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7.1 Introduction

This chapter deals with “types”. As the material is presented as part of the static analysis
(or semantic analysis) phase of the compiler, we are dealing mostly with static aspects of
types (i.e., static typing).

The notion of “type” is very broad and has many different aspects. The study of “types”
is a research field in itself (“type theory”). In some way, types and type checking is the
very essence of semantic analysis, insofar that types can be very “expressive” and can be
used to represent vastly many different aspects of the behavior of a program. By “more
expressive” I mean types that express much more complex properties or attributes than the
ones standard programmers are familiar with: booleans, integers, structured types, etc.
When increasing the “expressivity”, types might not only capture more complex situations
(like types for higher-order functions), but also aspects, not normally connected with types,
like for instance: bounds on memory usage, guarantees of termination, assertions about
secure information flow (like no information leakage), and many more. The chapter here
focuses on bread-and-butter types, like the ones for instance supported by the compila
language from the oblig.

In some of last years (2021 and 2020, and 2023), there had been groups doing the oblig
in Haskell. Haskell’s type system is rather expressive even in its core version. Language
extensions allow to do serious steps in the direction of what is called type-level programming
and programming with dependent types. This leads to systems where type inference and
other questions become undecidable and the type system starts resembling a specification
of the program behavior (expessing non-trivial invariants, etc.). Indeed, a type system
fully embracing dependent types is a form of combining computation for programming
and logic (for specification) in a common framework.

https://en.wikipedia.org/wiki/Type_theory
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As a final random example for expressive, not quite run-of-the-mill type systems: a lan-
guage like Rust is known for its non-standard form of memory management based on the
notion of ownership to pieces of data. Ownership tells who, i.e., which piece of code at a
given point, has the right to access the data when and how, and that’s important to know
as simultaneous write access leads to trouble. Regulating ownership can and has been for-
mulated by corresponding “ownership type systems” where the type expresses properties
concerning ownership.

That should give a feeling that, with the notion of types such general, the situation is a
bit as with “attributes” and attribute grammars: “everything” may be an attribute since
an attribute is nothing else than a “property”. The same holds for types. With a loose
interpretation like that, types may represent basically all kinds of concepts: like, when
interested in property “A”, let’s introduce the notion of “A”-types (with “A” standing for
memory consumption, ownership, and what not). But still: studying type systems and
their expressivity and application to programming languages seems a broader and deeper
(and more practically relevant) field than the study of attribute grammars. By more
practical, I mean: while attribute grammars certainly have useful applications, stretching
them to new “non-standard” applications may be possible, but it’s, well, stretching it.1
Type systems, on the other hand, span more easily form very simple and practical usages
to very expressive and foundational logical system.

In this lecture, we keep it more grounded and mostly deal with concrete, standard (i.e.,
not very esoteric) types. Simple or “complicated” types, there are at least two aspects
of a type. One is, what a user or programmer sees or is exposed to. The second one is the
inside view of the compiler writer. The user may be informed that it’s allowed to write x +
y where x and y are both integers (carrying the type int), or both strings, in which case +
represents string addition. Or perhaps the language even allows that one variable contains
a string and the other an integer, in which case the + is still string concatenation, where
the integer valued operand has to be converted to its string representation. The compiler
writer needs then to find representations in memory for those data types (ultimately in
binary form) that actually realize the operations described above on an abstract level.
That means choosing an appropriate encoding, choosing the right amount of memory
(long ints need more space than short ints, etc., perhaps even depending on the platform),
and making sure that needed conversions (like the one from integers to strings) actually are
done in the compiled code. Of course, the user of the programming language does not want
to know those details, the coder typically could not care less, for instance, whether the
machine architecture is “little-endian” or “big-endian” (see https://en.wikipedia.
org/wiki/Endianness). But the compiler writer will have to care when writing the
compiler, how to represent or encode what the programmer calls “an integer” or “a
string”. So, it’s fair to say the most fundamental role of types is that of abstraction: to
shield the programmer from the dirty details of the actual representation.

Types are a central abstraction for programmers.

Abstraction in the sense of hiding underlying representional details.2

1That’s at least my slightly biased opinion.
2Beside that practical representational aspect, types are also an abstraction in the sense that they can

be viewed as the “set” of all the values of that given type. Like int represents the set of all integers.

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Endianness


7 Types and type checking
7.1 Introduction 3

The lecture will have some look at both aspects of type systems, the “interface” and “ab-
straction” perspective and the “internal representation” perspective. The representational
aspect of types is more felt in languages like C, which is closer to the operating system
and to memory in hardware than many other language. Besides that, we will also look at
type system as specification of what is allowed at the programmer’s level (“is it allowed to
do a + on an a value of integer type and of string type?”), i.e., how to specify a type
system in a programming language independent from the question how to choose proper
lower-level encodings that the abstraction specified in the type system.

Abstracting away from internal, restricting which data can be meaningfully combined with
which other, enforcing that restrictions by type checking, and at the same time internally
do the proper manipulations at the underlying representations, all that can contribute to
more safe and robust programs. All this is captured in a well-known slogan:

Milner’s dictum (“type safety”)

Well-typed programs cannot go wrong!

What does it mean when saying a language has a “strong” type system, is strongly typed,
or is type safe? The latter, type safety, is more clearly defined. It’s connected to Milner’s
dictum. It is meant to be a statement about static typing and static type system. Types, as
mentioned, can be understood as abstractions. As far as static type systems are concerned,
these abstractions are also predictions of what will happen at run-time. The predictions are
not exact, it’s approximative. For example, typically the type system cannot determine,
which concrete integer will be given back as a result of a function, but it can determine
that the result will be an integer, it’s just unclear at compile time which it will be. That
hangs together with fundamental limitations of what can be algorithmically determined
(Halting problem, Rice’s theorem). But beside those fundamental limitations, there is
another obvious reason. Let’s stick with the example of determining what value a function
will return. A function will have an input and typically the behavior of the function, in
particular the resulting value of the function will depend on the input (otherwise, what
would be the point of having a function with an input that does not influence the outcome).
Not knowing which concrete input to expect statically, implies not knowing what outcome
to expect. It’s beyond the ambitition and capabilities of standard type systems to be no
more specific than saying that, for instance, if the input is an integer, then the output is
an integer again. So, in this case, one is dealing with a function from integers to integers.
And that’s information enough for the compiler, to prepare for enough memory, since no
matter what integer it will be called with, they all are represented uniformely.

When claiming that “one cannot be more specific”, then that’s not actually true: with
standard type systems, one cannot be more specific. Of course, if one assumes that the
function receives an arbitrary integer as argument, then, to stick with the example, one
cannot know what particular integer is returned in most cases. If one had a function like
add (x: int) = x+1, one knows that if the input is an odd integer, the result is

Both views are consistent as all members of the “set” int are consistently represented in memory and
consistently treated by functions operating on them. That “consistency” allows us as programmers
to think of them as integers, and forget about details of their representation, and it’s the task of
the compiler writer, to reconcile those two views: the low-level encoding must maintain the high-level
abstraction.
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even, and vice versa. Unless perhaps a MAXINT overflow exception is raised, which might
be also something that the type system can specify. The Java type system for instance
allows to specify what potential exceptions could occur.

But let’s leave the exception-discussion aside, and focus on the even and odd situation.
Normally, type systems support integer as types, but not the type of even integers or the
odd ones. Or mechanisms for the programmer to define such things like the type of all
even numbers when wished. In the extreme a type system could allow to capture on the
type level, what specific outcome to expect for specific input. That would lead to what is
known as dependent types and is beyond this lecture (and the vast majority of current
type system for general purpose languages).

In contrast to (standard) types: many other abstractions in static analysis (like the control-
flow graph or data-flow analysis and others) are not directly visible in the source code.
We called types an important abstraction for programmers. Data flow information and
other such representations used in semantic analysis are like-wise abstractions and equally
important. Though one could say those are mostly not abstractions for the programmer,
those are abstractions inside the compiler. Many types, in contrast are visible to the
programmer.

However, in the light of the introductory remarks that “types” can capture a very broad
spektrum of semantic properties of a language if one just makes the notion of type general
enough (“ownership”, “memory consumption”), it should come as no surprise that one can
capture data flow in appropriately complex type systems, as well. . .

Besides that: there are no truly untyped languages around, there is always some discipline
(beyond syntax) on what a programmer is allowed to do and what not. Probably the an-
archistic recipe of “anything (syntactically correct) goes” tends to lead to disaster anyway.
Note that “dynamically typed” or “weakly typed” is not the same as “untyped”.

7.2 Various types (and their representation)

This section shows a parade of different types, which can be found across many languages
(variations apply). Most should be familiar in one form or the other.

7.2.1 Some typical basic types

Let’s not define exactly what is or is not a basic type; there is not much insight to gain from
that. Let us just discuss aspects of types which we reasonably call basic or elementary,
and show common examples.

One aspect is that (elements of) basic types have no sub-parts in the sense that they are
composed of other (elements of) more primitive types. For instance the type for pairs of
integers, perhaps written int × int, is not basic, it’s composite or compound. That is
often hand in hand with the fact that the values belonging to the type in question are
structured or not. For instance, a pair (1, 2) consists of the integer 1 in the first position and
2 in the second, and the language will offer possibilities to access those two elements. So,
for compound values (which are not elements of basic types), there are ways to deconstruct



7 Types and type checking
7.2 Various types (and their representation) 5

them. Deconstructing a composite data item means accessing its constituents or sub-parts.
The opposite of deconstructing values is, of course, constructing them. In the pair example,
there is special syntax (_, _) to construct a pair. It’s characteristic for non-basic to have
possibilities to construct values and to decompose them again. Integers is an example of
a basic type. Though one can make the argument, that internally an integer has parts
(like being represented by a sequences of bits), the bits are not seen as being "parts" of
the integer, and are not typically accessible at the programming-language level.

There are corner cases, depending on particular languages. For instance, string may
feel like a quite basic type, but actually, for instance C considers strings as compound. C
explains strings as

one-dimensional array of characters terminated by a null character ’\0’.

Of course, there is special syntax to build values of type string, writing "abc" as opposed
to string-cons(’a, string_cons(’b, ...)) or similar. . . This smooth support
of working with strings may make them feel almost as if they were primitive.

Basic types are predefined by the language resp. the compiler. Often, a fair selection of
those is provided by the language, like the ones in Table 7.1 (and partly mapped to repre-
sentations with HW support on a platform). Often they are lexically represented by using
reserved keywords, i.e., it’s typically not allowed to redefine a type like bool to represent
something else, even if one believes one can come up with a better implementation of
booleans than the one provided (which is highly unlikely anyway. . . ).

Note, being built-in is not the same as basic or elementary. For instance, List may be a
built-in keyword in the language used in connection with the types of lists. List values like
[1;2;3] are certainly composite (just the empty list [] cannot be called “composite” in
a meaningful way). By what about List as type? List as keyword may be predefined,
as said, but it’s best not called as type in a strict sense, when using the words carefully.

How comes, does List not represents lists as members? Well, there is (often) no type
containing lists in general, there are only lists of integers, of type List of int, lists
of booleans, of type List of bool, list of lists of pairs of string of type List of
(List of (string * string). But is List of Object not a type containing lists
in general (for instance in Java or similar languages)? That’s true, but List of Object
is not the same as List in isolation, and the fact that List of Object is a type for
(basically) all kind of lists has to do with a further property of type system, sub-type
polymorphism (see later) and the fact that Object may be the super-type of (almost)
all types. The point here is: List per se is not a type, basic or otherwise, neither is *
(describing pairs, written also × in non-ascii), those are examples of type constructors.
A bit more later.

We hope it’s clear enough what basic types conceptually are; let’s comment on some of
the basic types from Table 7.1. All languages will offer various numeric types, like int
and real or float. Those can often rely on some form of HW support. It should be
clear, that elements from types like int or real are not exactly mathematical integers
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base types
int 0, 1, . . . +, −, ∗, / integers
real 5.05E4 . . . +,-,* real numbers
bool true, false and or (|) . . . booleans
char ’a’ characters
...

Table 7.1: Basic types

or reals from R. The computer-versions all suffer from limited precision.3 Languages also
offer variations of fixed precision, like int32 and int64.

When dealing with different numbers of different precision, they are conceptually all
machine-representations of numbers. On the bit-level representations of numbers, nu-
merical operations on, say, int32 and int64, work analogously, but not identically in
the sense that one can use exactly the same steps, or at least one has to be careful. On
the implementation level, their representations may often be “consistent” to some extent.
For instance, an int32 number padded with leading 32 bits of 0’s may be an int64
representation of the “same” number. Still, it’s not the same representation, one uses 64
bits and one 32.

On the level of abstraction of programming source code, one would like to do the normal
numerical operations like addition, substraction, etc. consistently. Often, the design of the
language will use the same (special) syntax for operations on different numerical types.
Like “+” in infix notation is a good choice for adding two numbers. On the level of
representation, the +-operator is implemented differently on int32 and on int64. The
fact that some syntactic construct, like the operator +, is implemented differently when
operating on different types is known as overloading. In this particular case of operator
overloading. Often, operators like + cannot only be used on two int32 numbers or
alternatively on two int64 numbers (or else on two strings, in which case it’s interpreted
as string concatenation, perhaps). The language may also support mixed-type arguments,
like using + on one int32 and one int64 argument. That would involve some behind-
the-scenes conversion, like turning the 32-bit integer representation into a 64-bit one
(like padding it with leading 0’s in this case, which would in plausible representations of
those two numerical data). Of course for the compiler writer, there’s no such thing as
behind-the-scenes, the compiler is responsible to use or generate appropriate conversion
code, and it will consult type information to chose the appropriate conversions. Both
overloading and conversions are two forms of type polymorphism. A bit more later.

7.2.2 Some compound types

Table 7.2 contains a few common compound types, available in most languages. Especially,
when built-in into the language core, as opposed to be available as library functionality,

3There is also something called infinite or arbitrary precision arithmetic, but let’s not go there.

https://en.wikipedia.org/wiki/Arbitrary-precision_arithmetic
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compound types
array[0..9] of real a[i+1]
list [], [1;2;3] concat
string "text" concat . . .
struct / record r.x
. . .

Table 7.2: Compound types

the most common ones are often supported by special syntax. For instance, accessing the
7th slot of an one dimensional array a is typically written as a[6] (with a[0] being the
first slot), as opposed to array_access(a,6). Some such data structures may come in
a built-in version and in a library version. For instance, there may be a built-in fixed-size
standard array data type and a dynamically-sized version with further bells and whistles
from the library.

Compound types (or compound data structures), resp. their types, like the ones from Table
7.2, are often reference types. What that means is that a variable of the corresponding
type, for instance, a variable a of type array[0,..,9] of real does not “contain”
the array, the variable contains a reference to the place where the array is stored. That
fact is often suppressed in the syntax. I.e., the type of the mentioned variable is not ref
(array[0,..,9]) which would make that fact explicit in the type. Still, the compiler
writer must keep that in mind, and likewise the user of the language. The fact that some
data structures are implicitly handled via references makes a difference if the data is shared
and modified. That may happen when using the data as argument in function calls. We
will discuss the related issue of parameter passing in a later chapter.

7.2.3 Abstract data types

Let’s discuss the notion of abstract data types on a conceptual level at least. Again,we
don’t attempt to define what an abstract data type precisely is and what not. One can
find many different standpoints or opinions on that, partly contradicting. One finds that
classes are (a form of) abstract data types, and one finds that classes are categorically
different from ADTs. One finds that ADT are nothing else than modules (if that explains
something), one finds that ADTs are multisorted algebras (if that explains something) etc.
One encounters such terminological fuzziness not just with the concept of ADTs, it also
can be found for other programming language concepts. That’s partly due to the fact that
sometimes the realization in one or two languages are confused with a general concept.
For instance, a particular language may support a keyword module or class for the
concept of modules or classes, and the manual of that language describes in detail what
that is and what not, and how to use it when programming in that language etc. But
that is sometimes just one particular angle or interpretation of a more general concept,
leaving out aspects resp., throwing in additional ones in a particular language. And then,
programmer used to that language, may contribute to discussions with statements like “Do
I know what a module is? Good lord, I have programmed ADA for 30s years, a language

http://pages.cs.wisc.edu/~hasti/cs367-1/readings/Introduction/
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famous for modules, and trust me, I know I what I am talking about and your definition
is plain wrong”. On the other hand, trying to find out exactly (across all languages) what
a concept like ADTs is, is also futile. Therefore we don’t attempt that. So much as
philosophical disclaimer before discussing ADTs (and actually a disclaimer for a number
of others concepts covered in the lecture).

Let’s mention a few aspects often cited in connection with abstract data types. Let’s
also not bother to distinguish in detail between the type aspect of an ADT, resp. the
implementation thereof. So the word, abstract data type is often used not just for the
type level information (like the signature) but also for it’s implementation, like “this stack
is an example for an ADT”.

Anyway, what are then ingredients or characteristics of ADTs? One is the typing aspect,
and one is abstraction, hence the name. Another one is that they bundling up data
structures together with code operating on the data.

In the light of what we have said about what types are (“central user-level abstractions”),
in some sense, all types have aspects of “abstract data types”. They provide abstractions
on the underlying representation. Additionally, all meaningful data comes with operations
and functions to work with them, Data without operators on it useless. It’s not for nothing
that lecture IN2010 (formerly INF2020) is not just called Datastrukturer but Algoritmer
og datastrukturer : discussing data structures without algorithms that do something inter-
esting on them makes no sense. Also the basic, primitive types like int32 or int64 we
discussed earlier come with operations on them (like +). And those operations hide type
the internals of the representation, they provide an abstraction. In that sense, one might
call already that an “abstract data type”, a very primitive though.

One will seldom hear that a built-in type like int32 is an ADT, though. One reason
for that is because other important aspects are missing. One is that numbers and their
operations are not “bundled up” as one structure with one explicitly given signature or
interface.4 When saying a language supports ADTs one means, the language supports a
mechanism for the programmer to introduce new, custom-made ADTs. So, int32
is not user-defined, but built in, and it’s not compound, but primitive, so that does not
qualify. . .

To allow to introduce ADTs as a “bundle” consisting of data + operations on it, languages
then support corresponding syntax (of various sorts). Like (in some ad-hoc syntax):

ADT X
begin

. . . .
end

Languages may use module as keyword. Indeed, classes also bundle up data (the instance
variables) with “operations” (the methods), which is why some people claim, classes are
object-oriented ADTs (or at least that static classes are modules). In particular, one can
make a case to see static classes as in Java as a form of ADTs. Some will protest, though,

4At least not the basic kinds of numbers, with basic, built-in operations. A language like Java, on top
of that, also supports classes like Integer which indeed supports quite a number of operations in its
interface.

https://www.uio.no/studier/emner/matnat/ifi/IN2010/
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finding differences between classes and ADTs more important. Typically, what is lacking
in ADTs is the notion of instantiation, and same for static classes.

Proving (user-defined) abstraction to the user of an ADT means also, when using an ADT,
one has not to bother about the internals, actually, one has no access to the internal repre-
sentation of the ADT. That’s also known as encapsulation: an ADT not just bundles up
data and operations, but it encapsulates and protects the internal representation from
access other than via the offered interface.

We stated that classes bundle up data and procedures, with instance variables playing
the role of the internal data. The problem is, Java classes don’t enforce encapsulation.
One can partly achieve that in declaring instance variables as private. That provides
some encapsulation (but not 100%, private fields of instances from other instances of
the same class, which breaks encapsulation). Encapsulation (or hiding of internals or
abstraction, whatever it is called) can in Java also achieved by using Java interfaces as
types, not the class names themselves as types (“programming against interfaces” is the
slogan). Indeed, the concept of interface demarcating the separation between inside and
outside of the abstract data type is central. Also Java knows supports interfaces (with the
keyword interface); some other languages could use the name signature for interfaces of
modules or ADTs. Modula, a language promoting the idea of modules as a form of ADTs
differentiates between DEFINITION MODULE’s and IMPLEMENTATION MODULE’s, the
former the interface or signature for the latter (the implementation).

ADT begin
integer i ;
real x ;
int proc t o t a l ( int a ) {

return i ∗ x + a // or : `` t o t a l = i ∗ x + a ' '
}

end

If one still wants to know, what REALLY is the difference between ADTs, modules,
and classes, a reasonable standpoint (if one wants to differentiate) in my eyes can be
found at http://www.cs.man.ac.uk/~pjj/cs2111/ho/node18.html. It roughly
says, modules have a (mutable) state, ADTs have not (which basically says: ADTs are
functional).

With ADTs being “stateless” (in that view), the behavior of the externally offered function-
ality can be captured declaratively, so the interface is functional (rather than an imperative
interface as would be characteristic for modules). One may find it a clear distinction (or
not). At any rate, a functional interface would allow to specify the outside behavior by
equations. The latter point is the reason why some say, ADTs are an implementation of
algebraic data types (algebras are some equational formalism).

Finally classes: they typically have a state (more precisely, instances of a class have a
state), but there are much more complicated mechanisms on top: inheritance, overriding,
late binding and what not.

http://www.cs.man.ac.uk/~pjj/cs2111/ho/node18.html
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7.2.4 Type constructors: building new types

A language with only basic types (see Section 7.2.1), would have only a finite number of
types, built into the language. So, languages offer mechanisms to introduce new types,
compound types like the ones mentioned in Section 7.2.2. In that way, the language
supports an unbounded number of types. Building new types from old ones is done by
so-called type constructors.5 We have mentioned a few before, like the one for lists and
for pairs or tuples. Those are all examples of compound types. Also ADTs, if supported
syntactically in a language, are composed.

There is another mechanism to introduce “new” types, not connected to the question of
whether the type is composed or not. That is to give (new) names to a type. For
instance, calling a tuple real × real under the name complex. Introducing a new name
for some type may not be seen as introducing a new type. But it may be that the type
system insists that pairs of type real × real cannot be use when values of complex are
needed. If that is the case, complex is in a way a new type and different from real×real.
Questions like that, “is complex the same as real × real or not?” will be discussed in
Section 7.3; different languages can take different choices about which types to treat as
equal and which not. The current section here is not much concerned with naming of
types, it’s about the constructions themselves.

Central type constructors are built-in to a language and are written in “special” syntax.
An example is the constructor × in infix notation for tuple types as in int × int. We
will see some examples for that.

Generally a type consists of members or elements of that type, the data values of that
type. So, it’s not enough to be able to define new types and perhaps declare variables to
be of that type. One needs a way to construct values of the introduced type. For pairs, we
have seen the syntax already, writing for instance (1, 2) to construct a pair, here of type
int × int. Constructing values is one thing, there needs also a way of deconstructing
them, i.e., way to access the individual parts, in our example the first element 1 and the
second one 2. All type constructions in the following will have these three ingredients: 1)
forming new types via type constructors, 2) constructing and 3) deconstructing values of
the introduced type.

In the following we will have a look at a few of composed types in programming languages.
The Compila language of this year’s oblig supports records but also “names” of records.
We will also discuss the issue of “types as such” vs. “names of types” later (for instance in
connection with the question how to compare types: when are they equal or compatible,
what about subtyping? etc.).

7.2.5 Arrays

Array types may be notationally represented as in Listing 7.1 or similar. Note that in the
code snippet, the array type is unnamed or anonymous. Many languages would allow to
declare array types only together with giving it a name, but this section here focuses on
the types themselves without much emphasis of how to give names to them.

5Types / classes that take other types as arguments are also known as generics or parametrized types.
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array [< indextype >] of <component type>

Listing 7.1: Some conventional syntax for array types

Conceptually, arrays, i.e., values of array types, are finite (and “mutable”) functions from
the index-type to the component type. Often, there are restrictions on what can be used
as index type. First of all, the index domain has to be finite (though one can see extensible
arrays as having a potentially unbounded index domain). Perhaps a finite range of non-
negative (unsigned) integers. Typical is a bounded range from 0 to n−1. Also possible may
be syntax like from ... to .... Other types make also be allowed, like enumerated
types, characters, etc.

In their basic variant, arrays are fixed size data structures. Still, the language may be
more or less restrictive there. Restrictive (and easiest to realize) would be that the size
of the array is statically known at compile time. More liberal would be to allow that
the dimension of the array, while still fixed, is known only at run-time, like that the size
depends on the content of a variable.

Either way, for most arrays one faces the problem that, at run-time the array may be
accessed outside its bounds. That danger does not exist for all arrays. For arrays allowing
indexes ranging over all characters or by some from some fixed enumeration of elements
(i.e., values from an enumeration type), a halfway decent type system can statically assure
that no out-of-bounds errors occur.

By half-way decent I mean the following, in the context of enumeration types: Assume
an enumerate type like the following (using ad-hoc syntax and giving the enumeration a
useful name):
type Weekday = enum {Monday , Tuesday , Wednsday , Thursday , Friday , Saturday , Sunday}

Such an enumeration will, in all likelihood, be represented in the compiler by (short,
unsigned) integers, ranging from 0 to 6, and probably in the order as listed in source code.
Integers can be handled efficiently, in particular when used as indexes for array access.
A safe type system would make sure that the array can be indexed only by the official
entries in the enumeration. An unsafe one would “allow” the user to exploit the knowledge
that Monday corresponds to 0 or whatever the scheme is. The programmer would have
no advantages of that exploit, at least not in terms of execution speed, since, as said, the
compiler will translate the enumeration anyway to numbers. The only thing one could
gain is that one could do in an unsafe type system is things like
var x : Weekday := Monday ;
. . . .
x:=x+1;

where one “calculates” with the weekdays (mis-)using integer operations. Of course, if
careless, one may end up doing Sunday + 1, and there is the out-of-bound error. A
type system that would tolerate such calculations would be an example of an unsafe type
system, and it is an example where the type system, here the enumeration, does not provide
proper abstraction. It looks like weekdays and a finite enumerations, but still one can do
integer-related things on it, exploiting knowledge of the underlying representation.
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For conventional, integer-index arrays, however, there is not much the compiler can do
to really and reliably prevent out-of-bounds situations (being an undecidable problem in
general). One thing to make sure is that at least at run-time, array-bound checks are done
(the compiler must generate code for that). If the check fails, it has the positive effect of
raising an error at run-time, if the check fails, and crashing the program (if the error is
not handled). That’s a good thing to do, compared to the alternative of not raising the
error. The alternative allows read and write access to memory parts that are not meant to
be accessed, at least not in this way. And that would be much worse (for security reasons
and otherwise).

Integer-indexed arrays are typically a very efficient data structure, as they mirror the
layout of standard random access memory and customary hardware.6 Indeed, contiguous
random-access memory can be seen as one big array of “cells” or “words” and standard
hardware supports fast access to to those cells by indirect addressing modes (like making
use of an off-set from a base address, even offset multiplied by a factor which represents
the size of the entries). In the later chapters about code generation, we will look a bit into
different addressing modes of machine instructions.

There are also multi-dimensional arrays, not just one-dimensional. One can see it as
“array of arrays” (for instance in Java). Often there is specific syntax also for that, not
just defining an array of array, like
array [ 1 . . 4 ] of array [ 1 . . 3 ] of real
array [ 1 . . 4 , 1 . . 3 ] of real

Listing 7.2: Multi-dimensional arrays

As mentioned, one dimensional, i.e., linear, arrays can be mapped straightforwardly onto
standard memory. Also two-dimensional arrays or higher-dimensional ones need to be
mapped to a linear layout in memory, the way that’s done may vary and is language
dependent (row-by-row or column-by-column etc.) A last word: Array types are typically
reference types, as many compound types.

7.2.6 Record (“structs”)

Structs or records are another well-known data type. For clarity, one should distinguish
between record types and records, the latter being the values of record types. For even
more clarity, one should separate also between the record type and the name of the record
type (same as with array types). Often that precision is loosened a bit and one just says
“this is a record” or “this is a struct” for the name, for the record type and for the record
value all the same. Structs is a different name for records, coming from the C-keyword for
records. Java does not support structs, but of course classes and objects can be used as if
one had structs. If one ignores inheritance and methods, the analogy is close.

A struct type could be declared as follows:
6There exists unconventional hardware memory architectures which are not accessed via addresses, like

content-addressable memory (CAM). Those don’t resemble “arrays”. They are a specialist niche, but
have applications.

https://www.pagiamtzis.com/cam/camintro/
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struct {
r e a l r ;
int i ;

}

Listing 7.3: Record type (“struct”)

The values of a record type, i.e., the records are “labeled tuples”. In this example, elements
roughly corresponding to real× int. When using the labels explicitly, the order of
occurrence, whether one mentions the real before the integer component is irrelevant on
source code level. That’s of course different for tuples, the position there matters.

Besides forming new types, one needs a way to construct elements of that type, and also
to deconstruct those elements; we mentioned that in the introductory remarks.

Unlike the record type from Listing 7.3 which was anonymous, the one in Listing 7.4 is
given a name (many languages don’t support anonymous records). The special syntax to
define a record in the example is {300, 42} and the value is stored in variable pt. Of
course, as the value is constructed without mentioning the fields, resp. mentioning them
only in when introducing the type point, the order of the two values matter.

Languages may (additionally) allow do define the record value writing {x=300, y=42}
or {y=42, x=300}. To deconstruct a value one uses the well-known dot-notation, like
pt.x. Again the analogy to objects (and field access) is very close. The dot-notation can
be used for read and write access to the record value.
struct point { int x ; int y ; } ; // d e f i n i n g a record type ( and

// g i v e i t a name .
struct point pt = { 300 , 42 } ; // c o n s t r u c t i n g a record va lue
int z = pt . x ; ; // f i e l d access

Listing 7.4: Constructing and deconstructing records

As far as the implementation of such records is concerned, they are arranged in a linear
memory layout with slots whose size is given by the (types of the) attributes or fields. The
fields are accessible by statically fixed offsets which allows fast access.

7.2.7 Tuple or product types

Tuples are pairs of values, written for instance (1,2). One can pair up values of different
types, for instance (1, "text"). Typical syntax for tuple types, also called product
types is int * string (in ascii, for the second sample tuple) or T1×T2 in math notation,
with T1 and T2 are arbitrary types. Languages may also support be n-tuples, like (1, 2, 4),
a “triple”, or (1, ”a”, true, ”b”, 7), a “quintuple”.

Notationally, the syntax to form an n-tuple value here resembles syntax to form a list
(or is identical to list forming syntax in some languages). Even if notationally similar,
there are differences between n-tuples and lists, Mainly in what one can “do” with the
corresponding elements, the ways of “deconstructing” them. Often, in statically typed
languages, lists have to be of uniformly-typed elements, pairs not.
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Table 7.3 shows the different types of a triple and of a tuple containing another tuple. On
some level, both values are “the same”. Indeed, both values may actually be implemented
identical, as a pair of a value followed by a second pair. Still, at the user level, the two
values may (or may not) be treated differently. To access the “last element” true, the
triple may have a syntax to access the 3rd element directly, for the second value one may
need to access the second element of the second element.

The table shows that the two values also carry different types. However, the language
may treat the two values as different notations for the same “triple” value. If so, and
in line with that, it makes no sense to distinguish the two types as different. In other
words, the type system would treat the tuple type constructor × as associative, and the
two types as the “same”, or equivalent. That would be an example of an issue we discuss
a bit later, namely when are two types equivalent; different approaches for various types
exist and other aspects than associativity-or-not factor in as well, in particular names of
types. The tuples here is a small illustration as preview for the fact that a type system
is not just about values and their types, it’s also about relations between types (when
are two types equal? When is one type a subtype of another?).

value type
(1, "text", true) int * string * bool
(1, ("text", true)) int * (string * bool)

Table 7.3: tuples of tuples and triples

Tuples and tuple types are common in functional languages, less so in other languages.
For example, Java (like C etc.) do not support them. Of course, one can simulate them.
If one feels the need to return a pair of values, one can return an object containing the
pair of values stored in two instance variables (it’s more like a record).

One could remark that in some way languages like Java support tuples in their special
role as arguments to methods or functions. It’s often no presented like that, i.e., it’s
not said “n-tuples are limited in their use as method arguments”, it’s rather often said
that methods or functions take “lists of arguments” as input (lists in an informal manner,
not lists as instance of the Java collection type(-constructor) List). Java notation is
illustrated in Listing 7.5 on a simple example.

public int add ( int a , int b) { return a + b ; }

Listing 7.5: Simple method in Java

A method definition like that mixes up declaration aspects, specifying input and output
types, with definitorial aspects, providing the code for the method body. Isolating the
type, one could write (in this example)

add : int × int → int (7.1)

where the type specifies methods (or functions) which take a 2-tuple or pair of integers
(or a list of integers of length 2) and returns another integer.
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Aside: Interface for methods in Java Above, in connection with the method definition
in Listing 7.5, we mentioned that this code snipped mixes declarational and definitorial
aspects, whereas equation (7.1) focuses on the type in isolation. In Java (and other
such languages), there is the notion of interface, not just conceptually, but as language
construct with the keyword interface (in Java). So let’s revisit the add method in a
larger context shown in Listing 7.6.
interface Iadd {

int add ( int x , int y ) ;
}

class Add implements Iadd {
public int add ( int a , int b) { return a + b ; }

} ;

Listing 7.6: Simple method and corresponding interface in Java

The information concerning add now corresponds to the one from equation (7.1), with
one extra piece of information, namely the names of the variables.

As the example also shows, however, the names x and y as given in the interface play
no role. The method can be defined using other variables instead. The variables in the
interface are not completely random. They cannot be left out, and it’s not allowed to use
the same variable twice. But the type system does not check if the corresponding method
follows the choice of names. As far as type checking is concerned, the signature in the
interface is treated as if it were int add(int,int) (and information given back from
the type checker in case of a mismatch between the interface and the class also does not
mention which variable names are used, because it is of no concern to the type system).

Why does Java insist on mentioning the names in the interface if it obviously plays no
role? I don’t know what the designers factually had in mind (or maybe they just followed
earlier languages). One motivation is perhaps documentation. Interfaces show important
information about public methods, how to use them in a type-correct way. The input
and output types already give some information based on which one can guess what the
method is intended for. In the same way, that a well-chosen method name can give useful
information indicating what a method is for, the same holds for well-chosen names for the
arguments.

7.2.8 Typing alternatives: Union types, sum types, and inductive data types

Next we discuss the related concepts of union and sum types. They both realize concep-
tually situations where a value belongs to one of different alternative types. Like a value
which is an integer or a boolean.

It should be stressed that it’s supposed to be a real alternative, it’s either an integer or
else a boolean. In that sense, the word “union” is a bit ill-chosen. If one sees types as
sets of their values, it’s not really the union of two sets (which would allow overlap). The
concepts correspond more precisely to a disjoint unions. Later we discuss inductive data
types, which add a dimension independent from offering a form of disjoint union types;
the extra dimension is recursively defined types. That recursion dimension is ultimately
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independent from the sum-type construction, but both work very well together and give
expressive mechanisms to build types for unbounded data structures.

Union types (C-style)

Listing 7.7 show the notion of union types in C. The members of the union type (as they
are called) are discriminated, in this example, by r vs. i. We could leave it at that, like:
that’s the way in C, “alternatives” are captured. However, we discuss a bit how (values
of) union types are represented and in which way the union types as in C have serious
weaknesses. We discuss that in the context of type safety, and the weakness is, that
union types may be useful, but are definitely not type safe. We will later see, how to do
better.
union {

r e a l r ;
int i

}

Listing 7.7: Union type in C

Union types are C’s way to represent the mentioned concept for types, that of “alterna-
tives” or disjoint union, in the example from Listing 7.7, the members of that type are
either reals or integers. What makes the situation in C not ideal is that union types there
are not explained and realized conceptually, but in an implementation-centric way. One
can find definitions of union types like this:

A union is a special data type available in C that allows to store different
data types in the same-sized memory location.

The weakness of union types comes from that fact, that this is all they do: they allow the
programmer to use the memory in a particular way. How it’s done is clear, if one builds
a union type from integers and reals, a value is stored at a place whose size corresponds
to reals, since the representation of reals requires more space than that of integers.

That makes sure that, when storing a value, no matter whether it’s a real or an int,
there’s enough space to store it. That’s welcome, of course, and it avoids overwriting
inadvertently neighboring data, thereby corrupting the program. The trouble may start
when reading back the stored value. The access in C is written for unions the same way
as for records or structs with a dot notation (like u.i, when u is a (variable containing a
reference to) value of the above union type.

The problem is: there is no mechanism, when reading a value of union type to figure out
which it is (here integer or real). Neither the static type system has that information, nor
is it possible for the programmer to insert a check at run-time to determine, which it is.
I.e., the notation u.i is does actually not mean “give me the integer stored there”, it is
more wishful thinking: “give me the value stored there, I think it’s an integer”.

That being so, it should be clear that the treatment of union types is definitely not type
safe. It’s nothing much more than a directive to allocate enough memory to hold largest

https://www.tutorialspoint.com/cprogramming/c_unions.htm
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member of the union. As can be seen also on the quoted “definition” of union types in
C, the type is treated clearly with an implementor’s (= low level) focus and wrt. memory
allocation needs, not with a “proper usage focus” or assuring strong typing. Thus, it might
be seen as a bad example of modern use of types and better (type-safe) ways of realizing
the notion of “alternatives” are known since. Next, we discuss a (small) improvement,
namely variant records, also called tagged unions or discriminated unions, before we have
a short look at inductive data types.

Variant records from Pascal

The union type from before is basically nothing else than a piece of space big enough to
store each possible alternative, but contains no information about which it actually is.
To improve that, one can simply store additional information about which alternative is
meant. The corresponding data type is known as variant record type, or also tagged
union type or discriminated union type. Listing 7.8 shows an example in Pascal,
again describing the alternative between reals and integers, as before.
record case i s R e a l : boolean of

true : ( r : real ) ;
fa l se : ( i : integer ) ;

Listing 7.8: Variant record (Pascal)

The memory layout, i.e., the representation of value in memory, is different than that for
C union types. The layout now is non-overlapping.7 The disadvantage is that the imple-
mentation uses space for all potential alternatives (plus information about the “tag”) even
if only exactly one alternative is the actual one. The representation resembles therefore
closely record or struct, namely a record where only one field is meant “for real”, the others
are “empty” in the sense of containing bit patterns without any meaning, so better not
touch them. . .

Now, is that wasteful memory usage worth it? Well, the programmer is responsible to set
and check the “discriminator”. The type system does not give assistance there. So, the
improvement is the following: instead of remembering what kind of variant is meant, an
integer or a real for instance, the data structure carries that information. That’s actually
something of quite some use. The code can use that information to make case distinctions,
to discriminate the between the case of integers vs. reals in the example. That’s of course
very useful. Without that, it’s hard to work meaningfully with elements of union type. If
given a value that is, say a string or a bool or an object of some sort without being told
what it is, what can one do with that piece of data? In particular, one cannot make a
case distinction based on what actually it is.

The possibility of making case distinctions on alternative data is essential for
types intended to represent alternative data. The ability to make case distinctions
is the very essence of something like union types (when done properly).

7Again, that’s an implementor-centric view, not a user-centric one.
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The C union types not only lack type safety guarantees, they also don’t offer that case
distinction feature. The latter one is what is added to variant record.

But how do variant records improve on the type safety front? Alas, type-safety-wise,
they are not really an improvement. The problem is, that the user can profit from the
extra information, the “tag”. However, to make proper use of that is the responsibility of
the programmer, the type system does not check it or enforce it. The careless programmer
can thus confuse things up, read a bit-pattern that represents a value of some specific type
as if it were of a different one by confusing up the alternatives and that can mess up
everything. This has been discussed as “Pascal’s type hole” (at the time when Pascal was
kind of hot in some corners) with examples that show how to trick Pascal to do pointer
arithmetic, (mis-)using variant records. Of course, one can do the same with C, though
no one ever mentioned a type hole in C’s union type. The reason is that no one claimed C
being type safe in the first place, union types or otherwise. Pascal on the other had came
with a very restrictive (and inflexible) type system. The loss of flexibility might be justified
by increased safety. At any rate, especially disciples of C would not tire to point out the
gaping type hole in Pascal: “their type system is like a straitjacket, it’s almost impossible
to do real programming, and what for? Safety? My ass, look at this example, with their
union types, I can trick their oh-so-strong type system into doing pointer arithmetic just
like in C. Let’s call it Pascal’s type hole.”.

Remark 7.2.1 (A word on terminology). The types in the previous discussion about type
safety contrasted the plain union types as in C and their improvement in the form of variant
records types. The latter ones got their name probably because they are represented in
memory very similar than records (as mentioned). I would, however, not consider the
name to be too well-chosen. Considering types as a central user-level abstraction on data,
the fact how (commonly) a particular type is laid out in memory is of prime interest for
the programmer that uses elements of a type and should actually not be relevant: the
type is supposed to provide an abstraction from the layout.

And on the user level, records and variant records (or members of tagged union type)
are very different. Records are like n-tuples or members of product types (more precisely
labeled product types). And actually, as concept, union types are the opposite of product
types. That’s why they are also called sum types (with “sum” and “product” denoting
duals). There are good, mathematical reasons that make sum types (for alternatives) and
product types (for tuples) the exact opposites or duals of each other, but let’s leave those
out from the discussion. At any rate, calling two very different concepts (records and
variant records) by quite similar names is unfortunate in my eyes. Likewise it’s not ideal,
that the “destructor syntax” in both cases is often similar. Both records and elements of
a discriminated union are accessed via the same dot-notation.

7.2.9 Recursive and inductive types

Next we discuss inductive types or inductive data types. One way of seeing them is
basically: (disjoint) union types done right plus the possibility of “recursion” (on the type
level). Recursion is a concept orthogonal to that of describing alternatives, so we could
do a discussion focusing solely on sum types. But their combination is so common and
useful, that we use examples making use of recursion as well.
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Inductive data types are very common in (statically-typed) functional languages, but
appear in other languages as well. We will use ML or ocaml in the code examples, but many
functional languages use quite similar syntax (many are influenced by ML, anyway).

Listing 7.16 shows a corresponding notation for the integer-or-real example. The vertical
bar | denotes the alternative.8 The syntactic ingredients isReal and isInteger are
called the constructors for elements of that type.
I sRea l of r e a l | I s I n t e g e r of i n t

Listing 7.9: Alternative (inductive data type without recursion)

In the code snippet of Listing 7.16, the type is anonymous, i.e., no name is given to type.
That limits the usefulness of the example, but of course one can easily give it a name, like
writing type intorreal = IsReal of real | IsInteger of int.

In ML-like languages, this form of sum-types is type safe. Elements from the types are
constructed by, well, using the constructors of the sum type, that’s why constructors are
called like that . . . . For instance one can obtain a real number resp. an integer number
as elements of they sum type by IsReal 4.5 resp. IsInteger 5.

As stressed, one needs not only a way of constructing elements of a compound data type,
one needs also ways of destructing (or deconstructing) them, i.e., pull composed data
apart. Like accessing the components of a record, slots in an array etc. Elements of a
sum-type, which is a compound or composed type, are not really “composed”. It makes no
sense to talk about the real part of the value isInteger 5, it’s of course only an integer.
Deconstructing values is not so much understood as access parts (which is not a useful
picture at least here), but as being the opposite of constructing or building values. The
opposite of creating a value is using it. As mentioned, the very essence of how to make
use of a value intorreal is to do a case distinction, here covering the two cases.

That can elegantly be done by so-called pattern matching, in combination with a case
construct (in the code here with the keyword match):
type i n t o r f l o a t = I s F l o a t of f l o a t | I s I n t e g e r of i n t ; ;

let d i s c r i m i n a t e (n : i n t o r f l o a t ) : un i t =
match n with

I s F l o a t f −> p r i n t _ f l o a t f
| I s I n t e g e r i −> pr int_int i

; ;

Listing 7.10: Alternative and pattern matching

Pattern matching in this style is type-safe. Often the type system provides checks whether
the match is exhaustive, i.e., that no alternative is forgotten, and whether no alternative
is covered more than once. In a duplicate match situation, typically the first match is the
relevant one, the second one is “dead code”, which is presumably unintended. The type
system may still accept the code, but will at least issue warnings about unmatched cases
or unused cases. That is very helpful.

8As for regular expressions and for context-free grammars.
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Listing 7.11 shows how one can combine the idea of sum-types with recursive definition.
It encodes directly the idea that a tree is either a leaf or else a node that carries an integer
and two trees, the sub-trees.

type i n t_b in t r ee =
Node of i n t ∗ in t_b int r ee ∗ in t_b int r ee

| Ni l

Listing 7.11: Inductive data type (binary tree)

The example could be improved (the language ML or ocaml and many others would allow
that): A more useful binary tree would not fix that the values stored are fixed integer,
but that type would be treated as parameter. But discussing also that would take us too
far from the issue at hand.

In the compiler lecture, we have seen many examples of concepts that can be represented
by inductive data types, and we will see more. Listing 7.12 shows how one can represent
expressions of some form, basically describing the type for syntax trees (for expressions).
type exp =

Plus of exp ∗ exp
| Minus of exp ∗ exp
| Number of i n t
| Var of s t r i n g

Listing 7.12: Expressions as inductive data type

Recursive data types in C Of course, one can define tree data structures also in languages
like C, and have them reflected (to some extent) in the type system. This paragraph is
no so much concerned with sum-types, but more with the “recursion” aspect of inductive
data types. Listing 7.13 shows an attempt to recursively define trees analogous to way
using inductive data types from before.
struct i n t_b in t r ee {

int va l ;
struct i n t_b in t r ee l e f t , r i g h t ;

}

Listing 7.13: Recursive record type for binary trees (does not work in C)

Conceptually there is nothing wrong defining a recursive record type like that, only that C
does not allow it. Shortly, we will see how it’s done properly. The code from Listing 7.13,
of course, also covers only one of the two alternative cases of (the type for) binary trees,
the one for proper nodes, which is represented as a record or struct with three members.
That is in contrast to the situation in Listing 7.11, which lists both alternatives (leaf or
else inner node).

Leaves are “represented” by null-pointers, resp. structs where both left and right subtrees
are null-pointer can be considered as leaves (in this case a leave carrying a value). Record
types are, as mentioned, reference types, and references may be “undefined”, i.e., null. So
the case distinction between being a proper node or a leaf, something that is done in ML
or similar by pattern matching, involves here checking for null-ness.
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Back to the question how to achieve something like recursive (record) types, since the
notation from Listing 7.13 is not allowed in C. One can do it by using pointers or references,
resp. explicit reference types as shown in Listing 7.14. Why this is allowed and the
other is not has more to do with design decisions of how (early) C-compilers worked and
is not so interesting for us.

struct i n t_b int r ee {
int va l ;
struct i n t_b int r ee ∗ l e f t , ∗ r i g h t ;

} ;

Listing 7.14: Recursive types for binary trees in C (indirect)

Let’s have also a look at Java (Listing 7.15). Java does not force the user to mention
references in the definition (Java does not have an explicit notation for reference types
anyway).

class IntBinTreeNode {
int va l ;
IntBinTreeNode l e f t , r i g h t ;

}

Listing 7.15: Binary trees in Java

Note that also in languages like ML, ocaml, Haskell etc., the implementation of trees and
other such structures use “pointers”, but they are hidden from the user. Note further,
there are no null-pointers in ML, and the NIL we used for leaves is not a null-pointer but
a constructor of a sum data type. Probably a better name in that definition would have
been Leaf, but we wanted to draw a parallel to the situation in C and Java. Which is
not really a parallel, since NIL as said, is not a way of introducing null-pointers in ML
(there is no such thing as null-pointers in ML).

“Pattern matching” in Java You may know that there is no such thing as pattern
matching in Java. Still, we have seen (in other parts of the lecture) how to implement
inductive data structures like the one for expressions, similar to the ones from Listing
7.12. We discussed earlier one “recipe” how to implement ASTs (using abstract super-
classes and multiple concrete sub-classes). The list of sub-classes correspond to the list of
alternatives of a sum-type. In the expression example of Listing 7.12, there would be one
abstract super-class (say Exp), and 4 concrete sub-classes, say Plus, Minus, Number,
and Var). Only there’s no pattern matching over those.

The job achieved by pattern matching is done differently in Java. If you followed the
recipe in your oblig, you will have done it, for instance for the type checker and for the
code generator and the pretty printer. Remember the purpose of pattern matching. It’s
to discriminate between the different cases of expressions, name whether the expression
is constructed via Plus, Minus, Number, and Var. A printing procedure would handle
these 4 cases differently. In Java, one has to implement the print procedure differently
for the 4 classes, same for type checking etc. But the effect is comparable. Depending on
which expression object one invokes the method, a different reaction is done.
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7.2.10 Pointer and reference types

Many data structures make use of pointers one way or the other. In many languages,
complex data types are often reference types, as mentioned. Languages, however, may
more or less hide the use of pointers to some degree or more or less completely. Still, one
should be aware that, for instance, the array type is a reference type, because not knowing
that and changing a shared array may lead to trouble. But the fact that one is dealing
with references is neither visible in the type nor when accessing the data structure itself.

We are here talking about pointers and references. On some level, it’s the same concept.
A distinction done by many is that, when having pointers, one can “calculate” with them,
doing pointer arithmetic, like obtaining a pointer or address and then accessing “the next
slot afterwards”. Reference are tamed pointers and mostly implicit. One cannot calculate
with them, cannot determine the address of a thing, and dereferencing is done implicitly.
Java, in that terminology, uses references, but C uses pointers.

Pointer types as in C

C is explicit about its use of pointers including that there is a special type for it, resp. a
type constructor. For instance, the type of a pointer to a integer value is int*, where “
* ” in postfix notation can be seen as type constructor.
int ∗ p ;

Listing 7.16: Variable of pointer type

Not only C, which allows pointer arithmetic, knows such types. The corresponding type is
written, for instance ^integer in Pascal and int ref in ML. The value of such types
is an address of (or reference or pointer to) a value of the underlying type. Operations on
such references are dereferencing, i.e., “following” the reference to access the underlying
value. There is in C also an operation that determining the address of an data item,
written &x (“address of x”). Remember: C allows pointer arithmetic. Listing 7.17 show
some operations involving pointer (in Pascal).
var a : ^ integer (∗ p o i n t e r to an i n t e g e r ∗)
var b : integer
. . .
a := &i (∗ i an i n t var ∗)

(∗ a := new i n t e g e r ok too ∗)
b:= ^a + b

Listing 7.17: Operations involving pointer in Pascal

Implicit dereferencing As mentioned, many languages more or less hide the existence of
pointers. Still, they may distinguish between reference vs. value types, it’s only not visible
in the types, and with such a design choice, the language will often do automatic, implicit
dereferencing. Class types in Java is an example of reference types.
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C r ;
C r = new C( ) ;
r . f i e l d

Listing 7.18: Objects

In the code snippet of Listing 7.18, in a sloppy manner of speaking, one could say “ r is an
object” (which is an instance of class C /which is of type C). Slightly more precise is to say
“variable r contains an object. . . ”, and even more precise “variable r contains a reference
to an object”. In Java and other languages, r.field involves an implicit dereferencing
and corresponds to something like “(*r).field” when done explicitly.

Programming with pointers Pointers or references are a “popular” source of errors.
To avoid null-pointer exceptions and to program defensively, one typically has to insert
tests for non-null-ness. Explicit pointers can lead to problems in block-structured language
(when handled non-expertly). We will mention that (again) in the chapter about run-time
environments. In that later chapter, we also will discuss parameter passing, including
call-by-reference, which is a mechanism to hand over parameters from caller to callee that
involves references.

Another aspect to watch out for is aliasing. That’s when two variables contain a reference
to a shared piece of data. This is troublesome if also mutation enters the picture. In an
alias situation, changing the piece of data via one variable changes “also” the value for
the other variables. That may be intended. We will see that later for the mentioned call-
by-reference mechanism. If the alias-situation is unknown, the change may be unintended
and erroneous.

Null pointers are generally attributed (actually including self-attributed) to Tony Hoare,
famous for many landmark contributions. He himself refers to the introduction of null
pointers or null references (1965 for ALGOL-W) as his billion dollar mistake.9 One can
also consult Hoare’s Turing Award lecture from 1980, where he talks about similar topics.
Also the text of the lecture is available on the net. In the lecture, he interestingly mentions
as the first and foremost design principle for the design of ALGOL resp. the corresponding
compiler: security. So it’s not that the intention was to say “to hell with security, speed
rules”. From the text, though, it seems that he speaks about “security” of the compiler
itself, in that it should never crash (= “. . . no core dumps should ever be necessary”).

Function variables: references to functions

The following shows problems in situations when one can reference more “powerful” things
than “dead data”. So far, the data was all passive but, of course, also function or procedures
need to be stored somewhere, ultimately it’s also just a block of bits. Often, in traditional
layouts, one thinks of functions code residing in one portion of the memory, and data
in a another.10 Either way, there is no principal reason why variables could not refer

9See also the link here (the video seems no longer to work, but there is some notes or rudimentary
transcript).

10Though in a shared address space in the traditional von Neumann architecture. In the so-called Harvard-
architecture, the separation would be stricter.

https://medium.com/@hinchman_amanda/null-pointer-references-the-billion-dollar-mistake-1e616534d485
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare


24 7 Types and type checking
7.2 Various types (and their representation)

to functions, as well. That goes in the direction of higher-order functions where the
distinction between data and code is completely blurred.

The example here is not based on higher-order programming, but uses just Pascal. What
one can do in Pascal (as opposed to C) is nested function declarations and “returning”
variables “containing” functions (referring to them). The problem, illustrated here (“es-
caping”), is something that one also has to deal with for higher-order functions. In a way,
the lesson from this example is: Pascal has this facility, but somehow did not deal with it
properly. Dealing properly with it would have required closures (see later), but Pascal
did not do that.
program Funcvar ;
var pv : Procedure ( x : integer ) ; (∗ procedur var ∗)

Procedure Q( ) ;
var

a : integer ;
Procedure P( i : integer ) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` return ' ' P ( as s i d e e f f e c t ) ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
begin (∗ here : f r e e Pascal ∗)

Q( ) ;
pv ( 1 ) ;

end .

Listing 7.19: Function variable (in Pascal)

The tricky part in the example from Listing 7.19 is the nested, lexical scope and the fact
that the nested function definition escapes the surrounding function resp. scope. The
escape is done with the help to the assignment to the function variable. The function
variable, containing a reference to the procedure P, is used to “return” the corresponding
function (resp. a pointer to it).

That is problematic in that the procedure P comes with its own scope and local variables.
By returning the procedure that scope outlives the surrounding scope. Pascal (like C
and Java and other languages) uses a stack to manage the memory needs of procedures at
run-time (as part of the so-called run-time environment). So, this is example cannot be
handled with a stack-based run-time environment? So what does Pascal do then? Does
the semantic analysis checks it (via an escape analysis) and issues a warning? Will the
memory for the escaping scope be stored elsewhere, not on the stack, maybe the heap?
Nothing like that, the program unceremoneously crashes. At least in the Pascal version I
used (free Pascal), there may be other versions with compilers that offer earlier warnings.
But crashing is at least better than silently accessing parts of the memory that should not
be accessed.

Functional languages, which typically support higher-order functions, allow function ab-
stractions as return value. They face the same challenge, and the solution is: since the
stack discipline does not work, the memory needs to realize the local scope are stored on
the heap (in what is called a closure). This will be picked up when talking about run-time
environments.
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In C, one can return functions in the same way as in the Pascal example since C supports
pointers to functions. C does not support closures, but it does not suffer from the “escape
problem” as discussed for Pascal. The reason is, that C does not allow nested function
definitions. It’s the combination (combined with the lack of closures) that crashes the
Pascal program.

What about (classic) Lisp. It supports higher-order functions, i.e., it allows to return
functions (taking a function as argument is less problematic), it allows nested definitions.
And, originally, it did not work with closures. But it still did not suffer from escaping
scopes in the way described. Simply because classic Lisp uses dynamic scopes not static
ones.

For the sake of the lecture: Let’s not distinguish conceptually between functions and
procedures. But in Pascal, a procedure does not return a value, functions do.

Function signatures

Functions of course carry types. The corresponding type constructor is → (or -> in ascii).
So int→int is the type representing functions from int to int, i.e., taking an integer as
argument and return one as well. Not all languages use explicitly the → constructor, and
different notations exist. One is shown in Listing 7.20.

Sometimes the term signature is used to when taking about type information in connection
with a function. The signature may include the name of the function, as in the example
from Listing 7.20 and 7.21.
var f : procedure ( integer ) : integer ;

Listing 7.20: Function signature (Modula 2)

int (∗ f ) ( int )

Listing 7.21: Function signature (C)

As mentioned before, functions are arguments are less problematic than returning them
(for instance via function variabless), and the reason is that the stack-discipline in that
case is still doable.

7.2.11 Classes and types

Let’s also talk about object-oriented languages and what role types play there. We don’t
dig deep here, we stick to vanilla, class-based, single-inheritance languages, say Java.11

Basically saying a few words about types for objects in such a language.

Objects are instances of classes and are typed by “classes”. Classes are connected in a
hierarchy via inheritance. In a single-inheritance setting, the inheritance hierarchy is a
tree. In Java, the root class of that tree is called Object. One speaks also of super-classes
and sub-classes, with Object being the super-class of every other class. Classes resemble
11There exist languages that qualify for being object-oriented, but don’t have classes.
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record types to some extent, and we have also discussed (at the part about inductive
types) that sub-classes can be used in ways the resemble variant types (sum types, variant
records).

There are many bells and whistles that factor in when looking at typing, even in a simple
language like Java (and Java at least started out as a quite simple language). Complicating
details are questions concerning visibility, overloading etc. We don’t go into those details
(of Java or other languages), we are interested in a few general aspects in the context of
type systems.

In particular, we focus on the central aspect of class inheritance and sub-classing.
Note that I have not called it subtyping (yet), but sub-classing. In general, for the sake
of clarity, it’s better to distinguish different roles of class names. Listing 7.22 defines three
classes A, B, and C, the latter two, unrelated among each other, are direct sub-classes
of A. So far, so well-known. A, B and C are also (names of) types. Also in their roles
as type names, the three identifiers are related, and the relationship is called subtyping.
Isn’t that then not the same? Well, Java is carefully designed (to assure that the type
system is type-safe)12 and designed in such a way that inheritance between classes implies
that the corresponding types (or the class names in their role as types, if you prefer) are in
subtype relation. As a consequence of this fact (in Java), one finds categorical statements
like inheritance is subtyping here and there, and I have talked to people that who insisted
strongly that types and classes are the same thing and likewise inheritance and subtyping
is the same thing, denying that obvious thing as just delusional. . .

Of course, when programming with the classes of Listing 7.22, for instance doing B x =
new B(), it’s definitely fine to say x is of type B and the object created and stored in x
is of type B as well. Still, using words carefully when the situation requires it can’t hurt,
and when writing a type checker or compiler is very definitely a situation, that requires
attention to details. One see that the the roles of A, B, and C as classes and as types
cannot be 100% the same by considering that x is an instance of class B and is of type
B and of type A, with A being the super-type of B. Typically, one does not consider x
to be an instance of A, though inheritance between the two classes leads to the situation
that things defined in A are relevant for x (either via late-bound methods or via instance
variables that are taken from the super-class).

The fact that x is both of type B and of type A (and also of type Object by default), i.e.,
that there can be code pieces that have more than one type, is known as polymorphism.
The form here is called, subtype polymorphism (or subtyping for short). Java (and
other languages) support often different forms of polymorphism, at least for some aspects
of the language.

Actually, class names like B play 3 different roles not just 2, in languages like Java, we will
pick up on that a bit later in Section 7.3 when discussing equality between types.
class A {

int i ;
void f ( ) { . . . }

}

class B extends A {
int i

12There are unsafe corners, but they are well-defined and let’s ignore them.
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void f ( ) { . . . }
}

class C extends A {
int i
void f ( ) { . . . }

}

Listing 7.22: Class inheritance resp. subclassing

The three classes from above illustrate sub-classing (and in many object-oriented lan-
guages, connected to that, subtyping). Note that the classes are also names of types.
What is also is illustrated is overriding as far as f is concerned. Inheritance is actually
not illustrated, insofar that f as only method involved is overridden, not inherited both
in B and C. The methods f and the instance variables i are treated differently as far as
binding is concerned. That will be discussed next. In the slides we use rA to refer to a
variable of static type/class A.

Access to object members

Instance variables and methods of a object are accessed (in many languages) via the dot-
notion, similar to field access in records. A central aspect when calling a method is late
binding also called dynamic binding, virtual access, dynamic dispatch, all mean roughly
the same. We discuss a few issues around that also later, in the context of run-time
environments

When invoking rA.f(), what is meant is the “deepest” f in the run-time class of the
object, rA points to. It’s not determined by the static type of rA. Only for static
methods (in Java terminology), the static type determines which code is executed

public class Shadow {
public stat ic void main ( S t r i n g [ ] a rgs ){

C2 c2 = new C2 ( ) ;
c2 . n ( ) ;

}
}

class C1 {
S t r i n g s = "C1" ;
void m ( ) {System . out . p r i n t ( this . s ) ; }

}

class C2 extends C1 {
S t r i n g s = "C2" ;
void n ( ) { this .m( ) ; }

}

Listing 7.23: Fields vs. methods (“shadowing”)

The code illustrates the difference in the treatment of fields and methods, as far as binding
is concerned. While the mechanism for methods (which are late or dynamically bound)
is called overriding, the similar (but of course not same) situation for fields (which are
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polymorphism

ad-hoc universal

overloading coercion parametric inclusion

Figure 7.1: Classification of polymorphism

statically bound) is called shadowing. One may also see it like that: fields are treated as
if they were static methods.

7.2.12 Polymorphism

Let’s round off this section by shortly introducing the concept of polymorphism. It’s
a general property of type systems. Some type systems are monomorphic and some are
polymorphic. As a matter of fact, truly monomorphic type systems are rare in program-
ming languages. Basically all realistic type system offer some form of polymorphism or
more than one form. In short, polymorphism is the opposite of monomorphism.

A type system is monomorphic, if all syntactic entities have at most one type.
I.e., it’s either ill-typed, or, when well-typed it has exactly one type. A type system
is polymorphic if that’s not the case.

Of course a type system can contain both aspects. At some corners of the language,
constructs are handled monomorphically, whereas in others, there is more flexibility, due
to polymorphism. According to a classical categorization (by Cardelli and Wegner [1])
one can broadly distinguish between ad-hoc polymorphism and non-ad-hoc polymorphism
(in the paper called universal polymorphism). See Figure 7.1. What is called inclusion
polymorphism is also called subtype polymorphism or subtyping for short.

Ad hoc polymorphism

In contrast to universal polymorphism, the ad-hoc form of polymorphism represents resp.
treats different situations differently. Overloading is a well-known form, we have mentioned
it elsewhere and it is also called “abuse-of-notation”. Languages can use overloading for
different (classes of) language constructs. Very typical is overloading of (built-in) operators
(operator overloading). For instance, the binary infix operator + is such a nice and
familiar operator (and there are not so many symbols in ascii) that it would be a shame
to use it for one single use. Thus it’s overloaded to operate on pairs of integers, pairs
of floats, and pairs of strings. The different pieces of code that implement the different
operations are unrelated, though of course one can make the argument the addition on
representations of integers and on operations on floats have some conceptual connection.
But there is no “shared” code.

Coercion (or conversion) is slightly different. It refers to situations, where implicitly an
internal representation is converted to a different one before operated on. The + operation
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is a good illustration again. Many languages allow using + on mixed arguments, like an
addition of an integer and a float. In this situation, the integer will be converted to a
float, and the operation for pair of floats is applied (and a float is returned).

So, on the surface, overloading and coercion look rather similar, like that + works on
all combinations of integers and floats and in that sense overloaded in multiple ways.
There are, however, only two implementations of + (leaving strings out of the picture
now), the one on integers and the one on floats. Depending on the situation, one of
the two is “chosen” in that the compiler uses the corresponding instructions. That’s
the overloading part. Overloading is resolved with the help of the type system in that,
before code generation, the overloaded + at user level is disambiguated by mentioning
syntactically one of two routines add_float or add_in, for instance in an processed
AST. Most languages use overloading (and coercions) at least for some built-in routines.
They may also allow the programmer to make use of overloading. Typical, and as known
from Java, is method overloading and, a special form of that, constructor overloading.
Other languages offer advanced user-defined capacities for overloading in the form of type
classes as known from Haskell (not part of the pensum).

Overloading is a convenient concept but should be employed in moderation, i.e., there can
be too much of a good thing. One should keep in mind that it’s not just how far one
can push overloading of concepts and the support of the type system for it. Typically,
overloading is not the hardest problem in a static type system: the different interpretations
are disambiguated early on (like + being replaced by add_float or add_int), based on
the type checker and before any code generation starts. Being “too overloaded”, making
choices on fine-tuned and intricate situational criteria, may obscure to the user what
actually is going on. Especially, if overloading is implemented in combination with subtype
of polymorphism or taking into account more or less complex rules when types are equal.
In that case, the type system has too much “ad-hoc-ness”, and that’s not positive.

Universal polymorphism

Let’s cover the last two forms of polymorphism, without going into details. One is generic
polymorphism. It’s characteristic for many functional languages. It’s about functions
(or procedures or methods) that work identical for all situations. For instance, swapping
to integers in a pair works identical to swapping two booleans (at least identical as far
as the swapping is concerned). So instead of having functions swap_int: (int *
int) -> (int * int) and swap_bool: (bool * bool) -> (bool * bool)
and infinitely many others for all things that could potentially be swapped, a generi-
cally polymorphic function would be of type swap: (’a * ’b) -> (’b * ’a) with
identifiers like ’a and ’b representing type variables (in some languages).

The other form of universal polymorphism is subtype polymorphism or subtyping. It’s
supported by many object-oriented languages (as in Java). There, the key is that elements
of a subtype can be used without problems at places where elements of a super-type are
expected so that elements of a subtype are also at the same time an element of each
supertype. That requirement is known as subsumption.

Subtyping is a relationship between types, like T1 ≤ T2, with often some minimal require-
ments like being reflexive and transitive. Sub-typing can become complex, but we leave
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it at that mostly. We will have a look at another relationship on types in Section 7.3,
namely equality.

7.3 Equality of types

This section discusses issues in connection with the question: when are two types equal.
Different languages give different answers to that questions (sometimes also differently for
various types). We also discuss naming for types in this section, since the names of types
is an important criterion one can use for equality of types.

It should go without saying that given a program fragment of a type T1 which is equal or
equivalent to type T2, then the program fragment is also of type T2. One could be tempted
to say that this is an instance of polymorphism, after all, the program fragment has
more than one type, namely T1 and T2. Normally, though, one would not count that as
polymorphism. After all, T1 and T2 are the “same” type, in the sense of type equality or
type equivalence (if one prefers that word). Figure 7.1 from before did likewise not include
that phenomenon as a form of polymorphism.

So, when are 2 types equal? There are surprisingly many different answers possible.
At any rate, it’s the type system’s resp. the type checker’s task to implement that check
equivalence of types. Those checks may be very simple. Or then also not, it all depends
on design choices one makes. One (non-)answer to the question is that two types are
equal if they are represented equally. In such a view, for instance, type int and short
are equal, since the are both (two different names to refer to) 2 bytes on some platform.
That, however, is at odds with the modern role of types as abstraction. So let’s look at
other approaches.

Listing 7.24 works with pairs of integers, a compound type. Not only that, it gives it a
specific name, namely pairs_of_ints, and declares a variable to be of that type.
type pai r_of_ints = i n t ∗ i n t ; ;
let x : pa i r_of_ints = ( 1 , 4 ) ; ;

Listing 7.24: Pairs of integers

Now, is “the” type of (values of) x pair_of_ints, or the product type int * int , or
both, as they are considered equal? In the latter case pair_of_int is an abbreviation
of the product type. One speaks of pairs_of_int to be a type synonym for int *
int. For the particular language (ocaml), the piece of code is correct: the pair (1,4) is
of type int * int and of type pair_of_ints.

The example involves two aspects, the fact that the type is compound not basic, and
the fact that it’s given a name. The fundamental decision a type system has to make
concerning type equivalence is, which one counts (or counts more): the name or the
structure of the types. This is the crucial difference between

structural vs. nominal equivalence of types.
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Let’s have a look at Listing 7.25, which introduces a few record types and some variables
for those.

var a , b : r ecord
int i ;
double d

end

var c : r ecord
int i ;
double d

end

typedef idRecord : r ecord
int i ;
double d

end

var d : idRecord ;
var e : idRecord ; ;

Listing 7.25: A few structs

There are altogether 5 variables, a to e, all of them containing records of the same shape
or structure, i.e., with members of the same name and of the same type (in this case,
identical types int and double, not just equivalent types).

Now, the question is , which ones of the various (=? different) record types are treated
equivalent? Or, to say it differently, which one of the following assignment are accepted
by a type checker, on the ground that the types of the involved variables are equivalent.
Of course, the values of the “different” record types and all represented the same way. For
that implementation-centric view, all assignments should be unproblematic.
a := c ;
a := d ;

a := b ;
d := e ;

Every language, that allows to define multiple such synonyms simultaneously, will treat a
and b to be of the same type, being declared at the same time with the same (anonymous)
record type. Whether the types for a and c are treated equal is a different issue. They
are declared separately, with two record types (again anonymous). Both record types are
structurally equal, but a type system based on nominal (name-based) principles would
treat them as different.

The typedef definition introduces the name idRecord for the record type, and the last
two variables are introduced in two separate declarations. In this case, the only plausible
behavior of a type system is to treat d and e as of the same type, namely of the type
called idRecord. Otherwise, what would be the use of having the same name. A matter
of choice might be whether a and d are of the same type.

The two most plausible and consistent interpretations would be the following. In a nom-
inal treatment, a and b would carry the same type as well as d and e, but all others
would be different. In a structural type system, all types would be equivalent and all
assignments allowed.
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Classes as types (in Java)

Let’s have a look at Java, and the way classes are treated, at least in their role as (names
for) types. Let’s ignore the issue of anonymous classes, classes without a name. Therefore
each class has a name which, at the same time, is also the name of a type. Namely the
name of a type of all instances of that class and of instances of all its sub-classes.

It’s a decision of the designers of Java and similar languages, that class names have this
dual role, referring to the class and at at the same to the corresponding type. At the
same time, there is a third role, namely referring to the constructor method(s) of the
class. For instance, in the statement C x = new C(), the class name C on the left-hand
side is used as type and on the right-hand side as constructor (and somewhere else in the
program there will be the class definition, which fixes the code of the constructor plus the
code for other methods and fields). To use the same name for these three different roles is
not a law of nature, it’s a design decision, and other object-oriented languages may make
different design choices.

Java also supports interfaces as separate concept, which (also) play the role of types.
Indeed, some people recommend as good programming practice, to only use interfaces
as types (and not the class names). That’s sometimes called code-against-interfaces or
similar. Whether one follows the code-against-interface style of programming or not,
Java’s type system is nominal as far as classes and interfaces are concerned. That’s
illustrated in Listing 7.26.

interface I1 { int m ( int x ) ; }
interface I2 { int m ( int x ) ; }
class C1 implements I1 {

public int m( int y ) {return y++; }
}
class C2 implements I2 {

public int m( int y ) {return y++; }
}

public class Noduck1 {
public stat ic void main ( S t r i n g [ ] arg ) {

I1 x1 = new C1 ( ) ; // I2 not p o s s i b l e
I2 x2 = new C2 ( ) ;
x1 = x2 ; // ???

}
}

Listing 7.26: No duck typing in Java, an example with interfaces

The example works analogous when using classes in their roles as types instead of inter-
faces. Why does the example refers to “duck typing”? Well, Java used nominal principles,
not structural. In some corners, people find the word “duck-typing” to be more clear (or
funnier) than structural typing (“if it walks like a duck, swims like a duck, quacks like
a duck, then it must be a duck no matter how you call the animal”). The duck typing
terminology seems popular in scripting languages (and some, not all, connect duck typing
exclusively to dynamic type systems). Since there is no complete agreement what duck
typing actually is (except that it sure sounds funny), the traditional distinction between
nominal and structural typing seems preferable.
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We discussed the name-vs.-structure question in the context of when two types are equal.
It applies also to subtyping, which is a more complex relation than equivalence. Also there,
languages can support nominal subtyping (Java for example) or structural subtyping, but
we leave it out from the discussion here.

Types in the AST

Shortly, we sketch in code how recursive routines could look like that check the equality of
two types, one for structural equivalence and one for nominal equivalence. The routines
work recursively over pairs of ASTs for the two types ot be compared. Before we do that
we have a few words on ASTs for types.

But actually, there as no many breathtaking insights to be gained here. We have seen a few
types and some typical syntax for them. ASTs, as we know, is a tree-like representation
for syntax, and compared to concrete syntax tree, often pruned and cleaned up a bit.
Furthermore, there is no such thing as the AST for a given concrete syntax, there is quite
some amount of freedom how to design a AST and how to realize in the the language
in which the compiler is written. That’s generally the case, and that’s still the case for
syntax that represents the types. Of course, basic, non-compound types do not correspond
to trees, they typically just leaves in an AST, and covered by keywords on the language
(like int and bool). Only non.trivial compound types, which may be composed to
complex types like List of (Int * (Array of struct {....} from 1..10))
correspond to trees.

So the following (sketches of) AST are just some impressionistic illustrations of how such
trees could look like. Listing 7.27 show some record type and Listing 7.28 some syntax for
procedure headers. Figures 7.2a and 7.2b illustrate possible trees.

r ecord
x : p o i n t e r to real ;
y : array [ 1 0 ] of int

end

Listing 7.27: Sample record type con-
taining an array type

proc ( bool ,
union a : real ; b : char end ,
int ) : void

end

Listing 7.28: Sample procedure header

Structural equality

The pictorial sketches of the AST maybe too sketchy when talking about a equality check-
ing as part of a type checker. Table 7.4 shows a grammar for (abstract) syntax for types
which is intended for checking structural equality. Afterwards, we will deal with syntax
used for nominal equality (Table 7.5). The two versions of the syntax are pretty similar. In
the first version, structured types are “anonymous”, in the second version not. Of course,
one can have a type system using structural equality which also allows to give names to
types (or not). The tuple types in Listing 7.24 showed an example: the product type as
such is anonymous, but it was given the name pair_of_ints, too.
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(a) Record type containing an array type (b) Procedure header

Figure 7.2: Abstract syntax trees

var-decls → var-decls ; var-decl | var-decl
var-decl → id : type-exp
type-exp → simple-type | structured-type

simple-type → int | bool | real | char | void
structured-type → array [ num ] : type-exp

| record var-decls end
| union var-decls end
| pointerto type-exp
| proc ( type-exps ) type-exp

type-exps → type-exps , type-exp | type-exp

Table 7.4: Type syntax intended for structural equality

In the presentation here, the two versions of syntax are either anonymous, or force the
programmer that uses records or similar to give it a name.

function typeEqual ( t1 , t2 : TypeExp) : Boolean ;
var temp : Boolean ;

p1 , p2 : TypeExp ;
begin

i f t1 and t2 are of s imple type
then return t1 = t2
else i f t1 . kind = array and t2 . kind = array
then return t1 . s i z e = t2 . s i z e and typeEqual ( t1 . ch i ld , t2 . c h i l d )
else i f t1 . kind = record and t2 . kind = record

or t1 . kind = union and t2 . kind = union
then begin

p1 := t1 . c h i l d ;
p2 := t2 . c h i l d ;
temp := true ;
while temp and p1 ̸= ni l and p2 ̸= ni l
do

i f p1 . name ̸= p2 . name
then temp := fa l se
else
begin

p1 := p1 . s i b l i n g ;
p2 := p2 . s i b l i n g ;

end ;
return temp and p1 = ni l and p2 = ni l ;
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else i f t1 . kind = p o i n t e r and t2 . kind = p o i n t e r
then return typeEqual ( t1 . ch i ld , t2 . c h i l d )
else i f t1 . kind = proc and t2 . kind = proc
then begin

p1 := t1 . c h i l d ;
p2 := t2 . c h i l d ;
temp := true ;
while temp and p1 ̸= ni l and p2 ̸= ni l
do

i f not typeEqual ( p1 . ch i ld , p2 . c h i l d )
then temp := fa l se
else

begin
p1 := p1 . s i b l i n g ;
p2 := p2 . s i b l i n g ;

end ;
return temp and p1 = ni l and p2 = ni l

and typeEqual ( t1 . ch i ld , t2 . c h i l d=
end

else i f t1 and t2 are type names (∗ i f a l s o names are checked ∗)
then return typeEqual ( getTypeExp ( t1 ) , getTypeExp ( t2 )
else return fa l se

end ; (∗ typeEqual )

Listing 7.29: Checking for structural equality

We see how the recursive procedure descends the two trees, as long as they are of the
same “shape”. If there is some deviation, the traversal of the two trees stops and reported
that the trees are not equal. The pseudo code resembles a bit how it could be done in C.
In particular, care has to be taken of the nil-pointer. Not only that there should be no
nil-pointer exceptions. Also the case where one tree is fininished (a nil-case) but the other
is not has to be counted as that the two types are not equal.

Listing 7.30 shows some simple data structure to represent abstract syntax trees for types.
It’s an example of an inductive data type, supporting 3 basic or simple types (booleans,
integers, and floats), which represent leaves in a abstract syntax tree, and some compound
types. The representation may be a bit simplistic, in that one represents the “signature”
of a record or a union by simple lists of pairs, but then again, it would work, and the
representation is used for illustration only. As far as records and unions are concerned:
it’s assumed that the lists contain the field names (respresented as strings) are contained
in the same order. We know that the language may allow that the order of writing down
the fields may not matter. If that’s so, one should make sure that in the abstract syntax
tree, the fields are listed in a “standardized” form, maybe by ordering them. Or using not
lists in the AST, but some look-up structure, where the order does not matter.

type texp = (∗ a b s t r a c t syntax f o r types ∗)
TBool

| TInt
| TFloat
| TArray of i n t ∗ texp
| TRecord of s t r i n g ∗ ( s t r i n g ∗ texp ) l i s t
| TUnion of s t r i n g ∗ ( s t r i n g ∗ texp ) l i s t
| TPointer of texp
| TFunc of texp ∗ texp

Listing 7.30: Checking for structural equality
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var-decls → var-decls ; var-decl | var-decl
var-decl → id : simple-type-exp

type-decls → type-decls ; type-decl | type-decl
type-decl → id = type-exp
type-exp → simple-type-exp | structured-type

simple-type-exp → simple-type | id identifiers
simple-type → int | bool | real | char | void

structured-type → array [ num ] : simple-type-exp
| record var-decls end
| union var-decls end
| pointerto simple-type-exp
| proc ( type-exps ) simple-type-exp

type-exps → type-exps , simple-type-exp
| simple-type-exp

Table 7.5: Type syntax intended for nominal equality

Listing 7.31 then show a procedure checking for type equality assuming structural equal-
ity for types.

let rec t_structequal ( ( t1 , t2 ) : texp ∗ texp ) =
match ( t1 , t2 ) with

( TBool , TBool ) | ( TInt , TInt ) | ( TFloat , TFloat ) −> true
| ( TArray ( s i z e 1 , t1 ' ) , TArray ( s i z e 2 , t2 ' ) ) −>

( s i z e 1 = s i z e 2 && t_structequal ( t1 ' , t2 ' ) )
| TRecord (name_1 , f l i s t 1 ) , TRecord (name_2 , f l i s t 2 )

| TUnion (name_1 , f l i s t 1 ) , TUnion (name_2 , f l i s t 2 ) −>
(name_1 = name_2 && t _ s t r u c t e q u a l _ f i e l d s ( f l i s t 1 , f l i s t 2 ) )

| ( TPointer t1 ' , TPointer t2 ' ) −>
t_structequal ( t1 ' , t2 ' )

| (TFunc( s1 ' , t1 ' ) , TFunc( s2 ' , t2 ' ) ) −>
t_structequal ( s1 ' , s2 ' ) && t_structequal ( t1 ' , t2 ' )

| _ −> fa l se
and t _ s t r u c t e q u a l _ f i e l d s ( l1 , l 2 ) = (∗ assume f i e l d names in same order ∗)

match ( l1 , l 2 ) with
( [ ] , [ ] ) −> true

| ( ( fn1 , t l 1 ) : : r e s t1 , ( fn2 , t l 2 ) : : r e s t 2 ) −>
( fn1 = fn2 ) && t_structequal ( t l 1 , t l 2 ) && t _ s t r u c t e q u a l _ f i e l d s ( re s t1 , r e s t 2 )

| _ −> fa l se ; ;

Listing 7.31: Checking for structural equality

Nominal equality

Let’s do the same for nominal equality and for the variation of the syntax from Table
7.5. It should be obvious that checking for nominal equality is simpler than to check for
structural equality, actually pretty much so, it’s quite trivial (see Listing 7.32).
function typeEqual ( t1 , t2 : TypeExp ) : Boolean ;
var temp : boolean

p1 , p2 : TypeExp ;
begin

i f t1 and t2 are of s imple type
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then return t1 = t2
else i f t1 and t2 are type names
then return t1 = t2
else return fa l se ;

end

Listing 7.32: Checking for nominal equality

Of course, in practice, complications may enter. For instance the names of types may
occur in scopes, and that has to be taken into account, but those are orthogonal issues.

7.3.1 Type aliases or synonyms

We have mentioned the concept already earlier, to give (alternative) names to a type. In
the example from Listing 7.24, the type for pair of integers was named pair_of_ints,
so that is a type synonym for int * int. If one has a mechanism to give names to
types, one can also do multiple synonyms for the same type. In that case, the different
names would be called type aliases. So basically it refers to the same mechanism. Of
course and as hinted at, to be known under different names does not count typically as
a form of polymorphism. Many languages offer type synonyms, including C, Pascal, ML,
. . . For a programmer, it’s a convenient mechanism to work with abbreviations (like type
Coordinate = float * float), and it’s a rather light-weight mechanism. It can be
use to

In Listing 7.33, type t1 is made known also under the name t2.
type t2 = t1 // t2 i s the ``same type ' ' .

Listing 7.33: Two type names

All that seems straightforward, but what type aliasing implies for type equality for different
classes of types may differ. In that sense, it can be more confusing than it looks at first
sight.

Let’s compare the situations inListing 7.35 and in Listing ??. The first example introduces
two synonyms of the basic type of integers.
type t1 = int ;
type t2 = int ;

Listing 7.34: Type alias for simple types

In this situation, t1 and t2 are often treated to be the “same” type. That may be
different when deadling with compound types.
type t1 = array [ 1 0 ] of int ;
type t2 = array [ 1 0 ] of int ;
type t3 = t2 ;

Listing 7.35: Type alias for structured types
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In the second example, it’s often that t3 ̸= t1 ̸= t2 (but t2 and t3 are the same). The
upshot is: even within one language, it may be that different rules apply when it comes to
different kinds of types. Perhaps for synonyms of basic types (like integers), the equality
“carries over” but for more complex one (like arrays in the illustration), it may not.

7.4 Type checking

Finally, we have to discuss how to realize a type checker. A bit of it we have seen when
talking about type equality in Section 7.3.

The task of static type checking resp. the static type checker is to determine whether
at given program is well-typed, i.e., adheres the type discipline for a given language, or
ill-typed. In the latter case, the compilation process stops and hopefully the type checker
generates a meaninful error message.

Actually, the type checker does not only give this binary decision, well-typed vs. ill-typed, it
checks for well-typedness of a program including all substructures (expressions, statements,
procedures . . . ) and give back the type (when well-typed). That means type checking is
not really the problem of checking whether a program has an (expected) type, it’s to
determine the type if any.

The type checker operates on the AST and it should not come as a surprise that it’s a
recursive procedure with the AST as input (and additionally the symbol table that may
to be consulted and updated during the run of the type checker).

Part of the type checker, as subroutine, is typically the check for type equivalence. For
example, if a procedure is called with an argument, the type checker determines the type
of the argument, it determines which type the procedure expects, and compares them,
checking whether they are equivalent. If one had a more flexible type system that allowed
subtype polymorphism, instead of checking for equality, a subroutine for subtype checking
would be used (but we don’t really cover that).

Type checking, as said involves traversing the AST and that typically involves top-down
and bottom-up parts; in the terminology of attribute grammars, it involves both inherited
and synthesized parts.

7.4.1 General remarks about a type checker

Before we look concretely at a simple type system for a fragment of a simple language
involving expressions and statements.

Type system vs. type checker

The (static) type checker is the part of the compiler that decides which syntactically
correct program is well-typed and which not (and when doing so determines the types of
the syntactic constructs). That the type checker determines well-typedness is almost a
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tautology. It’s equally not too insightful to say: a program is well-typed if survives the
type checker.

There is of course the issue of type safety which we discussed (“well-typed programs cannot
go wrong”). So it’s a requirement (in a type-safe language) that the type system prevents
certain errors. That’s a correctness criterion that the type checker should satisfy.

It is, in my eyes, useful to distinguish between between a type system and a type checker.
Why is that? The language’s type discipline, the regiment that says what is allowed, type-
wise and what not, needs not only to be implemented, it needs also to be communicated
to the programmer.

The above viewpoint that a program is well-typed if it survives the type checker is not
only tautological, it’s also not very helpful.

One can of course describe the type discipline in English text and perhaps using illustrative
examples; we do that for compila in the oblig. Additionally one can design a bunch of
specific small programs, that cover different aspects including corner cases and ill-typed
programs. Also those examples can be informative, resp. can be used to test a given type
checker. Also that we do in the second oblig.

What’s then a type checker vs. a type system. A useful distinction is the following: The
type system is the specification of the rules or regiment governing the use of types in
a language, a specification of type discipline, and also the specification what the type
checker has to realize. The type checker has to be algorithmic, i.e., correspond to an
algorithm, traversing the AST in one way or the other and determining types.

Note that I did not say the type checker is the actual implementation. Ultimately the
corresponding part of an compiler implementation is of course a type checker which hope-
fully realizes the type system as specification. It’s the difference between a (description)
of an algorithm and it’s programmatic realization or implementation in a programming
language.

Doesn’t that mean, in a way, one has 2 specificiations of the implementation, the type
system and the algorithmic version, the type checker? Yes, indeed. The question is,
however, why does one need or wants sometimes two specifications so to say? In our
lecture, we don’t actually see much of a need for that. The type system we will look at
later is quite simplistic. The same holds for the type system of the oblig. That means,
specifying a type system (like with a set of rules or with an attribute grammar) gives
enough information and guidance to straightforwardly implement it. In the oblig, we even
describe the type discipline only in English.

Modern programming languages, however, can have very complex and intricate type disci-
plines. Often, it’s simpler to describe a type discipline without first focusing on algorithmic
aspects. That makes a formal description simpler, and when investigating novel and com-
plex aspects of a newly invented type investigating, a English text may not cut it any
longer. Especially not, if one needs to investigate whether the newfangled discipline is
type safe or has other desired or undesired properties.

In simple situations, the type system directly corresponds to an algorithmic type checking
specification. In more advanced systems, that’s seldomly the case. There is work to be
done to massage the specification into a algorithm, and sometimes it’s not even possible.
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With advanced feature like complex forms of polymorphism and type constructor, it’s
easy to specify a (meaningul and even type safe) type discipline, only that, with the type
system as specification, the problem is undecidable.

For instance, C++ has an undecidable type system. One may see that as problem, or maybe
not insofar in practice it works. There are no naturally occuring programs whose correct
type checking simulates the solution of the halting problem for Turing machines. . . .

In Sections 7.4.2 and 7.4.2 we provide two ways how one can specify a type system, one
with attribute grammars, one with derivation rules. Both specifications describe the same
simple type discipline covering expression and statements. The corresponding grammar
is given in Table 7.6. Since the type discipline is so simple (in particular there is no
polymorphism), there rules of the type system more or less directly correspond to an
algorithic solution.

Polymorphism

Mentioning polymorphism, we could make some very high-level remarks there, without
going in any form of details. As indicated, polymorphism or other advanced features like
type inference can complicate type systems and corresponding algorithmic problems con-
siderably. In connection with polymorphism, I like point out only one thing, more like food
for thought and not providing concrete solutions for concrete forms of polymorphism.

The thing is the following. We mentioned that the task of a type checker is to check well-
typedness, of course, but, when well-typed, also give back the type of a construct. Now,
in a polymorphic setting, a construct can have multiple types, that’s by definition of being
polymorphic. Now that leads to the question: what should a type checker do then? For
type system, the specification, it’s not a big issue. One can specify a type system loosely
in a way, that allows to derive multiple types, depending on how one does the derivation
steps. The different possible types are thus represented in the type system by the fact
that the system incorporates some non-determinism.

NB: for attribute grammars, non-determinism is not forseen. In their standard form as
covered by the lecture, solving an dependency graph means finding the unique solution.
Attribute grammars must be formulated in such a way that dependency graphs a acyclic
for instance, to make sure that this unique solution exists. In other words, attribute
grammars are ill-equipped to specify with polymorphism. In our simple illustration in
Section 7.4.2, it’s not an issue (and it’s connected to the fact that there is not much
difference here between the type system and the type checking algorithm. That’s also the
reason, why AG may not be the formalism of choice when specifying type system (and
type checking algorithm). Therefore we look afterwards in Section 7.4.3 to a formulation
based on derivation rules. Of course, in a way, it’s just a different representation of the
same thing. However, the derivation rule based representation is more flexible in more
complex situations. This is the reason, why it’s a more suitable format and preferred often
when studying type systems.

That’s good to hear, but we have actually not addressed the question from the beginning:
in a polymorphic discipline, what should the type checker return, if the type system non-
detrministically allows many types?
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Without going into details: the type checker need to give back deterministically one type,
not many, it needs to be deterministic. A non-option is to give back literally all possible
types. It’s a non-option because there can be infinitely many (or at least very many) and
it’s not practical anyway. Another non-option is to just give back an arbitrary type, for
instance the first one found that is among the allowed one. That does not really work,
since the “first type found” may turn out the not be compatible with the rest of the
program, and then one may be forced to backtrack, and try if another type can be found
the work better. While possible, it’s unpractical as well, leading to a combinatorial search
of all combinations of types here and there, until one may find a combination that works
for the whole program.

But what options remain then? The trick typically is that the type system is designed in
a favorable way so that one can derive “the best type” at each given point. For instance
for subtype polymorphism, it would correspond to the most specific (or minimal) type.
Intuitively that makes sense. For instance, one one type checks the instance of a class C
(in Java), that instance can be typed by Object, and one could continue with the rest
of the program with that type. That’s obviously stupid to do, one will in all probability
encounter a situation where one does something specific for objects from C. There is not
much one can do with instances from Object, perhaps cloning, printing, and comparing
for identity, but that’s it. Using C as the most specific type is obviously the right thing to
do.

At any rate, if a polymorphic type system is designed in this way, namely that it can
operate always with a “best” type (minimal in the setting of subtyping), then there is a
good chance that one can turn the specification into a more or less efficient algorithm. If
no such “best” type exists, the system is probably ill-designed. It might still be possible
to solve type checking algorithmically (probably resorting to combinatorial search and
backtracking), which would make type checking of high computational complexity. That
would mostly be unacceptable, maybe not even mainly because of the complexity, but
because it’s difficult to explain what the type systems does for the user: it gives back
some type, but there could also be others unrelated, neither better nor worse. It would be
like given back some random type. For the subtyping the message is pretty clear: the type
system gives back the best, the minimal type of an expression, and there is one best type,
and all other types of that expression are supertypes of that. That’s how it’s supposed to
be and the key for a type checking algorithm.

7.4.2 Attribute grammar specification

Let’s start with a representation of type checking with attribute grammars. The syntax
for which we want to do type checking is shown in Table 7.6

When drawing the parallel that type checking is a bottom-up (synthesized) task, that is
only half of the picture. The presentation focuses in a large part on type checking of
expressions (and statements). When it comes to declarations (i.e., declaring a type for a
variable, for instance), that part corresponds to inherited attributes. Remember that one
standard way of implementing the association of variables (“symbols”) with (here) types
(which can be seen as an “attribute”) are symbol tables.
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program → var-decls ; stmts
var-decls → var-decls ; var-decl | var-decl
var-decl → id : type-exp
type-exp → int | bool | array [ num ] : type-exp

stmts → stmts ; stmt | stmt
stmt → if exp then stmt | id := exp
exp → exp + exp | exp or exp | exp [ exp ]

Table 7.6: Grammar for statements and expressions

The attribute grammar from Table 7.7 are pretty straightforward. Actually, the attribute
grammar deviates from the purist view we sometimes used earlier. In particular, the rules
make use for some exception mechanism (type-error(exp) or similar). That would not
officially be possible in an attribute grammar, and in earlier examples, we used attributes
to mimick exceptional behavior. That cluttered the semantic rules with additional checks,
namely whether or not an error had occured. This is not needed if one assumes exceptions
and the specification become more readable. We also see that the type equality procedure
typeEqual from earlier is used in a couple of place as subroutine.

Coming back to the issue of exceptions. Exceptions are raised when a type error is detected.
Most productions, in particular those for compound expressions, contain a positive case,
when the types “fit” and a negative one, when that’s not the case and a type error is
raised.

The derivation-rule-based presentation in Section 7.4.3 afterwards does an even more “eco-
nomic” representation. It focuses solely on the positive cases, i.e. which conditions need
to be met to be well-typed. The negative cases, which here raise an error (and in the
mentioned purist attribute grammars resulted in that an error-attribute was set to true)
are simply not covered by rules. The type system stated: a programm is well-typed, if
there exists a derivation in the system of type rules that derive its type. Left implicit is,
that no if such type is derivable, the program is ill-typed.

It’s not that it it is impossible, one could clearly either do rules with an if-then-else
construct or basically duplicate the rules. Assume the rule that requires for of a sum
expression e1 + e2, that both e1 and e2 are of integer type (and then concluding that sum
is of interger type as well). This could be accompagnied by a second rule for the negative
case, stating that, should e1 or e2 or both be not of type integer, then that’s a type error.

As said, that’s easy to do. And in an actually implementation, one need to cover the
negative cases as well.13 Still, in most specifications of type systems one focuses on the
positive cases, simply not mentioning the negative ones. This allows to focus on the
core of the type system (knowing of course, that type errors need proper handling in an
implementation as well).

13Having cases in a case construct uncovered would derail the type checking, leading to errors, but that
would be an undignified way of signalling a program ill-typed . . .
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We will say a few more words comparing the attribute grammar presentation with the
rule-based representation once we have seen it in Section 7.4.3.

Table 7.7: Type system as attribute grammar

7.4.3 Type system given by derivation rules

The following formalizes basically the same type system one more time. It uses a style
of representation, which borrows from “logics”, capturing the type system as a set of
derivation rules. It’s a form of presentation often employed specifying type systems,
including those of a more complex nature. It’s not a coincidence that such presentations
resemble logical derivations. There are deep connections between (mostly intuitionstic or
constructive) logics and type systems, but that goes beyond this lecture.

We know that type checking makes used of a symbol table. That was also visible in the
attribute grammar and the semantic rules of Table 7.7. The symbol table is not actually
mentioned in the attribute grammar, but the procedures lookup and enter operate on
a symbol table data structure left unmentioned otherwise.

Also here, we need a symbol table. Conventionally, one uses a greek letter for that,
commonly Γ. In presentations like the one here, Γ is mostly not called symbol table but
context or environment. That’s probably also the reason for choosing Γ (being the greek
letter for “C” as in “context”). A symbol table (or context, etc.) is a data structure to
store associations of (here) types with variables or identifiers, and we need to be able to
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add a new binding and to look up the type associated with a variable (and also we need
to refer to the empty symbol table; at the beginning the table is empty). As for notation,
we use Γ(x) for the type associated with x. That corresponds to the lookup function. In
this notation, Γ is simply seen as a finite function: applying it to x gives back the type,
if defined. If not defined, an error would be raised, but as discussed earlier, we focus on
the positive cases. . . The notation Γ, x : T represents the context that works like Γ but
extended by a new binding, namely associating type T to variable x.

Now to the derivation rules, split into two parts in Table 7.8 and Table 7.9.

The rules are to be read as follows: There are premises (above the horizonal line) and
one conclusion (below the horizonal line). The derivable “assertions” are of the following
form:

Γ ⊢ p : T (7.2)

Those as are also called judgements sometimes, in particular typing judgments. A judge-
ment of the one from Equation (7.2) is to be read as follows:

given the context Γ then progam p is of type T .

The context Γ, as said correspond to the symbol table. One find also the terminology that
Γ is called assumption or hypothesis. That terminology also makes sense: A (derivable)
judgment like

x :int, y :int ⊢ x + y : int

expresses “assuming that both x and y are integers, then the expression x+y is an integer
as well”. Also the terminology “context” for Γ is not too bad. It reminds us that type
checking is a context-sensitive analysis. The syntax of programs, in our case of expressions,
statements etc from Table 7.6 is context-free, i.e., without context. Type checking (as
most semantic analyses) fall in the broad category of being context-sensitive (and no longer
context-free). And Γ is just the context, resp. the particular form of context needed to do
the particular problem of type checking.

What is written as p in equation (7.2) is generically meant as “program piece”, concretely
the type rules with work with expressions, statements etc.

So the rules specify how one can derive such judgements from other judgements. That
may directly be translated into a algorithm, or may not be used as algorithm directly,
depending on the way the rules are formulated. In our simple case, the rules directly
correspond to an algorithm.

Typically, when the language and the type system is complex, one may specify well-
typedness in such a manner, without the rules immediatedly translatable to a type checker,
or maybe not at all, insofar one may have specified an undecidable typing relation. A major
complicating factor maybe polymorphism, as mentioned, but we don’t have that here.

A derivation system simply says, p is of a type T if, with the given rules, one can derive
the corresponding judgment, i.e., if there exists a derivation. It does not per se require,
that the deriviation is unique, or that p may not have other types (in which case the type
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Γ(x) = T
TE-Id

Γ ⊢ x : T

TE-True
Γ ⊢ true : bool

T-False
Γ ⊢ false : bool

TE-Num
Γ ⊢ n : int

Γ ⊢ exp2 : array_of T Γ ⊢ exp3 : int
TE-Array

Γ ⊢ exp2 [ exp3 ] : T

Γ ⊢ exp1 : bool Γ ⊢ exp2 : bool
Te-Or

Γ ⊢ exp1 or exp2 : bool

Γ ⊢ exp1 : int Γ ⊢ exp2 : int
TE-Plus

Γ ⊢ exp1 + exp2 : int

Table 7.8: Type system (expressions)

system is polymorphic). But that’s fine. In such more complex situations, the rules would
not directly yield an algorithm, it may be seen as a specification of a type discipline.

Note: the way we presented the attribute grammars, we can’t allow ourselves such a
relaxed attitude, being happy if there is one solution among different possible ones. At-
tribute grammars require one definite solution, no non-determinism or cycles or undefined
situations allowed. That (among other reasons) makes it often less straightforward to use
for specifying a type system. One aspect where it’s also visible is: in the attribute gram-
mar, we explictly had to specify (in a not too elegant way) error-situations. The rules
here don’t do that. For instance, in the treatment of the conditionals, it’s required that
the expression is a boolean. If it should be the case that it’s not a boolean, there is no
rule that covers that situation, which means, the well-typedness judgment for a program
containing such a situation is not derivable. Which means, it’s not well-typed and contains
thereby a type error. A concrete type checker would have to produce a meaningful type
error message in that alternative scenario, but that’s supressed in the rule-based presenta-
tion. The core of the type system is focusing on the positive cases, leaving the type errors
implicit and leaving it up to the implementor to figure out how to deal with uncovered
situations. Similar relaxedness applies to rules that would include non-determinism: the
implementor has to figure out how to deal with it, i.e., how to turn the specification in an
algorithm. The concrete type system here is so simple (monomorphic) that the rules are
basically an algorithm already.

One property of a static type discipline is: to be well-typed all parts of the program code
needs to be well-type. Even if there is dead code, i.e., code that will never be executed, it
still need to be type-correct, and the type system checks everything.

That principle is clearly visible in the rule-based formulation. In the attribute grammar
of Table 7.7, for instance in the case of if exp then stmt, the corresponding semantic
rule requires that exp is of boolean type (same as rule TS-IF). However, nothing seems
to be required for stmt. That gives the impression (in the attribute grammar) that a
conditional is well-typed if the expression is of boolean type and that’s all. But that’s not
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Γ, x :int ⊢ rest : ok
TD-Int

Γ ⊢ x : int; rest : ok

Γ, x : bool ⊢ rest : ok
TD-Bool

Γ ⊢ x : bool; rest : ok

Γ ⊢ num :int Γ(type-exp) = T

Γ, x : array num of T ⊢ rest : ok
TD-Array

Γ ⊢ x : array [ num ] : type-exp ; rest : ok

Γ ⊢ x : T Γ ⊢ exp : T
TS-Assign

Γ ⊢ x := exp : ok

Γ ⊢ exp : bool Γ ⊢ stmt : ok
TS-If

Γ ⊢ if exp then stmt : ok

Γ ⊢ stmt1 : ok Γ ⊢ stmt2 : ok
TS-Seq

Γ ⊢ stmt1 ; stmt2 : ok

Table 7.9: Type system (statements and declarations)

the case. Depending on what case of a statement it is, the corresponding check is specified
in connection with other productions.

One can probably reformulate the attribute grammar. For instance, in the attribute
grammar, stmt does not have a type, i.e., there is no attribute for that. To be more in
line with the treatment using rules, one should have added a type (perhaps void) to
convey information that a stmt nodes is well-typed. Instead of void one could have used
ok indicating well-typedness, as it’s done in the rules of Table 7.9, same thing. That
could have been used to make more clear that stmt nodes also need to be type checked,
something that is not so transparent in the given attribute grammar. For the derivation
rules, it’s obvious that all parts of a syntax tree are traversed and checked.

A final remark. I mentioned that the type system or type checker relies on equality
checking as subroutine. The routine is explicitly invoked in the semantic rules of the
attribute grammar. But what about here? Also that is a bit suppressed. One could have
been more explicit. For instance, instead of the shown rule TE-Plus, one might formulate
it equivalently as follows.

Γ ⊢ exp1 : T1 Γ ⊢ exp2 : T2 T1 =?int T2 =?int
TE-Plus′

Γ ⊢ exp1 + exp2 : int

For clarity I used =? to denote the type equality check, where TE-Plus simply wrote “=”
(why bother to write =?, the equal sign is clear enough, even if equality may be not so
trivial, as discussed).

Anyway, the more verbose version from TE-Plus′ is perhaps also more clearly in the
spirit of an algorithm. Like

Assume the type checker wants to determine the type (if any) of exp1 + exp2 in
a given context Γ: let’s write Γ ⊢ exp1 + exp2 : ? for the problem of having the
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type checker determine the type of the sum (actually if the sum is well-typed
at all, it must be int in our simple type system). To figure it out, the type
checker is recursively invoked on the subexpression exp1, still with context Γ,
let’s write Γ ⊢ exp1 : ? for it. That gives back, when successful, some type T1.
That’s the premise Γ ⊢ exp1 : T1. Do the same for the other subexpression exp2,
corresponding to the call Γ ⊢ exp2 : ? resp. the premise Γ ⊢ exp2 : T2. Then
check that both T1 and T2 are (equivalent to) int, and if so, report back int for
the sum-expression. That corresponds to the conclusion Γ ⊢ exp1 + exp2 : int.

Anyway, especially in relatively simple type systems, most are happy enough with a for-
mulation like TE-Plus, suppressing all unnecessary side issues (type equality, error situ-
ations) and focus on the core.
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