with so-called LR(1)
items, which are like LR(0)-items with additional follow information. This additional
look-ahead information leads to a proliferation of states, enlarging the automaton.23 The
form of the new items is as follows

[A → α.β, a] (4.42)

where a is terminal or token, including $.
23Not to mention if we wanted look-ahead of k > 1, which in practice is not done, though.
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Example 4.7.25 (Assignments (LR(1))). For the assignment grammar from Example 4.7.24,
Figure 4.43 shows the LR(1)-DFA. Part of it has been depicted already in Figure 4.42.

Figure 4.43: LR(1)-DFA

Next we show the construction of the LR(1)-automaton. We only show the NFA, not the
DFA, as well. The construction of the transitions are shown in Figure 4.44. X represents
a terminal or a non-terminal. For the case of the ϵ-transition in Figure 4.44b, the edge is
added for all

B → β and all b ∈ First(γa)

[A → α.Xβ, a] [A → αX.β, a]
X

(a) arbitrary symbol

[A → α.Bγ ,a] [B → .β ,b]
ε

(b) ϵ-transition (B → β and b ∈ First(γa))

Figure 4.44: LR(1) parser machine transitions

The construction from Figure 4.44b also contains the special case for γ = ϵ, shown in
Figure 4.45, adding a transition for all B → β.

[A → α.B ,a] [B → .β ,a]
ε

Figure 4.45: ϵ-transition, special case (γ = ϵ)

In the resulting DFA from the previous example, there are only 2 states which have a
connection to ϵ-transitions. Since it’s a DFA, there are technically no such transition, the
items are directly part of the state (via closure). The two state where closure play a role
are the states 0 and 4. In the initial state 0, the closure takes two steps. In the first step,
the second and third item are added (with look-ahead $) and the the second step, the last
item is added, with look-ahead :=, and the reason why it’s an assign, because in the third
item, the dot is in front of V :=, i.e., the item contains .V :=.
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4.7.6 LALR(1) parsing: collapsing the LR(1)-DFA

After canonical LR(1) parsing, let’s have a look at LALR(1) parsing. The abbreviation
stands for look-ahead LR-parsing, but the names does not say much. We hinted at core
idea before: LALR(1) is shift-reduce parser and works analogous to the other variations.
The states of the corresponding DFA come from taking the states of the LR(1)-DFA and
“collapse” some of them, combining multiple states of the larger automaton into a single
state of the LALR(1). Let’s just look at an example. To make it managable, we take a
quite small grammar, the one for simple parentheses from Example 4.7.14.

Example 4.7.26 (Simple parentheses). Let’s look at the following grammar:

A → ( A ) | a .

We have seen that grammar already in equation (4.34).24

Figure 4.46a shows the corresponding LR(1)-DFA with 10 states. As explained, the states
are built from LR(1)-items, i.e., LR(0)-items plus look-ahead information. The informa-
tion without the look-ahead is called the core of such an item. The core of the LR(1)
item is of course an LR(0) item. Then the LALR(1) automaton is built by collapsing
LR(1) states with the same core. The result is shown in Figure 4.46b.

[A′ → .A , $]
[A → . ( A ) , $]
[A → .a , $]

0

[A′ → A. , $]
1

[A → ( .A ) , $]
[A → . ( A ) , )]
[A → .a , )]

2

[A → a. , $]
3

[A → ( A. ) , $]
4

[A → ( .A ) , )]
[A → . ( A ) , )]
[A → .a , )]

5

[A → a. , )]
6

[A → ( A ) . , $]
7

[A → ( A. ) , )]
8

[A → ( A ) . , )]
9

A

a

(

A

a

(
a

A )

)

(

(a) LR(1) DFA

[A′ → .A , $]
[A → . ( A ) , $]
[A → .a , $]

0

[A′ → A. , $]
1

[A → ( .A ) , {$, )}]
[A → . ( A ) , )]
[A → .a , )]

2,5

[A → a. , {$, )}]

3,6

[A → ( A. ) , {$, )}]

4,8

[A → ( A ) . , {$, )}]
7

A

a

(

A

a

)
(

(b) LALR(1) DFA

Figure 4.46: LR(1) and LALR(1) DFAs

Joining states of a DFA of course should raise a red flag: it could turn a deterministic
automaton into a non-deterministic one. However, two LR(1)-states with the same cores
have the same outgoing edges, and those lead to states with the same core again. So,
fortunately, doing the collapse results in a deterministic automaton.

The states almost seem constructed like the ones for the LR(0)-DFA (with a detour via the
LR(1)-DFA), but each individual item “inside” the state has still look-ahead information
attached: the union of the “collapsed” items. Especially for states with complete items,
the information in [A → α, a, b, . . .] is smaller than the follow-set of A. That results in
less unresolved conflicts compared to SLR(1).
24Earlier, the simple parentheses grammar was an example of a grammar actually parseable with a LR(0)-

parser, so there is actually no need to use a more powerful one like am LR(1) or LALR(1) parser. But
we use the quite simple grammar here just to illustrate the LALR(1) idea.
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4.7.7 Concluding remarks of LR / bottom up parsing

Before touching upon error-handling, let’s wrap it up with some concluding remarks,
mostly repeating things mentioned earlier. All all constructions (here) are based on BNF
(not EBNF). That style of parsers have shift-reduce and reduce-reduce conflicts, for
instance due to ambiguity, and those can be solved by in different ways. One can try to
reformulate the grammar, but generate the same language.25 One may use directives in
parser generator tools like yacc, CUP, bison, like specifying precedence and associativity
of operators. One can also try to solve conflicts solve them later via semantical analysis
(not discusess. Of course, not all conflics are solvable, also not in LR(1), or LR(k), for
instance for ambiguous languages.

advantages remarks
LR(0) defines states also used by SLR and

LALR
not really used, many conflicts, very
weak

SLR(1) clear improvement over LR(0) in ex-
pressiveness, even if using the same
number of states. Table typically
with 50K entries

weaker than LALR(1). but some-
times enough. Ok for hand-made
parsers for small grammars

LALR(1) almost as expressive as LR(1), but
number of states as LR(0)!

method of choice for most generated
LR-parsers

LR(1) the method covering all bottom-up,
one-look-ahead parseable grammars

large number of states (typically
10M of entries or more), mostly
LALR(1) preferred

Table 4.18: Shift-reduce parsing overview

Remember: once the table specific for LR(0), . . . is set-up, the parsing algorithms all work
the same

4.7.8 Error handling

Let’s also talk shortly about error handling, without going very deep here. As as minimal
requirement, and as for top-down handling: Upon stumbling over an error, i.e., a devia-
tion from the grammar used for parsing, one should give a reasonable & understandable
error message, indicating also error location. One simple option is to stop parsing if that
happens. An alternative is to continue, this is known as error recovery. Of course one
cannot really recover from the fact that the program has an error, a syntax error is a
syntax error, but the parser could still move on. That may involve to jump over some
subsequent code, until the parser can pick up normal parsing again. That allows to check
code even after encountering a first error. When doing recovery, one should avoid to report
an avalanche of subsequent spurious errors, just “caused” by the first error. In general it’s
desirable to avoid error messages that only occur because of an already reported error. In
general, recovering and pick up normal course of action is harder for syntactic errors than
for semantic errors, where error recovery is also a useful technique.
25If designing a new language, there’s also the option to massage the language itself. Note also: there are

inherently ambiguous languages for which there is no unambiguous grammar.



82 4 Parsing
4.7 Bottom-up parsing

One should also report error as early as possible, if possible at the first point where the
program cannot be extended to a correct program. For bottom-up parsing and when doing
error recovering, one should watch out that the parser does not end up in an infinite loop.
without reading any input symbols. Earlier, in connection with top-down parsing, we
already remarked that it’s not always clear what is a good error message, and illustrated
that with a small example.

Error recovery in bottom-up parsing

We shortly look at a simple form of error recovery for shift-reduce parsing, known as panic
recovery. When hitting an error, the parser does not stop, but reacts with the following
recovery steps. It pops parts of the stack, ignores parts of the following input until the
parser is or seems to be back on track. We shortly look how that is done.

A additional technical problem with error recovery is the question of (non-)determinism.
Of course the construction of the parser table leads to a deterministic parser machine, with
all conflicts resolved, but the construction is done assuming normal operation. When
hitting an error and upon clearing parts of the stack and ignoring input), there is a priori
no guarantee that it’s still deterministic in the larger picture, for instance, it may not be
determined when and how to continue normal operations. The reaction is typically done
by some heuristic needed, like indeed panic mode recovery.

It’s clear when the parser stumbles on an error. It happens if there is no entry in the
parser table covering the situation. It’s less easy to determine when it’s time to try a
fresh start, i.e. determining how much of the stack content should be popped and how
much input should be ignored.

The idea of panic mode recovery is to take a possible goto action as promising fresh
start. So, after detecting an error, the parser backs off and takes the next such goto-
opportunity. Here a bit more detailed:

Panic mode recovery heuristic
1. Pop states for the stack until a state is found with non-empty goto entries
2. • If there’s legal action on the current input token from one of the goto-

states, push token on the stack, restart the parse.
• If there’s several such states: prefer shift over a reduce.
• Among possible reduce actions: prefer one whose associated non-terminal

is least general.
3. if no legal action on the current input token from one of the goto-states:

advance input until there is a legal action (or until end of input is reached)

Let’s have a look at an artificial example. Let’s assume the parse table from Table 4.19
and a run as shown in Table 4.20.

At the beginning of the shown behavior, in the first line, the machine is in state 6, where
the next input f cannot be handled; the corresponding slot in the parse table is empty
and also a goto-move is not an option.
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state input goto
. . . ) f g . . . . . . A B . . .

. . .
3 u v
4 − − −
5 − − −
6 − − − −

. . .
u − − reduce . . .
v − − shift : 7

. . .

Table 4.19: Shift-reduce parse table

parse stack input action
1 $0a1b2c3(4d5e6 f ) gh . . . $ no entry for f
2 $0a1b2c3Bv gh . . . $ back to normal
3 $0a1b2c3Bvg7 h . . . $ . . .

Table 4.20: Panic mode recovery run

In that situation, the part of the stack highlighted on red is popped off. The head-states
for the corresponding stack contents do not support a goto-step. The first such state that
does support a goto move is state 3. In that state there are two goto-options, with A and
with B, and B is chosen (the example does not show the grammar, so it does not provide
details why that would be). At any rate, the parser then is in state v. Since in this state,
f and ) on the input cannot handled, the parser jumps over those until seeing the next
acceptable input, which is g. Concerning the f and ) that cannot be handled, the parser
does not complain and report them as additional errors.

Panic mode recovery is a simple heuristic, but one has to watch out, as without further
precautions, the recovering parser may loop forever. That is illustrated in Table 4.22.
It shows a looping run for a parser for expression, a relevant part of the parse Table is
sketched in Table 4.21.

exp term factor
goto to 10 3 4
with n next: action there — reduce r4 reduce r6

Table 4.21: Parse table fragment

An error is raised in in stage 7, where no legal action is possible; also informally one sees
that at that point, the input cannot be extended to a syntactically correct expression.
The panic reaction is to pop off state pop-off exp10. In the new head state 6, there are two
possible goto reactions. Since there is no shift step possible, the parser needs to decide
between the two reduces. Since factor is less general, the parser makes a reduce step that
replaces exp by factor . At that point the parser is in a configuration which is identical
one one from before.
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parse stack input action
1 $0 ( n n ) $
2 $0(6 n n ) $
3 $0(6n5 n ) $
4 $0(6factor4 n ) $
6 $0(6term3 n ) $
7 $0(6exp10 n ) $ panic!
8 $0(6factor4 n ) $ been there before: stage 4!

Table 4.22: Panic mode loop

How to avoid looping panic? One sure has to take precautions to detect the loop (i.e.
check if one revisits previously seen configurations. If a loop detected: doen’t repeat but
do something else, for instance, pop-off more from the stack, and try again or pop-off and
insist that a shift is part of the options. Or of course, give up.
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