
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2024

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

6 Symbol tables 1
6.1 Introduction . 1
6.2 Symbol table design and interface . 3
6.3 Implementing symbol tables . 5

6.3.1 Hash tables . 6
6.4 Block-structure, scoping, binding, name-space organization 11

6.4.1 Block-structured scoping with chained symbol tables 11
6.4.2 Lexical scoping & beyond . 11
6.4.3 Same-level declarations . 12
6.4.4 Recursive declarations/definitions . 15
6.4.5 Static vs. dynamic scope and binding 16

6.5 Symbol tables as attributes in an AG . 21
6.5.1 Expressions and declarations: grammar 22

6 Symbol tables 1

6
Symbol tables
Chapter

What
is it

about?Learning Targets of this Chapter
1. symbol table data structure
2. design and implementation choices
3. how to deal with scopes
4. connection to attribute grammars

Contents

6.1 Introduction 1
6.2 Symbol table design and in-

terface 3
6.3 Implementing symbol tables . 5
6.4 Block-structure, scoping,

binding, name-space organi-
zation 11

6.5 Symbol tables as attributes
in an AG 21

6.1 Introduction

Symbol tables are a quite central data structure in all compilers. When discussing the
architecture of a compiler and how different phases hang together and build upon each
other, the symbol table was shown as being used across different phase. It can be seen
as a “data base” or repository shared between the phases. It’s general and very abstract
purpose is to associate attributes or properties to syntactic elements, like names and
symbols. (identifiers, symbols).1 When analyzing the program, during some phases in
the compiler, that involves determining some information relating to syntactic elements.
Information like that is often needed more than once, also perhaps in different phases. So
there is, as often, a trade-off: Storing the information, once calculated, costs memory, not
storing it, but recalculating it on demand, costs time.

Most often, the decision is a no-brainer: storing the associated information is better.
But there are different ways how to store data, of course. If we take for instance type
information, in particular the type for variables or symbols as declared in the program
code, one could store that in the abstract syntax tree. Indeed, the abstract syntax tree
might contain that information in some form. If there is a variable declaration piece of
syntax, it will be part of the AST as a node containing the name of the variable and a
node carrying information about the type. The syntax tree thereby contains information

1Remember the (general) notion of “attribute” when discussing attribute grammars.

2 6 Symbol tables
6.1 Introduction

in its structure that associates the name of symbol with its type.2 Keeping that association
inside the AST, in the corresponding node for the variable declaration, however, is however
not the best way of realizing that that binding, for more than one reason.

Determining the declared type of the variable will happen more than once and searching
the AST to figure it out over and over again is inefficient. The AST is simply not an
appropriate data structure to store and look-up associations like that of a variable name
or symbol with its type. Another reason is: when proceeding with the compilation through
the various phases, the abstract syntax tree may not be around forever. The AST is handed
over from the parser to next phase, which could be the type checker. The type checker
then traverses the tree and checks whether the syntactically correct AST is also well-typed.
But at a later stage, the compiler will no longer work with the AST (or a type-annotated
AST), but with other intermediate representations, for instance control-flow graphs and/or
intermediate code, and at that point the AST will be forgotten. For instance, types of
variables will still be needed for the run-time environment and code generation, as the
types will influence the size and the “layout” of the memory needed (and thus how to
access the corresponding bits it in terms of memory addresses). That is quite later in the
compiler where the association between variable names and types is still needed. So even
if one wanted, the later phases cannot consult the AST to look-up for information stored
in the tree.3

So there are good reasons to externalize the associations between names and symbols
and information of interest (like types, but there is other information as well) in a data
structure tailor-made for efficient storing and looking-up that association, and that is
shared between multiple phases in the compilation process. Inside a compiler that data
structure is the symbol table. Of course, there will be a point in the later phases or
maybe only the very last phase, when variable names (or other names) have “disappeared”
as abstraction to refer to memory, at which point also the symbol table has outlived its
usefulness and the compiler will do the last finishing steps working only with addresses.

The discussion focused on binding variable names to types, where the binding is estab-
lished by the variable’s (type) declaration. Of course, there are other named entities in a
compiler, which can be declared. That includes constants, procedures, functions, types,
classes etc. All of them are introduced at some point, declared and defined, and most
cases given a name4, and then used at some other places by referring to them by name.

Also, types are not the only kind of information that a compiler might associate to names.
There can be many different ones for different purposes. One obvious one may be the
address of the named entity (like the address of a piece of memory for some piece of data,
or the start address of the code implementing a function).

2At least that’s the case for languages, that insist that when introducing a variable, the programmer
needs at the same time mention the static type of the variable. Java is an example for that. There
are however languages that don’t require that, but the type system tries to figure out the type itself.
That’s known as type reconstruction or type inference.

3Of course if one made the decision not to use a symbol-table but use the AST to contain the association,
then one would feel forced to keep the AST around. But it would be clumsy.

4There might also be things like anonymous functions and classes etc. for which there is no name, at
least no name at the user syntax level. But also those entities will have to be analyzed treated and one
needs to remember information about those as well.

6 Symbol tables
6.2 Symbol table design and interface 3

So: do I need a symbol table? In theory, alternatives exists; in practice, yes, symbol
tables is the way to go; most compilers do use symbol tables. Most often (and in our
course), the symbol table is set up once, containing all the symbols that occur in a given
program, and then, the semantic analyses (type checking, etc.) update the table accord-
ingly. The symbol table are “static” in that they are part of the compiler, but not the
run-time system. There are also some languages, which allow “manipulation” of symbol
tables at run time (Racket is one (formerly PLT scheme)).

To summarize, the core functionality of a symbol table are to store and retrieve association
of information and symbols or identifiers in a compiler. Of course, there are different
well-known ways of realizing an appropriate data structure. Section 6.2 discusses issues
concerning the design and interface of a symbol table and Section 6.3 sketches aspects of
its implementation.

6.2 Symbol table design and interface

It’s helpful to think about the interface of a data structure separate from its implemen-
tation, i.e., to treat the symbol table as abstract data type. Very roughly, a symbol
table is “nothing else” than a lookup-table or dictionary, associating “keys” with “values”.
In particular, names (identifiers, symbols) are the keys, and the “attribute(s)” are the
associated values. Such a data structure offers two core functions:

insert for adding a new binding and lookup retrieve

Of course besides that, there will be more, for instance creating a new empty dictionary
or symbol table. In particular, the particularities of organizing names (in scopes and
namespaces, and local variables) in the implemented programming language influences
the design of the data structure and its interface. So, the symbol table date structure is
more complex than a simple dictionary, but that’s the core.

Names and identifiers in a language are an abstraction: If a variables refers to a piece
of data, it’s an abstraction of an address in some part of the memory. It’s an abstraction
in that it hides to the programmer low-level details of where in memory the data resides.
Of course this abstraction has to be realized by the compiler, resp. the compiler writer.
We will discuss issues surrounding that in the chapter about run-time environments. The
abstractions offered by identifiers can be complex. A language may offer different and
differently structured name spaces, there typically will be scopes (and scoping and naming
rules for variables may be different from those for, say, classes, etc.).

That means, there is not one single “flat” name space for all kinds of names. Consequently,
a symbol table is typically not just a “flat” dictionary, neither conceptually nor the way
it’s implemented. Scoping is something that complicates the design of the symbol table.
To be able to capture things like scopes, the symbol table may explicitly or implicitly offer
functionality to delete or hide bindings for instance with an explicit delete, besides the
core functionality of adding and look-up bindings mentioned above. In general the nature
of the implemented language influences the design and interface of the symbol table (and
also the choice of implementation).

https://racket-lang.org/

4 6 Symbol tables
6.2 Symbol table design and interface

It should also be clear from the context of the discussion: when we speak of the value of
an attribute we typically don’t mean the ultimate run-time value of the symbol, like the
concrete integer run-time value of an expression. The value of an attribute is meant in
the “meta”-way, the value that the analysis attaches to the entity, for instance its type, its
address, etc. (and only in rather rare cases, its run-time level value). The situation is the
same as for attribute grammars and indeed, symbol tables can be seen as a data structure
realizing “attributes”.

The attached information, though, is mostly semantic in nature. After all, in the current
phase, we have left the syntactic analysis phase behind us, the parser, and doing semantic
analysis. For instance, when attaching a type like integer to a symbol, it is a semantic
value, it carries semantic infomation. It’s a static abstraction of the possible concrete
semantic values that can be stored at run-time in the corresponding variable (and where
the value may of course change in an imperative language).

To realize the symbol table, there are two main philosophies. One is realizing it in tradi-
tional table(s), in one central repository (or more), separate from the AST, supporting in
its interface functions like lookup(name), insert(name, decl), and delete(name) (and addi-
tionally more or refined functionality). The lookup and delete is used for declarations and
when entering exiting blocks of lexical scopes.

Alternatively, one can maintain the declarations and bindings in the AST. That implies
that doing a look-up results in a tree search. The insert and delete functionality mentioned
before could be realized implict, i.e., a binding may or may not exists at some point
depending on the relative positioning in the tree. Of course there is the question of (lack
of) efficiency, we commented on that earlier on the disadvantages of using the AST to
contain binding information. But in special cases it may be an option or has been an
option, for instance, for representing names of classes in the class hierarchy of object-
oriented languages. And indeed, optimizations exists, for instance using a “redundant”
extra table outside the AST, similar to the traditional ST, so to avoid to actually searching
through the syntax tree.

Language often have different “name spaces”. Even a relatively old-school language like
C has 4 different name spaces for identifiers. There are different kinds of identifiers, and
different rules (for instance wrt. scoping) apply to them. One way to arrange them could
be to have different symbol tables, one specially for each name space. Later we will also
have the situation (but not caused by different kinds of identifiers), where the symbol
table is arranged in such a way that smaller symbol tables (per scope) are linked together
where a symbol table of a “surrounding” scope points to a symbol table representing a
scope nested deeper. One might see that as having “many” symbol tables, but maybe
that’s misleading. It’s more an internal representation with a linked structure, but that
data structure containing many individiual table is better seen conceptually as one symbol
table (the symbol table of the language), but one with a complex behavior reflecting the
lexical scoping of the language. Actually, whether or not one implements it in chaining up
a bunch of individual hash tables or similar structures or doing a different representation,
is a design choice, both realizing the same external behavior at the interface. In that
spirit, also the remark that C has 4 different name spaces (which is true) and therefore a
C compiler may make use of 4 symbol tables is a matter of how one sees (and implements)

6 Symbol tables
6.3 Implementing symbol tables 5

it: one may as well see and implement it as one symbol table (with 4 different kinds of
identifiers which are treated differently).

6.3 Implementing symbol tables

This section touches upon suitable data structures to implement symbol tables. There
are of course different ways to implement such data structures, like dictionaries or look-
up tables, etc. It can be based on (simple) association lists or maybe trees, and there
are many different forms of suitable trees, including balanced versions like AVL-trees and
B-trees, red-black trees, binary-search trees, etc. One also has the choice of functional
vs. imperative implementations of corresponding data structures (which influences the
interface). Often, the structures underlying symbol tables are hash tables. A careful
choice of the data structure influences the efficiency of the compiler. In particular and
as mentioned, the structure of the symbol table(s) is influenced by the implemented lan-
guage’s scoping rules (resp. the structure of the name space in general) etc.5 As far
as data structures are concerned, we will mostly focus on hash-tables, without actually
going much into details of hash-table techniques, focusing more on how hash-tables are ar-
ranged to reflect aspects such as scoping regimes. We will talk about about scoping later,
but here already some examples of block-structured languages. For instance, Listing 6.7
shows blocks in C (but very many languages have block structured lexical scope, together
with other scoping mechanisms): there are two declarations of the variable i, one in the
outer block and one in the inner. Information associated with “the” variable called i is
actually referring to two different pieces of data, with different information associated.
Coincidentally, the type information here is identical, both times it’s an integer, but in
general this and other attached information depends on where in the code the variable is
mentioned. It’s context-sensitive information, not context-free . . . Anyway, the symbol-
table(s), for instance the hash-table(s) must arrange for that, associating the correct and
relevant information depending on the different places in the syntax tree.

{ int i ; . . . ; double d ;
void p (. . .) ;
{

int i ;
. . .

}
int j ;
. . .

Listing 6.1: Nested block with lexical scope in C

Blocks also exists in non-programming languages, as shown in the small LATEX and TEX
codes. LATEX and TEX are chosen for easy trying out the result oneself (assuming that
most people have easy access to LATEX and by implication, TEX).6

5Also the language used for implementation (and the availability of libraries therein) may play a role.
6TEX is the underlying “core” on which LATEX is put on top. There are other formats on top of TEX (texi

is another one; texi is involved, for instance, type setting the pdf version of the Compila language
specification).

6 6 Symbol tables
6.3 Implementing symbol tables

\def\x{a}
{

\def\x{b}
\x

}
\x
\bye

Listing 6.2: TEX

\ documentclass { a r t i c l e }
\newcommand{\x}{a}
\ begin {document}
\x
{\renewcommand{\x}{b}

\x
}
\x
\end{document}

Listing 6.3: LATEX

6.3.1 Hash tables

Hash tables are a classical and common implementation for symbol tables. It’s a generic
term itself, and different forms of hash tables exists. The sections here are not intended as
an introduction to hash tables and advanced techniques in that area. A beginner’s course
impressionistic familiarity with hash tables is sufficient as we don’t focus on the internals
of those, but on how to arrange them (or other data structure) to reflect aspects such
as scoping in a language. Though, one internal implementation detail we touch upon,
that’s the difference between hash-tables using separate chaining vs. those using open
addressing.

Side remark 6.3.1 (Hash-table terminology). There exists alternative terminology (cf.
probably mentioned in IN2010 resp. INF2220 in the older numbering scheme, the algo-
rithms & data structures lecture). In older versions of the lecture, separate chaining was
discussed under open hashing (never versions —I checked only 2023— seem to use the term
separate chaining as this script). A method that is related to open addressing is discussed
in A&D as linear probing (or in older version of that lecture closed hashing). It’s
confusing, but that’s how it is, and it’s just words.

{
int temp ;
int j ;
real i ;
void s i z e (. . . .) {

{
. . . .

}
}

}

Listing 6.4: Declarations of variables and
procedures

Let’s look at the simple code snippet from Listing 6.4. The picture on the right illustrates
a possible arrangement based on hash tables. It illustrates one basic fact about hash-table
as underlying data structure for dictionaries. Namely the fact that there can be hash
conflicts. In the example, it’s assumed that there is such a hash-conflict between the
identifiers size and j. A hash conflict means, when applying the chosen hash-function

6 Symbol tables
6.3 Implementing symbol tables 7

onto two keys (here the two identifiers or symbols), the resulting hash values are identical.
That’s the conflict. One design of hash tables deals with the situation by arranging entries
of conflicting hashes into a linked list. That’s what is illustrated here and that techniques
is called separate chaining.

Conventionally, the compiler would treat the program from beginning to the end, which
means it would enter the information about j before doing the same for size. It is, in
that situation of a linked list, plausible that, after adding both pieces of information in a
linked list arrangement, the size, being entered last, appears at the head of the list.

We also see that the identifiers for integer variables i, j, etc. are treated the same way
as those for procedures (here size). In particular they are added to the same symbol
table. There is nothing wrong with that, but, as mentioned before, sometimes identifiers
are grouped in different name spaces or, in general, the use of names is generally more
complex, so one may choose to handle things with different symbol tables (for different
purposes of classes of identifiers etc.)

Scopes are typically arranged in blocks. One speaks of block-structured scopes and
block-structured programming languages. It’s actually a pretty old concept, it seriously
started with ALGOL60 and almost no language has just one flat, global scope, at least
not for variables. A block refers to some lexical “region” in the program code. It’s often
explicitly delimited by special keywords, like { and } or BEGIN and END or similar. For
instance the body of a procedure is typically one block. Blocks organize and structure the
scope of declarations. In particular, scopes can be nested.

One also speaks about the scope of a variable (or more generally of a name). In most
languages often names are introduced by being declared (and defined). If one makes
the distinction between declaration and definition, the declaration of the name refers to
introducing it, often by specifying its type. That can be done in some languages without
also assigning a value to in, which leads to a situation where, when running the program,
a variable is undefined (“nil-pointer”) or has a default value (or an unspecified value). If
one introduces a variable inside a block, the scope of that variable typically is not all of the
block, but more precisely the part of the block starting from the point when the variable
is declared till the end of the block.

Languages allow typically having the “same” variable declared more than once, like first
defined in some block, but then again in a nested block. Also there could be two separate
blocks or scopes each using the same variable name. Some languages allow the same
variable be declared twice in the same block (though not all).

Anyway, because of that, it’s actually imprecise to speak about the scope of a variable, say
x. It’s more precise to speak about the scope of a declaration of a variable or a particular
occurrence of the variable in the code. In the same way, one should not even think of those
situations as that the “same” variable is declared and it’s not “multiple” declarations of
one variable. It’s different variables that are being declared at different places, they just
happen to carry the same name, and they occur in different portions of the program code.
In particular, a local variable declared in one procedure is not “the same” local variable in
a different procedure.7 And scoping scoping rules of a language allows such declarations

7Unless, one procedure is declared inside the other, which leads to a situation with nested scope, and the
variable in question is declared in the outer procedure, and not also declared in the nested one.

8 6 Symbol tables
6.3 Implementing symbol tables

with the same name in a meaningful and structured manner.

We mentioned that when introducing a variable or name in a block, the scope of that
variable is typically “the rest of that block”, so the declaration starts, so to say, the
scope of that declaration. It corresponds to a “introduce-before-use” discipline. The
point of introduction of declaration of a variable is typically the point where the name or
symbol and associated information, for instance its type is entered to the symbol table.
A occurrence of the variable in the scope, where the variable is used (for instance for
purpose of type checking) is where the symbol table is consulted for looking up associated
information, for instance the type.

So far so good, but that picture does not cover all situations resp. languages. One is that
not all naming disciplines fall under the “introduce-before-use” discipline. For instance,
classes in Java are names that are defined without any specific order. That’s particularly
visible for public classes, where classes are separate files in some file system without any
order. It makes no sense to speak about that to use an instance of a class resp. its methods
in some piece of course requires that the class and its methods have to be defined first.
Likewise there is no order between methods inside a class, so it does not matter which one
is written first.8

Likewise, the “introduce-before-use” scheme make not sense when dealing with mutual
recursion: If one has, say to procedures, and one calls the other and the other one calls
the first, then one cannot assume that a function needs to be fully introduced before one
can called it the program code (and of course what’s been said about classes methods in
Java means, mutual recursion of methods or call backs are perfectly fine).

Listing 6.5 shows an example of nested blocks in C (similar to the example from before)
and Listing 6.6 an example in Pascal.

8As far as classes in Java are concerned, it makes not sense to separate declaration and definition. Writing
down a class introduces its name at the same time that the code of its implementation is fixed. Of
course one could work with classes and interfaces, where classes implement interface. One could see
the interface as “declaration” and a class implementing the interface as definition (which is often a
recommended style). But of course the class and the interface must have different names, so it’s not
really a comparable situation.

6 Symbol tables
6.3 Implementing symbol tables 9

int i , j ;

int f (int s i z e)
{ char i , temp ;

. . .
{ double j ;

. .
}
. . .
{ char ∗ j ;

. . .
}

}

Listing 6.5: Nested blocks with lexical
scope (in C)

program Ex ;
var i , j : integer

function f (s i z e : integer) : integer ;
var i , temp : char ;

procedure g ;
var j : real ;
begin

. . .
end ;
procedure h ;
var j : ^char ;
begin

. . .
end ;

begin (∗ f ' s body ∗)
. . .

end ;
begin (∗ main program ∗)

. . .
end .

Listing 6.6: Nested procedures in Pascal

The Pascal-example shows a more complex situation and shows a feature of Pascal, which
is not supported by C, namely nested declarations of functions or procedures. As
far as scoping and the discussion at the current point in the lecture is concerned, that’s
not a big issue: just that concerning names for variables, C and Pascal allow nested blocks,
but for names representing functions or procedures, Pascal offers more freedom.

The scoping rules of a programming language influences the design and implementation of
a language’s symbol table, that’s a general message here.As preview for a later chapter, we
will see how scoping also influences the design of the so-called run-time environments.
Also in that part, we will discuss how the run-time environments for Pascal are more
complex than those for C. And scoping regimes more complex than that of Pascal add
even more complexity for symbol tables and in particular to the run-time environment.

(a) (b) (c)

Figure 6.1: Nested blocks and separate chaining

The three pictures from Figure 6.1 correspond to three “points” inside the C program
from above. The first one after entering the scope of function f. When saying “entering”,
it’s not meant at run-time when calling the function, it’s meant when the analysis starts
processing the body of the procedure. Inside the body of the function (immediately after
entering), the two local variables are available, and of course also the formal parameter
temp, which can be seen as a local variable, as well. At that point, the global variable i
of type int is no longer “visible” or accessible, any reference to i will refer to the local
variable i at that point.

10 6 Symbol tables
6.3 Implementing symbol tables

Upon entering the first nested local scope, a second variable j is entered (making the global
variable j inaccessible). That situation is not shown in the pictures. New, when leaving
the mentioned scope, one way of dealing with the situation is that the additional second
j of type double is removed from the hash-table again (shortening the corresponding
linked chain). What is shown is a situation inside the second nested scope with another
variable j (now a char pointer). Since the first nested local scope has been left at that
point, the corresponding j “has become history”, and the hash table of the third picture
only contains the global j variable (which is inaccessible) and the now relevant second
local j variable.
lookup (string n) {

k = current , surrounding block
do // search for n in d e c l for block k ;

k = k . s l // one n e s t i n g l e v e l up
until found or k == none

}

Listing 6.7: Using the syntax tree for lookup following (static links)

The notion of static link will be discussed later, in connection with the so-called run-time
system and the run-time stack. There we go into more details, but the idea is the same
as here: find a way to “locate” the relevant scope. If scopes are nested, connect them via
some “parent pointer”, and that pointer is known as static link (again, different names
exists for that, unfortunately).

Alternative representation

• arrangement different from 1 table with stack-organized external chaining
• each block with its own hash table.
• standard hashing within each block
• static links to link the block levels
⇒ “tree-of-hash-tables”
• AKA: sheaf-of-tables or chained symbol tables representation

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 11

Figure 6.2: Alternative representation (see Listing 6.5)

Note that the current scope and the most nested one is at the left-hand side of the table,
and the static-link always points to the (uniquely determined) surrounding scope (if any).
The scope on the right-hand side is global scope.

One may more generally say for this representation: it’s one symbol table per block, as
this form of organization can generally be done for symbol tables data structures where
hash tables is just one of many possible data structure to implement look-up tables.

6.4 Block-structure, scoping, binding, name-space organization

In this section, we shortly have a look of blocks and scoping, mostly lexical scoping. The
concept of scopes is probably known from other lectures (and for from experience with
programming languages), and we discuss some aspects in connection with symbol tables.

6.4.1 Block-structured scoping with chained symbol tables

• remember the interface
• look-up: following the static link (as seen)
• Enter a block

– create new (empty) symbol table
– set static link from there to the “old” (= previously current) one
– set the current block to the newly created one

• at exit
– move the current block one level up
– note: no deletion of bindings, just made inaccessible

As mentioned in the previous section: The notion of static links will be encountered later
again when dealing with run-time environments and for analogous purposes: identifying
lexical scopes in “block-structured” languages.

6.4.2 Lexical scoping & beyond

As mentioned, block-structured lexical scoping is central in many programming languages
(ever since ALGOL60 . . .), but other scoping mechanisms exist (and exist side-by-side).
One is of course dynamic binding, which we will explore later in the context of run-time
environments.

12 6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization

But there are also variations on the theme used for instance in many object-oriented lan-
guage. Let’s take C++as example. There, so called member functions (think “methods”...)
are declared inside a class, but defined outside. The class name can be seen a name of a
scope. Still: method are supposed to be able to access names defined in the scope of the
class definition (i.e., other members, and that’s done using this).

class A {
. . . int f () ; . . . // member func t i on

}

A : : f () {} // de f . o f f `` in ' ' A

Listing 6.8: C++ class and member function

class A {
int f () { . . . } ;
boolean b ;
void h () { . . . } ;

}

Listing 6.9: Java analogon

scope resolution in C++

• class name introduces a name for the scope9 (not only in C++)
• scope resolution operator ::
• allows to explicitly refer to a “scope”’

• to implement
– such flexibility,
– also for remote access like a.f()

• declarations are kept separately for each block (e.g. one hash table per class, record,
etc., appropriately chained up).

6.4.3 Same-level declarations

Declarations of entities (variables, procedures, classes . . .) occur inside one scope. Global
declarations can be considered to occur in one surrounding global scope. One scope
contains normally multiple declarations. Characteristic for declarations in nested blocks is
that inside the inner scope, the declarations take precedence over those in the surrounding
block, should there be declarations using the same name. It’s always the closest declaration
(in terms on the nesting structure of scopes) that counts, as explained. In the following
we discuss how to treat same-level declarations inside one scope, focusing mainly on two
alternatives: sequential or simultaneous (or collateral).

9Besides that, class names themselves are subject to scoping themselves, of course . . .

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 13

Multiple declarations of the same name

Before we look at those two alternatives, let’s discuss other aspects concerning same-level
declarations. One is how to treat multiple declarations of the same identifier at the same
level. Like in the situation in Listing 6.19, where i is used for an integer variable as well
as name of a type.
typedef int i
int i ;

Listing 6.10: Same level declarations

One simple way is to simply forbid it :-) For instance in C, it’s (largely) forbidden; it’s a
bit more complex there, distinguishing between declarations, declarations combined with
definitions, tentative declarations . . . , but it’s not relevant for us. Forbidding multiple
declarations or definitions is also the solution followed in the compila24 language of the
oblig. That can of course be easily achieved: Before using the insert procedure to add a
binding, one simply checks first (with, say, lookup) whether such a binding for the name
exists already.

But one can also allow it. The declarations show up in the block in some textual order,
and then the convention is that a declaration make a previous one with the same name
inaccessible. It’s as if a new nested scope is introduced implicitly which starts at the new
declaration and lasts till the end of the “official” surrounding scope.

Those treatments can be more involved or fine-grained. For instance how to handle mul-
tiple declarations using the same identifier, but concerning different kinds of language
elements. Like declaring a variable and a procedure with the same name, declaring a
variables and introducing a type with the same name etc. Again, one could forbid such
practice, or at least partially, for simplicity. It may even be that the language would not
even allow to write multiple declarations of that kind, because of lexical conventions of the
language. For instance, names of types have to start with a capital letter and variables
have to start with a lower case letter. So already the lexer (together with the parser)
makes it impossible to declare a variable and a type with the same name.

As a side remark: When one wishes, for instance to distinguish variables names from
function names, one has to take into account what the programming language actually
supports when programming with variables and functions. In many languages, variables
are variables and functions are functions. However, there is the concept of function vari-
ables. In particular, in functional languages, there is no differences between functions
and (other values). Consequently there is no difference conceptually between names for
“conventional” values like integers, and function abstractions, which counts among values
as well. So corresponding names would live in the same name space.

Sequential vs. simultaneous (or collateral) declarations

Now to the distinction illustrated in the following with a number of examples (in different
languages). Many languages insist when using a name, the name must be declared, one
cannot use undeclared names. Often it means, one need to declare something before one

14 6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization

can use it. “Before” means roughly earlier in the program text, but only roughly so, since
there is also the issue of scopes. Being declared in an earlier line in the program does not
mean one can make use of the declared variable until the last line of the program, since
the scope may not cover the code till then end of course. Like a local variable inside a
function or a method of course can be referred to only inside the function or method body,
not forever after being locally declared.

But inside one flat scope, some declarations appear earlier than others, and there is a clear
notion of “before” and “after” as we assume a same-level situation inside one scope.

If one declares one item after the other, then it’s natural that, what is declared first can
be used in subsequent declarations. That is clearly a sequential form of declarations and
corresponds to a declare-before-use pattern.

Alternatively, declarations can be treated as occurring all at the same time. This is
called a collateral or simultaneous form of declarations. In a setting like that, the
declaration occurring second can make use of what’s been declared first in the code, and
also vice versa. That allows mutually recursive declarations and definitions. Thus, it’s
a quite important form of declaration.

Also when defining, for instance, a function using direct recursion (not just indirect), there
is the aspect of simultaneousness. Then defining resp. declaring the function, the body of
the function already mentions the function, which is “currently” being introduced. That’s
the very nature of a recursion definition.

Listing 6.11 shows a sequential way of declarations (and definitions) in C. The variable i
is declared and defined twice; for simplicity, let’s call it just “defined twice” (C would allow
declarations also without assigning a value at the same time, hence the distinction).

The second definition is still in the same scope, but not at the same level. Therefore, it’s
two different variables (both called i) residing at different locations in memory. The first
one in the global, static part of the memory, the second one on the stack. Indeed, the local
variable can exists in multiple incarnations at run-time, in different activation records (or
stack frames) of the procedure. We will have a closer look at that in the chapter about
run-time environments. Now to the real point of Listing 6.11, the sequential treatment of
definitions, namely those at the local level of the function. Being sequential, the definition
of j refers to the prior local definition of i, which means j obtains the value 3.
int i = 1 ;
void f (void)

{ int i = 2 , j = i +1,
. . .

}

Listing 6.11: Sequential declarations in C

Simultaneous or collateral definitions work differently. See for instance the example from
Listing 6.12 (in ocaml). The example is comparable to the one in C (though without
making use procedure-local definitions). The simultaneous declarations of (the second
mentioning of) i and of j is indicated by the keyword and. The first definition of i
and the simultaneous definitions of i and j are treated sequentially, as in the C-example.
Since the second i and the j are defined simultaneously in the second line (but after the

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 15

definition from the first line), the j uses the value of i from before, and thus j is defined
to contain 2.
let i = 1 ; ;
let i = 2 and j = i +1; ;

p r int_int (j) ; ;

Listing 6.12: Simultaneous declarations in ocaml/ML

Finally, two examples in Scheme (Listing 6.13 and 6.14). The default construction with
let does simultaneous definitions (though it cannot be used for recursive procedure defi-
nitions). If one wants sequential definition, Scheme also supports let*.

(let ((x 0))
(let ((x 42) (y x))

(d i s p l a y y))) ; ; "0"

Listing 6.13: Simultaneous (in Scheme)

(let ((x 0))
(let ∗ ((x 42) (y x))

(d i s p l a y y))) ; ; "42"

Listing 6.14: Sequential (in Scheme)

6.4.4 Recursive declarations/definitions

Recursive definitions and declarations are important and common. Functions, procedures,
and methods are often defined recursively; via direct recursion or via indirect or mutual
recursion. Recursion can also happen at type level. For instance, the order in which
classes are introduced in a program does not play a role. This means, a definition of one
class, say C1, can mention a second class C2, when defining its members, declaring their
types, and conversely, the definition of C2 can do the same, mentioning C1. So there is no
“order” between the classes. At least not an order in the sense discussed here (sequential);
there may be an inheritance order between classes, but that’s a different issue. In Java,
each public class resides in its own source code file, already for that reason, there is no
order between their definition in terms of their mentioning in some lines of code.

Back to functions or procedures: Listings 6.15 and 6.16 illustrate direct resp. indirection
recursive definitions.

int gcd (int n , int m) {
i f (m == 0) return n ;
else return gcd (m, n % m) ;

}

Listing 6.15: Direct recursion in a function
definition

void f (void) {
. . . g () . . . }

void g (void) {
. . . f () . . . }

Listing 6.16: Indirect recursion in a func-
tion definition

As discussed, a recursive definition is connected with the simultaneous treatment of dec-
larations. For direction recursion, as in the gcd example, it simply means that when the
body of the gcd function is treated, information about the gcd, like declaring its input
and output types must already been available, i.e. entered into the symbol table. That’s
not a big deal; the procedure header is mentioned (and can be treated) before the body
anyway. So that feels more like a sequential situation anyway. As an aside: that it can
be treated in a sequential manner is also helped by the fact that the procedure header

16 6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization

declares the types of the two formal parameters explicitly to be integers, as well as the
return type. In a language, which allowed the programmer to leave out those explicit type
declarations, things would get more involved.

But mutual recursive situations one really needs to treat the definitions as simultaneous.
Languages primarily working with sequential declarations (or slightly old-fashioned lan-
guages) may resort to some “tricks” resp. expect some assistance from the programmer.
For instance, in the Example from Listing 6.16, the compiler may insist on a little help
from the programmer to add crucial type information about g before f. So g is “declared”
first which does not require mentioning f, then f is (declared and) defined, and finally, g
is defined in a way consistent with its (and f’s) declaration. This is sometimes called a
prototype (which I think is not a good terminology, because prototypes can mean other
things as well).
void g (void) ; /∗ func t ion pro to type d e c l . ∗/

void f (void) {
. . . g () . . . }

void g (void) {
. . . f () . . . }

Listing 6.17: Indirect recursion in a function definition (prototype)

In Pascal, an analogous mechanism is known as forward declaration. Other languages
would treat all function definitions (inside a block, inside a module, or similar) as (poten-
tially) mutually recursive. The compiler will figure it out without being alerted by special
forward syntax. Still other languages use special syntax for simultaneous definitions which
is used for mutually recursive function definitions. Go is a language that allows recursion
without requiring special syntax or help from the user, ocaml and some other functional
languages use special syntax. We have seen the use of and earlier already.

package main

func f (x int) (int) {
return g (x) +1

}
func g (x int) (int) {

return f (x) −1
}
func main () {

f (0)
}

Listing 6.18: Mutal recursion (Go)

let rec f (x : i n t) : i n t =
g (x+1)

and g (x : i n t) : i n t =
f (x +1) ; ;

Listing 6.19: Mutal recursion (ocaml)

6.4.5 Static vs. dynamic scope and binding

So far we have focused on languages with block-structured lexical scope, simultaneous
definitions or otherwise. Later, in the chapter about run-time environments, we will
likewise focus on how memory for lexical or static bindings is arranged. That focus is
justified in that the concept of lexical, nested scopes is central. It does not mean lexical
scopes are the only way. An alternative to static (or lexical) scoping is, not surprisingly,
dynamic scoping. Connected to that is are the concepts of static vs. dynamic binding;

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 17

bindings occur within a scope. When scopes are nested, a binding “belongs” to more than
one scope.

We will discuss the issue of static vs. dynamic binding mostly with examples involving
variables occurring in blocks of scopes. The question of static vs. dynamic binding also
occurs elsewhere, for instance in class-based object-oriented languages like Java, methods
are dynamically bound as def, and the dynamicity of the binding is wrt. “blocks” in which
the methods are mentioned. We will have a look at dynamic method binding on object-
oriented languages as well later.

C is a language (one of many) with static scopes. Let’s have a look at Listing 6.20.
#include <s t d i o . h>

int i = 1 ;
void f (void) {

p r i n t f ("%d\n " , i) ;
}

void main (void) {
int i = 2 ;
f () ;
return 0 ;

}

Listing 6.20: Static scoping in C

The code contains two definitions of i, a global one and one local to main. The use of
i in f’s body refers to the global instance of i, since f is defined on the global level.
Additionally, the definition of i is done sequentially before f and the body of f does
not contain a local (re-)definition of i that would overshadow the global one. That’s the
situation concerning the definition of f. Now to the use of f. It’s called only one time,
inside main and in a scope that works with a local definition of i. When executing f, to
which declaration does the printed i binds to, which is the relevant scope for it?

Under static binding, relevant is the scope where “statically” the function is defined, its
static scope (in this example the global one). What is printed therefore is 1, of course.

Dynamic binding (for variable i again) is illustrated in Figure 6.21. In this example, the
assignment inside Q affects the variable i as introduced in line 4, since this is the relevant
scope in which Q is called. The procedure Q is called only once in the example. If there
were different calls originating from inside different scopes, different i’s may be affected.
For static scoping, which i is meant is statically fixed from the place where the function
is defined.

1 void Y () {
2 int i ;
3 void P() {
4 int i ;
5 . . . ;
6 Q() ;
7 }
8 void Q(){
9 . . . ;

10 i := 5 ; // which i i s meant?
11 }
12 . . . ;
13

18 6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization

14 P() ;
15 . . . ;
16 }

Listing 6.21: Dynamic scoping (pseudo code)

Let’s look at some non-pseudo code examples. Let’s take TEXor LATEX. Those are more
domain-specific languages rather than general purpose languages; though TEX allows
loops, conditionals etc., so those languages are actually Turing complete. Also it’s clearly
a compiler, translating some textual source language into some output format, like dvi,
ps, or pdf.

TEX and LATEXalso make use of scopes; one does not have to work with one global scope.
In the examples from Listing 6.22 and 6.23, the beginning and the end of an inner scope is
marked by { and } (there are other ways to obtain scopes in LATEX, but it’s unimportant
for us). Both examples basically the same (using the slightly different syntax of TEX and
LATEX). What happens is very easy to check by invoking TEX or LATEX and check the
generated output, say pdf.

Again, it’s very easy to check by invoking TEX or LATEX, or firing off emacs and evaluate
the lisp snippet in a buffer, for instance.

\def\ a s t r i n g {a1}
\def\x{\ a s t r i n g }
\x
{

\def\ a s t r i n g {a2}
\x

}
\x
\bye

Listing 6.22: Dynamic binding (TEX)

\ documentclass { a r t i c l e }
\newcommand{\ a s t r i n g }{ a1}
\newcommand{\x}{\ a s t r i n g }
\begin{document}
\x
{

\renewcommand{\ a s t r i n g }{ a2}
\x

}
\x
\end{document}

Listing 6.23: Dynamic binding (LATEX)

The next illustration uses Lisp, in particular, emacs lisp. If one has access to emacs, the
examples are easy to run and check, simply firing off emacs and evaluate the lisp snippet
in a buffer. Emacs Lisp is one well-known Lisp-dialect based on dynamic scoping, though
as of emacs version 24, also lexical scoping is supported. It is probably not a coincidence,
that the key person behind emacs is Richard Stallman, the “last true hacker” from the
MIT school of hackers. McCarthy and Minsky were also at the MIT (earlier pioneers than
Stallman), and McCarthy is central behind Lisp, and actually also coined the term AI
(MIT was the focal point of early AI). For emacs, Stallman is central in kicking it off,
hacking its initial versions (with others), mentoring it through many years and giving a
spiritual (or ideological?) background as part of the larger free software movement.

The are many lisp dialects, emacs lisp just one of theme. Another important one is Scheme,
actually Scheme was the first one (or at least the first significant and most prominent one)
with static or lexical scoping. Originally, Lisp used dynamic binding. Lisp was way ahead
of its time, actually revolutionary (higher-order functions, reflection, garbage collection),
one should not forget that it was conceived (and implemented!) in the 50ies (at MIT).
Now, resource requirements for Lisp stretched the hardware and compiler concepts of those

6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization 19

days. Note that the very earliest machines did not even have hardware support for stack
pointers (Burroughs machines at the beginning of the 60ies where the first that pioneered
that) which made even recursion (which uses stack) a costly luxury. And Lisp supported
higher-order functions from the start. It took some time (and conceptual and hardware
advances) until major lexically-scoped variant of Lisp could establish itself (known as
Scheme). Scheme also supports dynamic scoping (though frowns upon it). More “classic”
Lisp dialects (like Common Lisp) also support lexical scoping besides dynamically scoping
in the meantime.
(setq a s t r i n g " a1 ") ; ; " assignment "
(defun x () a s t r i n g) ; ; d e f i n e " v a r i a b l e " x "
(x) ; ; read va lue
(let ((a s t r i n g " a2 "))

(x))

Listing 6.24: Dynamic binding in elisp

To round off the discussion, let’s go back to static binding and point something out that
probably should be clear anyway, but it can’t hurt to rub it in. As said, in static binding,
it’s the static scope “that counts”, where a variables has been declared. But it’s not about
the original value. A value may change, and as far as the value is concerned, static binding
does not mean, when used inside a function, for instance as in a situation as in Listing
6.20, that it’s the original value that counts. Static binding refers to the association of a
variable with a memory location or address, not the association with a particular value.

Listing 6.25 illustrates that, in this case using Go, not C. Both languages use static binding
of variables. As shown in the example, unlike C, Go supports nested function definitions.
package main
import (" fmt ")

var f = func () {
var x = 0
var g = func () { fmt . P r i n t f (" x = %v " , x)}
x = x + 1

{
var x = 40 // l o c a l v a r i a b l e
g ()
fmt . P r i n t f (" x = %v " , x)}

}
func main () {

f ()
}

Listing 6.25: Static binding and mutating values (in Go)

The value of x printed in the body of g is 1, not 0 which is the value at the point when
g is defined. Overall, what is printed is x = 1 x = 40.

Maintaining lexical binding can become challenging. The Example from Listing 6.26
basically does the same as the previous one: static binding and changing the value (the
latter part, however, changing the value is not central to the purpose of the example).
package main
import (" fmt ")

var f = func () (func (int) int) {

20 6 Symbol tables
6.4 Block-structure, scoping, binding, name-space organization

var x = 40 // l o c a l v a r i a b l e
var g = func (y int) int { // nes ted func t i on

return x + 1
}
x = x+1 // update x
return g // func t ion as re turn va lue

}

func main () {
var x = 0
var h = f ()
fmt . P r i n t l n (x)
var r = h (4)
fmt . P r i n t f (" r = %v " , r)

}

Listing 6.26: Static binding and higher-order functions (in Go)

It is more complex than the previous one in that it not just use nested function definitions,
but makes use of higher-order functions. That’s another feature supported by Go, but
not by C. It does not change what static-binding means, it just makes it harder for the
compiler to achieve. We will discuss that in slightly more detail in the chapter about run-
time environments. Here we just point out what is responsible for the complications

As said, the example uses higher-order functions. In particular, the function f gives back
some function, namely the function g, and not only that: function g is defined inside f, in
particular, g is defined inside the scope of f. And finally, the nested function g refers to
x, which is also defined inside f. Now the problem is that the scope of f lives longer than
the body of f itself. In many languages, one important part of the RTE is the run-time
stack, or call stack. It turns out, that in situations like the ones illustrated here, a stack
is no longer good enough for providing lexical scoping f.

At any rate, lexical scoping in the example results that r = 42 is printed.

Overloading

If one want to allow that different, say, functions or variables carry the same name when
declared at the same level, one could use the type system (and the parser) to distinguish
one from the other. The parser may factor in that some uses of function names may be
syntactically forbidden for variable names and/or vice versa. Like call f (x) may, in
some language be syntactically allowed only if f is the name of a function and x the
name of a variable. So therefore also call f (f) may be tractable, with two kinds of
f declared at the same level (though it’s probably ill-advised to exploit that freedom).

Such “dual-use” (or multiple-use) of names is also called overloading. Outside of compilers,
for instance in writing technical texts, it’s called abuse of notation. And, to awaken the
reader’s attention to an forthcoming such abuse, it’s sometimes introduced with the words
“in abuse of notation”. Like “in abuse of notation, let n and m refer to nodes in control-
flow graph”, with the abuse warning because perhaps n and m had, in the text, so far be
conventionally used for natural numbers. For the time being, the text re-uses the notation
for nodes, hoping the reader can figure it out. Perhaps the writer would not just write n1,
n2, or nj referring to different nodes, but even using nn, referring to the n’th node using
both interpretations of n in the same scope (i.e., chapter or section, hoping the reader

6 Symbol tables
6.5 Symbol tables as attributes in an AG 21

can figure out which is which). This is a situation comparable to the call f(f) in a
programming language, where the compiler may have no problems to figure out which is
which (and likewise not recommended).

Often, this overloading in written technical text is avoid by using different “alphabets”
or indeed different portions of alphabets or conventions (like the roman alphabet abc . . .
vs. αβγ . . . or abc vs. ABC and x, y, z at the end of the latin alphabet for variables and
a, b, c . . . from the beginning for constants. In this script we also use other typographic
conventions (bold-facing etc.) to help disambiguation to some extent.

In programming languages as well as in texts a certain amount of overloading occurs,
sometimes even unnoticed and not every overload situation will be introduced with an
abuse-warning; it’s often clear enough anyway. A modest and careful use of overloading
can help understanding a text or a piece of source code. It depends also on the background
of the audience. Especially for beginners of some field, when too many concepts are used
with the same name, it can be confusing (“strange, earlier, if I remember correctly, XXX
referred to such-and-such, but now, this XXX is used strangely, that makes no sense.
What then is XXX really then, why can’t the author give me a definite and unambiguous
definition?”. If familiar with the concept or in very obvious situations, one would not think
twice, maybe not even notice.

We will pick up on overloading when discussing types and type checking later. Different
uses of the same name will generally carry different types, and the type system typically
assists in disambiguating the notation. Overloading is then discussed as one particular
form of polymorphism, a property of type systems.

6.5 Symbol tables as attributes in an AG

Let’s have a short look at how to represent symbol tables (in an easy setting) with at-
tribute grammars. We illustrate it on a fragment of a language covering expressions and
declarations.

We have seen similar syntax before, for intance also in the chapter about attribute gram-
mars. There we have seen attribute grammar examples for evaluating expressions and
another example, dealing with declarations. The first one used synthesized attributes, the
second one mostly inherited ones. The example here does not involve expression eval-
uation, it focuses on the declaration part, i.e., checking if a variable has been declared
earlier. In a typical setting that would also involve type checking, i.e., not just checking
when using a variable whether it has been declared before, but that the use of the variable
is consistent type-wise with its earlier declaration. Also that typing aspect is absent in
the example, but it would be straightforward to add.

With or without type-checking, to check conformity in this setting, the information flows
is from the declarations to the uses of a variable. Since the declarations (here) come before
the uses, it means, the declarations are higher-up in the syntax tree and the information
therefore “flows” downwards. In other words, we are dealing conceptually with inherited
attributes. We have seen that in the chapter about attribute grammars before. The
grammar will not be solely on inherited attributes, there will also be synthesized ones.

22 6 Symbol tables
6.5 Symbol tables as attributes in an AG

Still, symbol tables can be seen as a realization of inherited attributes. At least in a simple
situation like the one here, with a “declare-before-use” regiment. As discussed, there are
more complex forms of declarations, notably those allowing recursion. Of course, also with
recursive declarations, one can use symbol tables. Likewise one can also capture those more
complex situations by attribute grammars. As discussed, for attribute grammars, cycles
in the so-called dependency graphs of parse trees are strictly forbidden. Still one could
capture recursive declarations by formalizing a “staged approach” and with additional
attributes, like first adding partial information and then going through the abstract syntax
tree a second time. In an attribute grammar, that may be done splitting a symbol-
table attribute into an attribute capturing the preliminary stage with partially entered
information and then the final version. Using two different attributes for that would break
the forbidden cyclic dependencies. This way of approaching declaration-checking (or type
checking) correspond also the way how one would do it working directly with symbol tables
in an implementation (without considering it as an attribute grammar problem).

We don’t cover recursive declarations, our attribute grammar will therefore be simpler.
The small digression about recursion is added to dispell a possible (wrong) impression, that
attribute grammars can only capture declare-before-use situations, due to their acyclicity
restriction.

The example, however, deals with one important complication, namely nested scopes. This
aspect was not covered yet in the earlier chapter about attribute grammars. The syntax
we will be dealing with can similarly found in various languages. A small piece of code
in ocaml is shown in Listing 6.27; remember also the code from Listing 6.12, used earlier
when discussing simultanous vs. sequential declarations.
let x = 2 and y = 3 in

(let x = x+2 and y =
(let z = 4 in x+y+z)

in pr int_int (x+y))

Listing 6.27: Nested lets (in ocaml)

6.5.1 Expressions and declarations: grammar

Let’s start fixing the syntax by giving the grammar in BNF.

S → exp
exp → (exp) | exp + exp | id | num | let dec -list in exp

dec -list → dec -list, decl | decl
decl → id = exp

We want the following informal rules what’s allowed and what’s not for declarations.
Those need to be captured by the semantic rules of the attribute grammar:

1. No identical names in the same let-block,
2. used names must be declared,
3. most-closely nested binding counts, and
4. sequential (non-simultaneous) declarations (̸= ocaml/ML/Haskell . . .)

6 Symbol tables
6.5 Symbol tables as attributes in an AG 23

These rules are illustrated in Listing 6.28. Note that we intend to use a sequential, not a
simultaneous interpretation of declarations. In the exercises, one task will be to port the
sequential treatment here to simultaneous declarations.
let x = 2 , x = 3 in x + 1 (∗ no , d u p l i c a t e ∗)

let x = 2 in x+y (∗ no , y unbound ∗)

let x = 2 in (let x = 3 in x) (∗ d e c l . wi th 3 counts ∗)

let x = 2 , y = x+1 (∗ one a f t e r the o ther ∗)
in (let x = x+y ,

y = x+y
in y)

Listing 6.28: Illustration of what’s allowed and what not

The attributes used in the grammar are shown in Table 6.1. We also indicate which
ones are inherited and which are synthesized. Note the special “status” of the attribute
of the terminal symbol id. It has a special status in that we assume it injected by the
scanner. The issue of attributes of terminals, whether should or should not be inherited,
synthesized, or something else has been discussed in the attribute grammar chapter.

Let’s discuss two further aspects of the attributes. Both aspects have to do with the fact
that attribute grammars are a functional, declarative formalism, working with equations
on attributes.

One aspect is errors and error handling. For the symbol table task, there will be
situations that correspond to errors. In an implementation that may covered by raising
an exception (and perhaps handling it). Exceptions and their treatment is not part of
attribute grammars, in particular the fact that raising an exception means, breaking out
of the normal, i.e., un-exceptional control flow. Exceptions can be part of the interface
of the symbol-table. For instance, the attempt to look up a variable which has not been
entered may result in a specific exception, likewise trying to enter a double binding at the
same nesting level. That way, the programmer of the definedness-checker (or type checker)
would not have to write code to check whether the mentioned conditions are met; the
symbol-tables makes sure of that and maintain a corresponding invariant by themselves.
Perhaps that’s a more robust design, but of course the programmer of the checker still
needs to write code to handle the exceptions properly, for instance like translating the
symbol-table exception into more helpful user error message (which again could be done
by catching the symbol-table expection and letting the handler (re-)raise another, more
informative exception).

In general, evaluating a dependency graph for a parse tree corresponds to a tree traversal,
in our setting, with mostly inherited attributes, a traversal “downwards” (and upwards
afterwards, using a recursive procedure, like depth-first traversal). But there is no mech-
anism that would allow to stop the tree traversal after stumbling over an error (like an
undeclared variable or a multiple declaration of the same variable at the same level). In-
stead the traversal has to continue, and one needs to somehow “simulate” the exceptional
situation using attributes. That explains the error-attribute. The attribute is synthesized,
since the error condition propagates from the place where it occurs up to the root. That’s
all fine and not actually complicated. However, to handle the non-erronous and the er-
roneous situation, the “user” of the attribute grammar has to add boiler-plate code all

24 6 Symbol tables
6.5 Symbol tables as attributes in an AG

over the place (“if no error do this else do that”). That clutters the semantic rules and
makes the solution slightly unelegant (see the attribute grammar below). We will make a
similar remark later in the chapter about type checking (where there is also a section that
specifies a simple type system using an attribute grammar).

The second aspect I want to discuss is the treatment of the symbol table. We said
that symbol tables somehow corresponds to a (mostly) inherited attribute. That’s not
incorrect. However, Table 6.1 shows that the attribute grammar has 3 attributes to capture
the symbol table. Partly that’s caused by the fact that the attributes are on different
(non-terminal) symbols. In particular symtab is an attribute of exp, whereas intab and
outtab are attributes of dec -list resp. decl. That makes symbtab a different attribute
from the other two in some way, and we might choose to simply rename symbtab to intab
or outtab without changing the solution (though probably symbtab is a clearer choice).
Anyway, it’s not the point I want to make, the point is about the attributes of decl and
dec -list, intab and outtab. There, we really need to have two different attribute names.
Declarations and declaration lists change the symbol table insofar that new binding(s)
are added (unless an “exception” occurs).

That means, the state of the symbol table before the declaration or before a list of declara-
tion is typicalled different from the state afterwards. This is captured by the two different
attributes, intabl and outtab. In many languages, the symbol table would conventionally
implemented imperatively (though also efficient functional implementations like using
red-black trees) exist. For instance, the hash-tables which often underly symbol-tables are
conventionally an imperative data structure. That means, in an implementation, handling
a declaration is an operation that changes the symbol-table. In the attribute grammar
here, we specify how a declaration transforms the symbol-table from the state before
(intab) to its state afterwards (outtab, because we are working with equations, which
are side-effect free.

symbol attributes kind
exp symtab inherited

nestlevel inherited
err synthesized

dec -list, decl intab inherited
outtab synthesized
nestlevel inherited

id name injected by scanner

Table 6.1: Attributes for the symbol tables

Attributes in attribute grammars are generally typed. We don’t explicitly list the types
in a separate table; they should mostly be clear: nesting level is an integer, actually a
non-negative one, the outermost nesting is counted as level 0, as the attribute grammar
shows. The error attribute is a kind of boolean: is there an error, yes or no? As said,
in a practical situation (with or without exception), one might choose to refine it with
information about what kind of error occured and/or where. The most complex data
structure, of course, is the symbol table itself. For that Table 6.2 contains the interface
and that’s is type-related information.

6 Symbol tables
6.5 Symbol tables as attributes in an AG 25

We see in particular in the signature of the insert function that it returns a (changed)
symbol table, instead of changing the state of the argument tab in-place.

return type
symboltable insert(tab,name,lev) returns a changed table
bool isin(tab,name) boolean check
int lookup(tab,name) gives back level
symboltable emptytable you have to start somewhere

errtab erroronous table

Table 6.2: Interface of the symbol table

Treatment of nested scopes here

A few words also on the “design” of the symbol tables in connection with nested scopes.
In earlier sections, we discussed the issue to some extent (chained symbol tables or specific
arrangements in hash-table).

Here, the attribute grammar operates with nesting levels. The nesting level is explicitly
handed over as argument when entering a binding in insert. That’s another way of
dealing with nested block structures.

One central production in that context is, of course, the one dealing with let-declarations.
The production and the semantic rules dealing with the nesting level are shown in equation
(6.1).

exp1 ::= let dec -list in exp2 dec -list.nextlevel = exp1 .nextlevel + 1
exp2 .nextlevel = dec -list.nextlevel

(6.1)

When processing the let-declaration, the nesting level is increased by one for both the
declaration list and the body exp2 of the declaration. Assume that exp1 occurs at a
nesting depth of n. That exp2 is processed at a nesting level n + 1 is clear.

For expressions in a dec -list, they conceptually are occuring at level n, at the same level
than exp1, the next nesting level kicks in only in the body. So the level n + 1 for dec -list
is to be interpreted as “use n + 1 as level when adding a new declaration”, thus building
up (at level n) the bindings for the body at level n + 1.

26 6 Symbol tables
6.5 Symbol tables as attributes in an AG

Figure 6.3: Attribute grammar

Bibliography
Bibliography 27

Bibliography

[1] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

28 Index
Index

Index

attribute grammar, 21
error handling, 23
symbol table, 21

binding, 11
dynamic, 17

block structure, 7, 11

class, 15
closed hashing, 6

declaration
forward, 16

dependence graph, 22
dictionary, 5
dynamic binding, 17

forward declaration, 16

hash conflict, 6
hash table, 5

look-up table, 5

nested procedure, 9

open addressing, 6
open hashing, 6
overloading, 21

PLT scheme, 3
procedure

nested, 9

Racket, 3
recursive declaration, 22
run-time environment, 9

scope resolution operator, 12
scoping, 11
search tree, 5
separate chaining, 6
static link, 10
symbol table, 1

interface, 3

	Contents
	Symbol tables
	Introduction
	Symbol table design and interface
	Implementing symbol tables
	Hash tables

	Block-structure, scoping, binding, name-space organization
	Block-structured scoping with chained symbol tables
	Lexical scoping & beyond
	Same-level declarations
	Recursive declarations/definitions
	Static vs. dynamic scope and binding

	Symbol tables as attributes in an AG
	Expressions and declarations: grammar

