
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2024

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

5 Semantic analysis 1
5.1 Introduction . 1

5.1.1 Overview on attribute grammars . 2
5.2 Attribute grammars . 6

5.2.1 Synthesized and inherited attributes 12
5.2.2 Semantic rules . 13
5.2.3 Special forms of attribute grammars 16
5.2.4 More formal definitions . 17
5.2.5 Some examples of attribute grammars 19
5.2.6 Evaluation of dependence graphs . 25

5 Semantic analysis 1

5
Semantic analysis
Chapter

What
is it

about?
Learning Targets of this Chapter

1. “attributes”
2. attribute grammars
3. synthesized and inherited attributes
4. various applications of attribute

grammars

Contents

5.1 Introduction 1
5.1.1 Overview on at-

tribute grammars . . . 2
5.2 Attribute grammars 6

5.2.1 Synthesized and in-
herited attributes . . . 12

5.2.2 Semantic rules 13
5.2.3 Special forms of at-

tribute grammars . . . 16
5.2.4 More formal definitions 17
5.2.5 Some examples of at-

tribute grammars . . . 19
5.2.6 Evaluation of depen-

dence graphs 25

5.1 Introduction

Semantic analysis or static analysis is a very broad and diverse topic. The lecture con-
centrates on a few, but crucial aspects. This particular chapter here is concerned with
attribute grammars. It’s a generic or general “framework” to “semantic analysis”.
Later chapters also deal with semantic analysis, namely the ones about symbol tables
and about type checking. In the context of the lecture, those chapters work basically on
(abstract syntax) trees except that for the symbol tables and for the type system, it’s not
so visible. The fact that it’s a mechanism to “analyze trees” is most visible for attribute
grammars: context-free grammars describe trees and the semantic rules (see later) added
to the grammar specify how to analyze resulting trees.

Wrt. the general placement of semantic analysis in a compiler: Not all semantic analyses
are tree analyses. Data-flow analysis (on which we touch upon later) often works on graphs
(typically control-flow graphs). Furthermore, it’s not the case, that semantic analysis is
restricted to be done directly after parsing. There are many semantic analyses done
at later stages (and on other representations). In particular, it could be that a later
intermediate representation uses a different form of syntax, closer to machine code (often

2 5 Semantic analysis
5.1 Introduction

call intermediate code). That syntax could also be given by a grammar, meaning that a
program in that syntax corresponds to a tree of that syntax. As a result, one can apply
techniques like attribute grammars also at that level (maybe thereby using one on the
AST, and later for a different purpose on some (syntax trees for) intermediate code).

5.1.1 Overview on attribute grammars

On a very high level, the attribute grammar format does the following: it enhances a given
grammar by additional specifications, so called semantic rules, which specify how trees
conforming to the grammar should be analysed.

Two points might be noted here. First, the AG formalism adds rules on top of context-free
grammars, but the intention is to specify analyses on trees formed according to the given
grammar. Secondly, it’s a specification of such tree analyses, where the analysis involves
determine values for so-called attributes. The AG format is quite general, meaning that
it allows to express all kinds of ways attributes should be evaluated. If not constrained in
some way, the AG formalism can be seen as too expressive in that it leads to specifications
that contradict themselves or does not lead to proper implementation.

The output of the parser is an abstract syntax tree, like the one from Figure 5.1a (we
have seen the trees in the introductory chapter already). The semantic analysis phase, in
particular could add type information to that tree, as illustrated in Figure 5.1a.

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

(a) AST

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

(b) “annotated” AST

Figure 5.1: AST with type information added

The compiler could arrange it in such a way that in anticipation, the nodes in the tree
contain “space” to be filled out by the static analysis, for instance the type checker. Type
information is not the only information that could be added to the nodes of a syntax
trees, another one could be for nodes representing identifier or name nodes, a reference or
pointer to the relevant declaration.

By “space”, one might think of fields or instance variables in an object-oriented setting.
Fields can be seen as one way to implement what this chapter calls attributes. When
introducing attribute grammars, the notion of attribute will be a specific concept, namely
attributes in an attribute grammar. But very generally, an “attribute” means just a
“property attached to some element”. Typically here, attached to syntactic representations
of the language, in particular to nodes in a syntax tree. Since the notion of attribute is
so general, it can take very different forms (like types, data-flow information, all kinds of
extra information). Also, attributes in that sense, need not to be “attached” to abstract
syntax trees, only. For instance, data-flow information is extra information (calculated by

5 Semantic analysis
5.1 Introduction 3

data-flow analysis) not to a syntax tree, but to something called a control-flow graph. So,
since such graphs are not described by context-free grammars, and therefore, data-flow
analyses will not be described by attribute grammars.1

As a general rule of thumb what should be done in a semantic analysis phase: everything
which is possible before executing but cannot already done during lexing and parsing.
It’s the analogous rule of thumb we had before, basically saying do everything as early
as possible. Lexical analysis should be done by the lexer, using finite-state automata,
syntactic analysis is done the parser on top of that, based on (restricted forms of) context-
free grammars, and everything else afterwards, but before running the program, is semantic
analysis (and optimization based on static analysis and code generation profiting from
semantic analysis).

As said, semantic analysis is a very broad field, including many diverse techniques and
purposes (and this lecture can touch upon only some few selected ones). But if there is
one theme common to all semantic or static analyses, it’s this:

Semantic analysis is nessessarily approximative. It’s an abstraction of what
will happen at run-time.

It’s a provable fact that not everything can precisely be checked at compile-time. Things
that cannot be checked precisely is whether a division by zero will occur, or an array-out-of-
bounds error or a null pointer dereference like doing r.a, when r is null. It would be highly
welcome information, being informed by the compiler, that during run-time the program
will run into some of those troubles. One reason why it cannot be statically determined
wether a program suffers from such defects is, because it’s in general undecidable. “In
general” means that in particular cases, it can be determined, it’s only there’s no hope for
a analysis that gives precise and correct answers for all programs.

Static analysis gives only approximative results, like a warning that there might be a
division-by-zero problem, there might be an uninitialized variable, etc. Whether or not
that actually happens at run-time (and for which inputs) is not decided by the static
analysis. Note also, the exact type (in the sense of a run-time type) cannot be determined
statically either. If we look at the following code snippet

if x then 1 else ”abc” (5.1)

statically, it would be considered as ill-typed and thus rejected.2 Dynamically, i.e., when
looking at run-time types: the piece of code is of type string or int, or run-time type
error, if x turns out not to be a boolean, or if it’s null. If x happens to be true, then
the larger expression (if x then 1 else "abc") + 2 does not lead to a run-time
error. If, on the contrary, x turns out to be false, it leads probably to a type error.

The fact that one cannot precisely check everything at compile-time is due to fundamental
reasons. It’s fundamentally impossible to predict the behavior of a program (provided, the

1Besides the reason mentioned —data-flow analyses typically operate on graphs, not trees— there is a
second (but closely related) reason why DFA will in general not be done with AGs; the evaluation of
AGs on a concrete tree explicitly disallows cycles in the dependency graph (see later). DFA in the
general form definitely will have to handle cyclic situations.

2Unless some fancy behind-the-scence type conversions are done by the language (the compiler). Perhaps
print(if x then 1 else "abc") is accepted, and the integer 1 is implicitly converted to "1".

4 5 Semantic analysis
5.1 Introduction

Spec. of the lan-
guage’s static semantic

“semantical yacc”

static semantical checker

Figure 5.2: An unrealistic dream

programming language is expressive enough, i.e. Turing complete, which can be taken as
granted for all general programming languages). The “fundamental reasons” mentioned
above basically is a result of the famous halting problem. The particular version here is
a consequence of that halting problem and is known as Rice’s theorem. Actually it’s
more pessimisic than that some problems, for instance termination, are not algorithmically
solvable: Rice stipulates: all non-trivial semantic problems of a programming language
are undecidable. If it were otherwise, the halting problem would be decidable as well
(which it isn’t, end-of-proof). Note that approximative checking is doable, resp. that’s
what the SA is doing anyhow.

So compared the situation for lexing and parsing, where the problems were quite narrow
and well defined, and with established tools at hand, semantics analysis is much more
diverse. There is no single theory and specification mechanism that for “the semantic
analysis” and then generates a corresponding “semantic analyzer” (see Figure 5.2).

When saying that there is no general standard theory to cover semantic analysis, well, of
course there is the notion of context-sensitive grammars, a class of grammars more
expressive than context free grammars, while not yet as expressive as Turing machines (=
full compuation power). The notion of context-sensitive languages is sure well-defined, but
as a formalism, it’s too general, too unstructured to give much guiding light when it comes
to concrete problems being analysed, and there are many different problems one might
what to cover, targeting different kinds of defects or optimization goals, and working on
different intermediate representations.

Context-sensitive languages sure have been studied extensively, but as far a compilers are
concerned, one deals more with specialized problems. A type systems specification can
be seen a case of a context-sensitive definition, though it’s normally not formulated using
the terminology and notation from the area of context-sensitive grammars. Similar for
other common challenges. Context-sensitive grammars are just too general and unspecific
to specify specific analyses or help implementing them. Context-sensitive grammars are
not on the pensum.3

The current chapter will introduce the concept of attribute grammars. To some but
maybe lesser extent, the “criticism” about context-sensitive grammars, to be too general
or abstract to be useful applies to attribute grammars as well. They are well known
and established, but seldomly the concrete basis for a particular semantic analysis in a
compiler. Some kinds of analyses cannot be captured anyway, like those working on graphs
(like on control-flow graphs), as attribute grammars work only for trees. And even for
situations where attribute grammars would work, like type systems, most presentations

3They are covered at IFI courses in IN2080 “computation and complexity”.

5 Semantic analysis
5.1 Introduction 5

don’t bother to cast them in the terminology or notation of attribute grammars in the
same way that no one bothers to describe a type system as a very specific context-sensitive
grammar. Type systems have aspects that would make them a good fit with attribute
grammars, like involving analysing syntax trees in bottom-up and top-down manner, but,
especially when more advanced, they also have aspects that are not inherently covered
by AGs and would need to be added or grafted on top AGs anyway. So in practice one
directly addresses problems of type checking without referring to attribute grammars,
perhaps using “type-theory specific” notations and concept. We will discuss types in the
next chapter, but also will use AGs here to describe a simple “type system”, but more for
illustrating AGs rather than shed light on type systems.

We know what (context-free) grammars are, but what are attributes? According to
Merriam-Webster, it’s a “property” or characteristic feature of something. Here
we work of attribute of language constructs. More specific in this chapter: of syntactic
elements, i.e., for non-terminal and terminal nodes in syntax trees. Generally, one can
distinguish between static and dynamic attributes and the association of an attribute
with a corresponding element can be called binding. The static attributes are possible
to determined at compile time the dynamic attributes are the others.

With the concept of attribute so general, very many things can be subsumed under being
an attribute of “something”. After having a look at how attribute grammars are used for
“attribution” (or “binding” of values of some attribute to a syntactic element), we will
normally be concerned with more concrete attributes, like the type of something, or the
value (and there are many other examples). In the very general use of the word “attribute”
and “attribution” (the act of attributing something to something) is almost synonymous
with “analysis” (here semantic analysis). The analysis is concerned with figuring out the
value of some attribute one is interested in, for instance, the type of a syntactic construct.
After having done so, the result of the analysis is typically remembered (as opposed to being
calculated over and over again), but that’s for efficiency reasons. One way of remembering
attributes is in a specific data structure, for attributes of “symbols”, that kind of data
structure is known as the symbol table.

Examples of things in a compiler that could be called attributes are, as said, types (and
there are static types and run-time types) and values which are generally dynamic of
course, but in seldom cases static as well. Also the location of a variable in memory can
be seen as an attribute. That is typically dynamic as well, but in old FORTRAN, it is
static. The so-called object-code, i.e. the generated code, is static, there there exits also
the notion of dynamic loading.4

The value of an expression, as stated, is typically not a static “attribute” (for reasons
which I hope are clear). Later in this chapter, we will actually use values of expressions
as attributes. That can be done, for instance, if there are no variables mentioned in the
expressions. The values of those values typically are not known at compile-time and would
not allow to calculate the value at compile time. However, having no variables is exactly
the situation we will see later.

As a side remark: values of a variable are typically dynamic “attributes”. In some cases,
they are not, for instance if they are declared as immutable. Even with standard, i.e.,

4Aspects of memory layout, i.e., where data an code is placed in memory, will be discussed later when
dealing with run-time environments.

http://www.merriam-webster.com/dictionary/attribute

6 5 Semantic analysis
5.2 Attribute grammars

mutable variables, sometimes the compiler can figure out, that, in some situations, the
value of a variable is at some point known in advance. In that case, an optimization could
be to precompute the value and use that instead. To figure out whether or not that is the
case is typically done via data-flow analysis which operates on control-flow graphs (not
trees). These form of analyses are therefore not done via attribute grammars in general.

5.2 Attribute grammars

In a nutshell, an attribute grammar is a formalism to bind “attributes to trees”, where
trees are given by a CFG.5 There are two principle ways to calculate properties of nodes
in a tree, top-down or bottom-up. In the terminology of attribute grammars, one calls
them inherited and synthesized attributes. Attributes grammars can have both at the
same time, in which case information flows in both directions.

An attribute grammar is a CFG + attributes on grammar symbols + rules
specifing for each production, how to determine the values of attributes.

The evaluation of attributes requires some thought, especially it’s more complex, like if one
mixes bottom-up and top-down dependencies (and there are “side-ways” dependencies).

Let’s take as example the evaluation of numerical expressions, i.e., we treat the value
of expressions as their attribute. Let’s take concretely one version of the grammars for
expressions.

exp → exp + term | exp − term | term
term → term ∗ factor | factor

factor → (exp) | number

(5.2)

The goal is to evaluate a given expression, i.e., the syntax tree of an expression, resp.

specify, in terms of the grammar, how expressions are evaluated.

The grammar describes the format or shape of (syntax) trees for expressions. Evaluating
expressions is straightforward: the value of a compound expression can be calculated based
on the values of the direct subexpressions. For example the value for exp1 + exp2 is the
sum of the values for exp1 and exp2.

As stated earlier: values are generally dynamic attributes. However, in this simplistic
example of expressions, it’s statically doable, as there are no variables and no state-
change. We have seen (static) expression evaluation already before, but not in the attribute
grammar chapter. For parsing, for instance when talking about that a parser has to
calculate an AST, we used for illustration at some point a more simple task for the parser:
not to give back a tree for a parsed expression, but just evaluating an expression, giving
back an integer. It’s basically the same problem. Indeed, also for the oblig, in the provided
starting point, one example for the CUP-parser is an expression evaluator.

5Attributes in AG’s where the grammar describes syntax trees are static, obviously.

5 Semantic analysis
5.2 Attribute grammars 7

Having the action part of a grammar for expression calculate the value for expressions
can be seen as “attribuation”. Of course, also the more standard case, where the action
part of the grammar gives back an AST can be understood under the angle of attribute
grammars, with the nodes of the AST being the attribute values for the nodes of the parse
tree.

Some (mostly older and/or simpler) compilers may not do an AST first, but directly pro-
duce code when parsing, maybe intermediate code, not directly machine code. This is
known as syntax-directed translation, syntax-directed, because the code is generated
directly following the syntax tree. Doing that while parsing, in the action part of the gram-
mar used for parsing restricts what can be achieved. The parser does its thing, perhaps
working bottom-up, and the code generation has to follow that bottom-up strategy and
that limits its expressiveness; that also means, it’s seldomly done nowadays. It’s better to
generate an AST first as intermediate representation, then doing type checking, then doing
perhaps further intermediate representions, doing further analyses and optimizations, etc.
That frees the analyses (type checking, code generation and others) from following the
parse-strategy (like being one-pass, left-to-right and bottom-up in the syntax tree).

Later in this chapter we will have a short look at that situation from the attribute grammar
angle: what kind of attribute and attribute dependencies can be done if the attribute
grammar evaluation is coupled to an LR-style parsing strategy.

Coming back to the expression evaluation example: evaluating expressions is a pure
bottom-up thing: the value of a compound expression is determined by the values of sub-
expressions. In the terminology of attribute-grammars, that will correspond to synthesized
attributes (see later).

Attribute grammars is basically a formalism to specify things like that. However, gen-
eral AGs will allow more complex calculations, not just bottom up calculations as for
the expression evaluation example top-down, including both bottom-up and top-down
calculations at the same time.

The evaluation (bottom-up) can be implemented by a recursive procedure like the one
sketched in Listing 5.1. When talking about recursive procedures, we mean not just direct
recursion. Often a number of mutually recursive procedures is needed, for example, one
for factors, one for terms, etc. The use of such recursive arrangement may remind us to
the sections about top-down parsing.

As mentioned, AGs can make use of more complex “strategies”, not just pure bottom-up
or pure top-down even mixed ones exists. To evaluate the simple expressions here, as pure
bottom-up evaluation strategy works well.
eval_exp (e) =

case
: : e matches PLUSnode −>

return eval_exp (e . l e f t) + eval_term (e . r i g h t)
: : e matches MINUSnode −>

return eval_exp (e . l e f t) − eval_term (e . r i g h t)
. . .
end case

Listing 5.1: Pseudo-code for expression evaluation

8 5 Semantic analysis
5.2 Attribute grammars

Example 5.2.1 (AG for expression evaluation). Let’s spell out an attribute grammar for
the evaluation of the expression. This is shown in equation (5.3).

productions/grammar rules semantic rules
1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2 − term exp1 .val = exp2 .val − term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → (exp) factor .val = exp .val
7 factor → number factor .val = number.val

(5.3)

The left-hand side shows the productions of the expression grammar, repeating the ones
from equation (5.2). The right-hand side shows the semantics rules of the attribute
grammar. The val is the attribute, more precisely the only attribute of the non-terminals
exp, term, factor and of the terminal number. The equations define the value of the at-
tribute val for the non-terminal on the left-hand side of the grammar production in terms
of the attributes of the symbols on the right-hand side of the corresponding production
(which makes it “bottom-up”). In the first line, for instance, exp1 .val is defined as the
sum of the content of exp2 .val and term .val. Note again the (not too visible) notational
conventions: the grammar production uses “+” as symbol for the syntax of expression,
the + for the attribute grammar symbol is meant as mathematical sum operation.

The subscripts on the symbols are used for disambiguation, where needed. The equations
or rules of an attribute grammar are needed for evaluation (not just in an example), and
this example the values are numeric. The attribute grammar rules are not evaluated on
the grammar, they are evaluated on a given tree. The result of such an evaluation in our
example is shown in Figure 5.3.

exp
(val = 1302)

term
(val = 31 ∗ 42 = 1302)

term
(val = 31)

factor
(val = 31)

(exp
(val = 34 − 3 = 31)

exp
(val = 34)

term
(val = 34)

factor
(val = 34)

number
(val = 34)

− term
(val = 3)

factor
(val = 3)

number
(val = 3)

)

∗ factor
(val = 42)

number
(val = 42)

Figure 5.3: Attributed syntax tree

While the example should be clear enough, it is also quite specific and particularly simple.
Specific for this example is that there is only one attribute (for all nodes). In general,

5 Semantic analysis
5.2 Attribute grammars 9

there are different different ones possible, including that one node has multiple attributes.
Related to that is that the attribute grammar from equation (5.3) show only one semantic
rule per production. Generally, there can be multiple semantic rules. Perhaps the biggest
simplification is: as mentioned, the semantic rules here define the value of the attribute
“bottom-up” only, i.e., val is a synthesized attribute, and the attribute grammar is purely
synthesized.

The semantic rules of an attribute grammar express dependencies of the attributes from
the grammar. In general, an attribute grammar allows multiple attributes (of different
types) with multiple dependencies. Though not everything is allowed resp. makes sense; we
come to that later. Multiple dependencies are possible per grammar production leads to
the fact that one grammar production can be accompagnied by multiple semantic rules.
Basically, the only thing that is impossible for now is dependencies between attributes
across different rules. Since a semantical rule is associated with (the attributes of) one
grammar production, one simply cannot express such dependencies. Since the dependen-
cies will be evaluated not in the grammar, but in the (parse) trees formed according to
the grammar, there will for instance be no (direct) dependencies spanning “more than two
generations” (like from grandparent to grandchild), also not from “niece to nephew”.

Dependencies in the grammar are specified between the attributes of parents and
children or the other way around, or between siblings.

It’s just a consequence of the format of semantical rules, attached to the productions of
the grammar. Of course, we are talking here about direct dependencies. The value of an
attribute on a node in a corresponding tree can and typically will indirectly depend on
the values of far-away nodes. That was seen in the simple expression evaluation example:
indirectly, the value of the root node dependes on the value of all nodes, the direct and
the indirect children, with the values propagating up the tree.

Later we will see that not all AGs make sense: AGs are intended to be evaluated in trees
(not grammars), like in the simple bottom-up evaluation strategy for expression evaluation.
It’s easy two write AGs that cannot be meaningfully evaluated. More concretely:

Each attribute for all trees need to be uniquely defined. Evaluation is impossible,
if the dependencies

• contain a cycle (in one syntactically correct tree), or
• if they contain contradicting dependencies, like an attribute depending in

two different ways on others, or
• some attribute is uncovered by a dependency, and thus remains undefined.

That general wish for AGs is quite easy to state, unfortunately it’s harder to check whether
a given grammar is not defective in the discussed sense. From the mentioned criteria,
the last two (are all attributes defined, is no attribute defined twice) are easy, it’s the
acyclicity that gives headache. Therefore, one often restricts interest on subclasses of
attribute grammars, where the acyclicity condition is clearer.

The semantic rules in an attribute grammar specify ultimately dependencies between (in-
stances of) attributes in a syntax tree not between the attributes of the symbols in the

10 5 Semantic analysis
5.2 Attribute grammars

grammar as such. The corresponding dependencies are captured in the so-called attribute
dependence graph. Given an attribute grammar, there is one dependence graph per
syntax tree. Of course, different parse trees for the same grammar and attribute gram-
mar lead to dependence graphs of analogous shape, as the capture the same dependecies
between nodes as specified by the semantic rules.

Example 5.2.2 (Sample dependence graph). Figure 5.4 shows an example of an attribute
dependence graph. The graph belongs to an example we will revisit later, and we have
not shown the corresonding grammar and attribute grammar (yet). The graph is meant
to give a first impression of dependencies between attributes in a parse tree. The dashed

Figure 5.4: Sample attribute dependence graph

lines represent the tree (parse tree or AST, it does not matter). The bold arrows the
dependence graph. The attribute val (for num and base-num) is a synthesized attribute
(“bottom-up”). base is an attribute for non-terminals num and for basechar) will be
inherited (“top-down”) for num. For basechar we can see it as synthesized.6 Note that
the dependencies for num.base (which is inherited) is not strictly top-down: at the root
of the tree base at the node num depends on base of its sibling node basechar . That
still counts as synthesized. Note also the way the attributes are drawn in the picture:
base for num is depicted on the left of corresponding nodes, the other attributes to the
right. That’s a standard convention in such pictures: inherited attributes on the right,
synthesized attributes to the left.

The dependence graphs are to be evaluated, i.e. filling in values to the attributes of the
nodes of the tree. The dependence graphs specifies which attributes have to be filled before
others can be filled (because the latter depend on the former). For the given dependence
graph, Figure 5.5 shows one possible evaluation order.

There is in general more than one possible way to evaluate a dependence graph. The
numbers in the picture give one possible evaluation order.7 Generally, the rules that
say when an AG is properly done assure that all possible evaluations that respect the
dependencies give a unique value for all attributes, and the order of evaluation does not

6Actually, it’s treated as a being constant, it’s value either 10 or 8, and thus there is no real dependence
on other attributes, bottom-up or otherwise. See the attribute grammar from Figure 5.14 later.

7Evaluation order in the sense of total or linear order. The acyclic dependence graph is mathematically
an order, namely a partial order, not a total one.

5 Semantic analysis
5.2 Attribute grammars 11

Figure 5.5: Possible evaluation order

matter. Those conditions assure that each attribute instance gets a value exactly once
(which also implies there are no cycles in the dependence graph).

We will later have a closer look at what synthesized and inherited means. As we see in the
example already here, being synthesized is (in its more general form) not as simplistic as
“dependence only from attributes of children”. In the example the synthesized attribute
val depends on its inherited “sister attribute” base in most nodes. So, synthesized is not
only “strictly bottom-up”, it also goes “sideways” (from base to val). In this particular
example, the “sideways” dependence goes from inherited to synthesized only but never the
other way around. That’s fortunate, because in this way it’s clear that there are no cycles
in the dependence graph. An evaluation (see later) following this form of dependence is
“down-up”, i.e., first top-down, and afterwards bottom-up (but not then down again
etc., and especially the evaluation does not go into cycles).

Remark 5.2.3 (Nitpicking: Two-phase evaluation). Perhaps a too fine point concerning
evaluation in the example from Figure 5.4. The above explanation highlighted that the
evaluation is “phased” in first a top-down evaluation and afterwards a bottom-up phase.
Conceptually, that is correct and gives a good intuition about the design of the dependen-
cies of the attribute. Two “refinements” of that picture may be in order, though. First,
as explained later, a dependence graph does not represent one possible evaluation (so it
makes no real sense in speaking of “the” evaluation of the given graph, if we think of
the edges as individual steps). The graph denotes which values need to be present before
another value can be determined.

Secondly, and related to that: It’s not strictly true that all inherited depenencies are eval-
uated before all synthesized. “Conceptually” they are, in a way, but there is an amount of
“independence” or “parallelism” possible. In Figure 5.5, which depicts one of many possi-
ble evaluation orders, shows that, for example, step 8 is filling an inherited attribute, and
that comes after 6 which deals with an synthesized one. But both steps are independent,
so they could as well be done the other way around. So, the picture “first top-down, then
bottom-up” is conceptually correct and a good intuition, it needs some fine-tuning when
talking about when an indivdual step-by-step evaluation is done.

12 5 Semantic analysis
5.2 Attribute grammars

General AGs allow bascially all kinds of dependencies. That allows to specify complex at-
tribute dependence graphs, including ones impossible to meaningfully evaluate. Typically
one works with restricted forms of dependencies. That can be done fine-grained, per
attribute, or coarse-grained, for the whole attribute grammar.

Informally, synthesized attributes are those that have bottom-up dependencies,
only, (with same-node dependency allowed). Inherited attributes have top-down
dependencies only (with same-node and sibling dependencies allowed).

The classification in inherited = top-down and synthesized = bottom-up is a general
guiding light. The discussion about the previous figures showed that there might be some
fine-points like that “sideways” dependencies are acceptable, not only strictly bottom-up
dependencies.

5.2.1 Synthesized and inherited attributes

In principle, both terminals and non-terminals can carry attributes. When talking about
synthesized and inherited attributes, the two most important “restrictions” on attributes,
it’s “either-or”, an attribute cannot be both (per symbol).

Later we will say something about attributes on terminals whether they should be con-
sidered synthesized or inherited, both views exists and there are arguments for either
standpoint. Attributes are typed, and one can have different types in the same grammar
(like one attribute is for integer values and the other one for booleans). That’s not a big
deal and later, we don’t bother mentioning types when defining attribute grammers, since,
as said, it is really no big deal. In the examples, we may or may not use attributes of
different types. If one does so, it goes without saying that the semantic rules must honor
the types.

All of that is a bit of a side show (and straightforward). Not a side show is the distinction
between synthesied and inherited attributes. Attributes of an AG are cleanly split into
the synthesized ones and the inherited ones. The split is “per symbol”. One may stumble
upon presentations that divide ‘the attributes globally into those two categories. Actu-
ally, it makes no difference. It’s more like how one “thinks” of attributes. For example,
the illustration earlier made use of “the” attribute val, in the nodes or non-terminals
basenum and num. So it’s a question of whether one thinks basenum.val and num.val
are the “same” attribute (called val) or not. We consider them as different attributes, it’s
about attributes at a particular symbol and ultimately at a particular node in the parse
tree. What matters is that it would be principally ok, if num.val were synthesized and
basenum.val inherited or the other way around. But per symbol it must be “either-or”.
In practice, one finds more cases that one works with an attribute representing some con-
cept, like val representing the numeric value of some expression, and then it’s natural
and plausible, that val is of the same nature —synthesized vs. inherited— in different
symbols and nodes (and of the same type). And therefore it’s also natural to think of for
instance of num.val and basenum.val as being the “same” attribute. Conceptually, at
least they are, insofar they represent “the value of a tree node”

5 Semantic analysis
5.2 Attribute grammars 13

To split the attributes so that an attribute is not both inherited and synthesized (at a
symbol) is necessary. An attribute both inherited and synthesized would be covered
by more than one rule, one specifying its value with information coming from basically
“above”, treating the attribute as inherited, and another rule treating it as synthesized
with information coming from basically “below”.

But each attribute occurrence has to be covered by exactly one rule, not by two,
which would be contradictory, nor by zero rules, which would leave the attribute
undefined.

We later will have later a second look at the the latter remark that ever attribute occur-
rence has to be covered by at least one rule. That will be done in the context for attributes
for terminals, elaborating on some fine points there.

5.2.2 Semantic rules and their format

Adding attributes to a context-free grammar, split in synthesized and inherited ones, is
one thing. The core of an attribute grammar are the rules, specifying how the attributes
obtain their values depending of the values of other attributes.

The general abstract form for of the rules is shown in equation (5.4), just saying that an
attribute obtains it values depending on other variables, and the functional dependence is
expressed by f in the equation. Let’s call a the target attribute or target variable of the
constraint (5.4), and the a⃗ the source variables or source attributes.

a = f (⃗a) . (5.4)

That’s of course very non-descript, not even mentioning a context-free grammar. More
concretely, the semantic rules are “attached” to the productions of a context-free grammar
and the variables a and ai in equation (5.4) refer to occurrences of attributes belonging to
the symbols in the production.

Ultimately, attribute evaluation takes place in trees. The productions of the grammar are
used to describe the tree and, when using a particular production, the parent node in the
tree corresponds to the non-terminal symbol on the left-hand side of the production, and
the children correspond to the symbols on the right-hand side. So far, so clear from the
chapters about grammars and parsing.

Since the rules are connected to the attributes of individual rules, the specified direct
dependencies are between parents and children, also between “siblings”, but not further
across “generations”, like a direct dependency of a grandparent node’s attribute from
those of grandchildren. Indirect dependencies of course are of course a different story. For
instance, in the expression evaluation examples from before, the value of the root node
depends on all the nodes below.

So, as explained, the attributes mentioned in a semantic rule all need to refer to attribute
occurences in the production to which the semantic rules belongs to. Another requirement,

14 5 Semantic analysis
5.2 Attribute grammars

that restricts the rule format in connection with the split of the attributes in synthesized
and inherited ones and in connection with the target attribute a in equation (5.4).

This requirement is illustrated in Figures 5.7a and 5.7b. The picture makes use of a
convention that draws inherited attributes positioned to the left of the node, and the
synthesized ones to the right (see Figure 5.6).

X

tree nodeinherited synthesized

Figure 5.6: Pictorial convention

Note that in the previous example discussing the dependence graph with attributes base
and val was of this format and followed this convention, showing the inherited attribute
base (for num and digit, but not for base-char) on the left, the synthesized val on the
right (see Figure 5.4).

The inherited resp. synthesized attribute in question is in Figures 5.7a and 5.7b the one
the dependency arrows point to, the “target”.

A

X1 X2 X3

(a) Inherited

A

X1 X2 X3

(b) Synthesized

Figure 5.7: Format of semantic rules

Note that in the previous example discussing the dependence graph with attributes base
and val was of this format and followed the convention: show the inherited base on the
left, the synthesized val on the right.

That’s the core of attribute grammars and of inherited and synthesized attributes: as far
as their use as target in the semantical rules are concerned, inherited attributes belong
to symbols on the right-hand side of productions, synthesized attributes to the symbols
on the left-hand side. The same is given more formulaically in equations (5.6) and (5.7),
where we assume a production of the following form:

A → X1 . . . , X, . . . Xn (5.5)

X.i = f(A.a, X1.b1, . . . , X.b, . . . Xn.bn) (5.6)
A.s = f(A.b, X1.b1, . . . Xn.bk) (5.7)

5 Semantic analysis
5.2 Attribute grammars 15

The rule format forbids particular uses inherited and synthesized attributes as targets of
semantic rules. For the sources of semantic rules, on the other hand, no restriction apply,
at least not in the general definition of attribute grammars.

Often, one prefers to also impose restructions on the source variables, as well. This
is known as Bochmann’s normal form of attribute grammars. It’s actually not a real
restriction. An attribute grammar can straightforwardly be transformed into that form, if
wanted. The general form introduced is quite general, and often one is better off putting
more structure on the rules. Also keep in mind that, to make sense, the attribute grammar
must avoid cyclic dependencies in syntax trees. The format so far does not even try to rule
out the most obvious cycles. It even allows an attribute occurence in a symbol directly
depend on itself, in a form of direct recursion. That’s not drawn directly in the figures,
the pictures would get too crowded with arrows. But, as said, the core definition does not
impose any restriction on the use of source attributes. That’s what Bochman’s form does
additionally and it is shown schemantically in Figures 5.8a and 5.8b.

X2

A

X1 X3

(a) Inherited

A

X1 X2 X3

(b) Synthesized

Figure 5.8: Additional source restrictions

The pictures show typical ways how one makes use inherited and synthesized attributes
in practical situations. For instance, an inherited attribute of a child node depends on an
inherited attribute of the parent. Often that’s the “same” attribute, like in a situation,
where, say X2 in the picture is A again. That leads to an overall top-down flow of
information. We seen that pattern for instance for the attribute base in the non-terminal
num in the earlier example. Conversely, synthesized attribute depends in particular on
the “same” synthesized attribute(s) of children nodes, leading to an bottom-up flow of
dependencies.

In both cases, the source attribute is not allowed to depend on an attribute of the same
kind “in the same generation”, i.e., the same level in the tree. As far as the same generation
is concered, inherited attributes can depend only synthesized ones, and vice versa. And
across generations, it’s the opposite: inherited one can depend on inherited ones, and
synthesized on synthesized ones.

That rules out the most obvious instances of cycles, like direct recursive dependencies.
However, it does not exclude indirect cycles, like a synthesized variable depends on an
inheriated one in the same node, which in turn depends on said synthesized one. So, also
the additional restrictions do not guarantee that the attribute grammar makes sense. That
was also not to be expected: we said that any AG can be transformed in an equivalent one
in Bochmann form, but that transformation cannot turn a meaningless one (with cycles)
to one that makes sense. Still, it’s a useful and conventional format.

16 5 Semantic analysis
5.2 Attribute grammars

Generally guaranteeing acyclicity

Checking a given grammar for acyclicity is a tricky thing, i.e. computationally complex.
That applies also for grammars under the discussed additional source variable restriction.
The complexity comes from the fact that acyclicity is required for the dependency graph of
all trees formed according to the grammar (and there are infinitely many in all reasonable
grammars). Checking for acyclicity or a given tree, on the other hand, is straightfor-
ward. It can be solved by so-called topological sorting (and algorithm which is covered by
beginners’ courses on algorithms and data structures).

5.2.3 Special forms of attribute grammars

A general acyclicity check for attribute grammars is doable, the problem is decidable, but
it’s mostly not a route taken when working with attribute grammars in a compiler. It’s
computationally too costly and one is better off to impose further restrictions on
the rule format that straightforwardly guarantee acyclicity; no need for some advanced
and expensive checking then. We touch upon 2 such forms. There are more, but those are
the most prominent and the simplest ones, especially the first one.

S-attributed grammar

Indeed, it cannot get much simpler than the first one. It says: the grammar uses syn-
thesized attributes only. That format is known as S-attributed grammar. For a
grammar in Bochmann form, that immediately and obviously rules out cycles, as all de-
pendency edges go strictly upwards, no “horizontal” dependencies. So, that’s the simplest,
cleanest and prototypical situation for information being synthesized: The information at
a parent node depends on the information at the children nodes and on children node
information, only. It’s so simple that we don’t bother to illustrate it with a schematic
picture.

L-attributed grammar

The second format is a bit more complex; in particular it does not completely rule out
inherited attributes. The motivation for that form comes that it can be integrated into
parsing, i.e., used during parsing.

The dependencies for an L-attributed grammars are such that they can be evaluated
by a depth-first, left-to-right traversal of the (parse) tree. The allowed dependencies for
inherited attributes are illustrated in Figure 5.9. It should be stressed, that L-attributed
grammars do allow synthesized attributes. We only show a picture covering the specific
restrictions for inherited attributes. Note also: For source attributes from the parent node
A, only inherited attributes are allowed. For the source attributes from Xi, both inherited
and synthesized attributes are allowed, but only coming “from the left”.

5 Semantic analysis
5.2 Attribute grammars 17

A

X1 X2 X3 Xn

. . .

Figure 5.9: L-attributed grammar

As said, dependencies can be evaluated in a top-down, depth-first (and left-to-right) traver-
sal. This form of traversal can straightforwardly be integrated in a top-down parser, like
a recursive descent parser.

Bottom-up parsing builds the parse tree in a bottom-up manner with it’s shift- and reduce-
steps. That fits well with synthesized attributes, but less well with inherited attributes.
Actually, it hardly fits with inherited attibutes with their top-down flow of information.
However, the general definition of inherited attributes does allows horizontal dependencies
where the information flows sideways, for instance from sibling to sibling.

However, as shown in Figure 5.9, L-attributed grammars allow clearly at top-down de-
pendence between inherited attributes. That seems to say that those attribute grammars
cannot be used for LR-parsers. Actually, it’s possible to integrate it into the way a shift-
reduce parser works, but it’s more complex than for top-down parsers. We don’t dig
deeper here, and how that can be done is outside the pensum.

5.2.4 More formal definitions

We have covered attribute grammars mostly with words, pictures, and some simplified
formulas. Later there will also be (more) examples for illustration. Still, for completeness’
sake and for reference, let’s also nail down the corresponding definitions shortly, without
discussing them further.

Definition 5.2.4 (Attibute grammar). An attribute grammar is a triple (G, (Attr i, Attrs), R),
where G is a context-free grammar. The functions Attr i and Attrs associate to each
grammar symbol X a set Attr i(X) of inherited attributes and Attrs(X) of synthesized
attributes, with Attr i(X) ∩ Attrs(X) = ∅. The set Attr = ⋃

Attr(X) is the overall set of
attributes. The form of the semantic rules R will be defined below.

Definition 5.2.5 (Attibute occurence). A production X0 → X1 . . . Xn has an attribute
occurrence Xi.a iff a ∈ Attr(Xi), for some 0 ≤ i ≤ n.

Definition 5.2.6 (Rule format). Given a production p of the form X0 → X1, . . . Xn, then
a finite set of semantic rules Rp is associated with p, with constraints of the form

Xi.a = f(x1, . . . , xk) (5.8)

where either

1. i = 0 and a ∈ Attrs(Xi)

18 5 Semantic analysis
5.2 Attribute grammars

2. for i ≥ 1 and a ∈ Attr i(Xi),

for each xj is an attribute occurrence in p. For Rp, there is exactly one such constraint
for each synthesized attribute of X0, and exactly one such constraint for each inherited
attribute for all inherited attributes for all Xi (with 1 ≤ i ≤ n).

Definition 5.2.7 (Additional restriction (Bochmann normal form)). Assume a semantic
rule

y0 = f(y1, . . . , yk) (5.9)

in Rr where y0 = Xi.a for a production p of the form

X0 → X1 . . . Xn .

Each attribute occurrence yj with 1 ≤ j ≤ k is of the form Xl.b where either

1. l = 0 and b ∈ Attr i(Xi), or
2. 1 ≤ l ≤ k and b ∈ Attrs(Xi)

Definition 5.2.8 (S-attributed grammar). An attribute grammar is S-attributed if all
attributes are synthesized.

The last definition is often used explicitly or implicitly assuming Bochman’s normal form.
Only in that case, the S-attribution restriction guarantees acyclicity, which is the pur-
pose.

Definition 5.2.9 (L-attributed grammar). An attribute grammar for attributes a1, . . . , ak

is L-attributed, if for each inherited attribute aj and each grammar rule

X0 → X1X2 . . . Xn ,

the associated equations for aj are all of the form

Xi.aj = fij(X0 .⃗a, X1 .⃗a . . . Xi−1 .⃗a) .

where additionally for X0 .⃗a, only inherited attributes are allowed.

Remark 5.2.10 (A word on terminals). The definitions and rule formats did not make
a distinction between terminals and non-terminals. So, if we allow that terminals carry
attributes whose value is specified by an attribute grammar, then that implies that the
attributes of terminals are necessarily and uniformely inherited, since terminals can only
occur on the right-hand side of a production.

That’s clear enough, and that’s also how the classical definitions of attribute grammar
deals with the issue. There is nothing wrong with that, all what has been said works fine
for terminals and non-terminals alike.

However, some more modern presentations deviate from that, counting the attributes of
terminals as synthesized. Or at least allowing also synthesized attributes. That of course

5 Semantic analysis
5.2 Attribute grammars 19

contradicts the classical rule format which would insist: terminals can occur only on the
right-hand side of a production, they cannot be anything else than inherited.

Looking, however, at which roles terminals of a grammar play in a parser, we see other
aspects that factor in. The terminals in a grammar correspond to tokens, which often
consists of a token class and a token value. Take for instance a familar situation of, say
numbers, covered by a terminal, say, num. Concretely, the lexer hands over to the parser
not just the token class, but also a corresponding value, an integer. That integer can
also be seen as the value of an attribute of that leaf node of the syntax tree, concrete or
otherwise. This value or attribute may play a role in an analysis based on or inspired by
attribute grammars. But that does not change the fact that the value of the attribute is
not defined and calculated by the attribute grammar.

Conceptually, the value comes from “outside” the attribute grammar (injected from the
lexer and behaving as if it were a constant in a given tree.) That fits with treating it
as synthesized (at least when following the Bochmann format). As leaf node, a terminal
has no children. That means, its attributes cannot depend on anything because there are
no nodes below, and that means it has to be a constant value in the sense of not being
provided by the attribute grammar evaluation mechanism.

Still other presentations may say, only non-terminals can have synthesized and inherited
attributes, and attributes of terminals are somehow of a third kind (filled by the lexer).
At any rate, it’s a corner case of the framwork, and actually an unproblematic one. I just
want to point out, that one may find contradicting information about the issue, depending
on where one looks, but it’s inessential.

5.2.5 Some examples of attribute grammars

Let’s look at a quite simple example, evaluating a string of digits into a number.

Example 5.2.11 (Evaluating a sequence of digits). Consider the following grammar:

number → numberdigit | digit
digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

(5.10)

As attributes we use the following

number val
digit val
terminals [none]

They are used as synthesized attributes.8 Figure 5.10a shows the attribute grammar and
Figure 5.10b the attributed tree for the string 345.

8Or as synthesized attribute, if one like to consider val as one attribute, not two, one for the resp.
non-terminal.

20 5 Semantic analysis
5.2 Attribute grammars

(a) Attribute grammar (b) Attributed tree

Figure 5.10

Remark 5.2.12. In practice, evaluation or conversion as shown in the example is typ-
ically done by the scanner already, and the way it’s normally done is relying on pro-
vided functions of the implementing programming language (all languages will support
such conversion functions, either built-in or in some libraries). For instance in Java,
one could use the method valueOf(String s), for instance used as static method
Integer.valueOf("900") of the class of integers. Obviously, not everything done by
an AG can be done already by the scanner. But this particular example used as warm-
up is so simple that it could be done by the scanner, and that where’s it’s done mostly
anyway.

The attribute evaluation works in trees, and we don’t distinguish here much between
abstract syntax trees or parse trees (or any other form of trees, for that matter). If
the attribute grammar is used to specify some analysis that is done direct after parsing,
then it’s done of course on the AST. Also, whether the grammar is ambiguous or not is
irrelevant.

Example 5.2.13 (Expression evaluation). Let’s look at the following grammar for expres-
sion. It’s an ambiguous grammar, but, as said, that’s irrelevant for what we are doing.

exp → exp + exp | exp − exp | exp ∗ exp | (exp) | number (5.11)

The attribute grammar and an attributed tree are shown in Figure 5.11a and 5.11b.

Alternatively: The grammar is not meant as describing the syntax for the parser, it’s
meant as grammar describing nice and clean ASTs for an underlying, potentially less nice
grammar used for parsing. Remember: grammars describe trees, and one can use (E)BNF
to describe ASTs.

Another thing one may want when analysing a syntax tree is an AST. That is done in the
next example.

5 Semantic analysis
5.2 Attribute grammars 21

(a) Attribute grammar (b) Attributed tree

Figure 5.11

Exercise 5.2.14 (Expressions and generating ASTs). Let’s use the following variation of
a grammar for expressions

exp → exp + term | exp − term | term
term → term ∗ factor | factor

factor → (exp) | number

(5.12)

As attributes, we use tree for the non-terminals exp, term, and factor . For number we
use lexval as attribute.

(a) Attribute grammar (b) “AST”

Figure 5.12: Attribute grammar to get an AST

The AST looks a bit bloated. That’s because the grammar was massaged in such a
way that precedences and associativities during parsing are dealt with properly. The the

22 5 Semantic analysis
5.2 Attribute grammars

grammar is describing more a parse tree rather than an AST, which often would be less
verbose. But the AG formalisms itself does not care about what the grammar describes (a
grammar used for parsing or a grammar describing the abstract syntax), it does especially
not care if the grammar is ambiguous.

One prominent example of static analysis is type checking. The next example shows quite
simple type discipline of typing involving type declarations. The example is interesting
not so much in that it shows a realistic type system, but in that it illustrates inherited
attributes. The examples so far where only working with synthesized attributes.

Example 5.2.15 (Type declarations for variable lists). Consider the following grammar:

decl → type var-list
type → int
type → float

var-list1 → id, var-list2
var-list → id

(5.13)

The goal is to attribute type information to the syntax tree. As attribute we use dtype,
with values integer and real. As is typical for some situations involving types, the cor-
responding information flow is “top-down”, i.e., it involved synthesize attributes when
describing the type discipline with attribute grammars. Here, a type declared for a list
of varariables is inherited to the elements of the list. Concerning dtype: There are thus
2 different attribute values. Obviously we don’t mean “the attribute dtype has integer
values”, like 0, 1, 2, . . . The attribute for id and var-list is inherited, but there is also

grammar productions semantic rules
decl → type var-list var-list .dtype = type .dtype
type → int type .dtype = integer
type → float type .dtype = real

var-list1 → id, var-list2 id.dtype = var-list1 .dtype
var-list2 .dtype = var-list1 .dtype

var-list → id id.dtype = var-list .dtype

Table 5.1: Types and variable lists: inherited attributes

synthesized use of attribute type .dtype.

The dependencies are (for the variable lists) in such a way that the attribute of a later
element in the list depends on an earlier; in other words, the type information propagates
from left to right through the “list”. Seen as a tree, that means, the information propagates
top-down in the tree.

That can be seen in the (quite small) example from equation (5.14): the type information
(there float) propagates down the right-branch of the tree, which corresponds to the list
of two variables x and y.

float id(x), id(y) (5.14)

5 Semantic analysis
5.2 Attribute grammars 23

The attributed tree and the dependence graph are shown in Figures 5.13a and 5.13b.

(a) Attributed syntax tree (b) Dependence graph

Figure 5.13: Variable lists and types

The next examples is about digits and numbers. Remember Example 5.2.11 showing how
to evaluate numbers in decimal notation) evaluation. That was done using a synthesized
attributes. The following example now generalizes that to numbers with decimal and octal
notation.

Example 5.2.16 (Based numbers, octal & decimal). Consider the following grammar

based-num → num base-char
base-char → o
base-char → d

num → num digit
num → digit
digit → 0
digit → 1

. . .
digit → 7
digit → 8
digit → 9

(5.15)

It specifies sequences of digits, followed by the letter o or d, indicated

The based numbers example are a rather well-known example for illustrating both syn-
thesized and inherited attributed. Well-known insofar that they are covered in many
text-books talking about AGs. The fact that the problem involves both inherited and
synthesized aspects can easily be seen intuitively: if one wants to evaluate such a number,
one would do that left-to-right (which corresponds to top-down), however, the evaluation
does not yet know how to calculate until it has seen the last piece of information, the
specification of what number system to use (decimal or octal). The piece of information
has to be calculated resp. carried along “in the opposite direction”.

One could say, however, the notation is designed silly in a way: it’s like having a compressed
or encrypted file, and then putting the kind of meta-information how to interpret the data
not into the header, where it would belong, but at the end. . .

24 5 Semantic analysis
5.2 Attribute grammars

As attributes for the example, based-num .val and base-char .base are synthesized. For
the terminal numnum .val, is synthesized and num .base inherited. Finally, digit .val is
synthesized.

Note that 8 and 9 are no octal characters, which means the attribute val may get as value
an “error”. The corresponding attribute grammar is shown in Figure 5.14.

Figure 5.14: Attribute grammar

As mentioned, the evaluation can lead to errors insofar that for base-8 numbers, the
characters 8 and 9 are not allowed. Technically, to be a proper attribute grammar, a
value need to be attached to each attribute instance for each tree. If we would take that
serious, it required that we had to give back an “error” value, as can be seen in the code
of the semantic rules. If we take that even more seriously, it would mean that the “type”
of the val attribute is not just integers, but integers or an error value.

In a practical implementation, one would rather operate with exceptions, to achieve the
same. Technically, an exception is not a ordinary value which is given back, but inter-
rupts the standard control-flow as well. That kind of programming convenience is outside
the (purely functional/equational) framework of AGs, and therefore, the given semantic
rules deal the extra error value explicitly and evaluation propagate errors explicitly; since
the errors occur during the “calculation phase”, i.e., when dealing with the synthesized
attribute, an error is propagated upwards the tree.

Figures 5.16a and 5.16b show the dependence graph and a possible evaluation order. We
have seen the same figures already earlier, we used them without the formal background
and without even showing the attribute grammar (in Figures 5.4 and 5.5).

5 Semantic analysis
5.2 Attribute grammars 25

Figure 5.15: Attributed syntax tree (octal)

(a) Dependence graph (b) Possible evaluation order

Figure 5.16: Octal and decimal based numbers

5.2.6 Evaluation of dependence graphs

The evaluation order must respect the edges in the dependence graph. That also implies
that cycles must be avoided, i.e., the dependence graph has to be a (directed) acyclic graph
(DAG). A DAG is not a tree, but a generalization thereof. It may have more than one
“root” (like a forest), also: “shared descendents” are allowed, but no cycles. Equivalently
one can say, the dependence graph represents partial order. It’s a well-known fact than any
partial order can be linearized (i.e., turned into a total or linear order). The corresponding
algorithm or method, perhaps known from the lecture “Algorithms and Data Structures”
is called topological sorting.

The leaves of the dependence graph (not necessarily attributes of leaves of the syntax
tree) are attributes whose values don’t depend on other attributes. So, their values must
be somehow “given”. Attributes of terminal symbols, i.e., attributes of leaves of the syntax
tree are often of that kind. Note, however, that not all attributes of terminal nodes are
like that. See for instance the situation in the dependence graph of Figure 5.16a.

26 5 Semantic analysis
5.2 Attribute grammars

As we know, terminals correspond in a parse tree to tokens if they carry token values,
those are handed over from the lexer. If so, it’s natural so see the information as attribute
of the terminal node, and the token value as the attribute value, provided from outside
of the attribute grammar, namely given as part of the parse tree, originally provided by
the lexer, when looking at the larger picture. Whether one qualifies those attributes as
synthesized or otherwise, is not so relevant. See also the discussion from Remark 5.2.10.

The remarks about attributes and terminals and the role of the lexer describes typical
situations. For the based numbers from Example 5.2.16, however, that’s not the case.
Each individual digit 0 . . . 9 is a token in itself and carries no token value. More typical
in a real parser is that the token is number or similar, and it carries the number a token
value. Note also that in the previous example, the terminals have neither token values nor
do they have attributes.

Now, back to the question of how to evaluation of parse trees. Given an acyclic depen-
dence graph, it’s trivial. The complex part of the evaluation is to make sure that the
attribute grammar leads to acyclic dependence graph (and we don’t dig into that prob-
lem). Assume that we somehow know that the dependence graphs are all acyclic, one can
do the evaluation in the following “naive” approach, called the parse tree method:

linearize the given partial order into a total order (using topological sorting) and
then simply evaluate the equations following that linear order.

That works only, if all dependence graphs of the AG are acyclic. That is decidable for
given AG, but computationally expensive9 Therefore, the parse-tree method is not often
done. What is more often done in practice is:

don’t work with general AGs but restrict yourself to subclasses, like S-attributed
grammars or L-attributed grammars (see Definitions 5.2.8 and 5.2.9).

Of course, acyclicity checking for a given dependence graph is straightforward, (e.g., using
topological sorting), computationally complex is to check it for all syntax trees.

Let’s summarize the intention impose restrictions on the general form of attribute gram-
mars.

One needs the semantic rules which result in a unique and well-defined evalu-
ation for all trees and all attributes.

Generally, all attributes are either inherited or else synthesized10. All attributes must
actually be defined by exactly one rule. More presicely, it must be guaranteed in that
for every grammar production, all synthesized attributes (on the left) are defined, that all
inherited attributes (on the right) are defined, and loops are generally forbidden. It must
be guaranteed, that each attribute in any parse tree is defined, and defined only one time
(i.e., uniquely defined).

• X.⃗a: short-hand for X.a1 . . . X.ak

9On the other hand: the check needs to be done only once.
10In the previous example, base-char .base (synthesized) considered different from num .base (inherited)

5 Semantic analysis
5.2 Attribute grammars 27

• Note: S-attributed grammar ⇒ L-attributed grammar

Nowadays, doing it on-the-fly is perhaps not the most important design criterion.

28 Bibliography
Bibliography

Bibliography

[1] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

Index
Index 29

Index

abstract syntax tree, 2
acyclic graph, 26
approximation, 3
attribute, 5
attribute dependence graph, 9
attribute grammar, 1, 2, 6

binding, 2, 5

context-sensitive grammar, 4

DAG, 25, 26
data-flow analysis, 2, 5
dependence graph, 25
directed acyclic graph, 26

evaluation order, 25

grammar
attribute, 6
context-sensitive, 4

graph
cycle, 26

halting problem, 3

intermediate code, 2
intermediate representation, 2

linear order, 26

partial order, 26
precomputation, 5

Rice’s theorem, 3

semantic rule, 2
semantics analysis, 1
static analysis, 1
syntax-directed translation, 7

topological sorting, 26
total order, 26
trees, 1
Turing completeness, 3
type, 2

variable
mutable, 5

	Contents
	Semantic analysis
	Introduction
	Overview on attribute grammars

	Attribute grammars
	Synthesized and inherited attributes
	Semantic rules
	Special forms of attribute grammars
	More formal definitions
	Some examples of attribute grammars
	Evaluation of dependence graphs

