
Course Script
INF 5110: Compiler con-
struction
INF5110, spring 2024

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

8 Run-time environments 1
8.1 Introduction . 1
8.2 The procedure abstraction: different layouts 6

8.2.1 Full static layout . 6
8.2.2 Stack-based run-time environments 8

8.3 Parameter passing . 33
8.3.1 Call by-value, by-reference, and by-value-reference 34

8.4 Virtual methods in object-oriented languages 45
8.4.1 Virtual function table . 48
8.4.2 Less disciplined and/or more flexible object-oriented languages . . . 49

8.5 Garbage collection . 50

8 Run-time environments 1

8
Run-time environments
Chapter

What
is it

about?
Learning Targets of this Chapter

1. memory management
2. run-time environment
3. run-time stack
4. stack frames and their layout
5. heap

Contents

8.1 Introduction 1
8.2 The procedure abstraction:

different layouts 6
8.3 Parameter passing 33
8.4 Virtual methods in object-

oriented languages 45
8.5 Garbage collection 50

8.1 Introduction

The chapter covers different aspects of the run-time environment of a language. The
run-time environment refers to the design, organization, and implementation of how to
arrange the memory needs of a running program and how to access it at run-time. One
way to understand the purpose of RTEs is: they have to maintain abstractions (concerning
“data”) offered by the implemented programming language.

More concretely: The programming language speaks about variables and scopes, but
ultimately, when running, the data is arranged in words or sequences of bits, somewhere
in the memory, and the data must be addressed adequately. “Abstractions” that need
to be taken care of include variables inside scopes. Taking care means ultimately that
code must be generated for that. In the simplest case, for a global variable in the global
scope, access to that variable is code is simple, like a load or store instruction with a
static address. If, on the other hand it’s a local variable inside a procedure, the access
to variables is not so simple any longer. Indeed, if the procedure calls itself in some form
of recursion, one cannot speak about “the” variable, say x, to be accessed. There are
multiple “versions” of the variable, one for each active call. And the compiler needs to
arrange for that sitation, at least in a language that supports recursion, and generate code
that will find and accesses the correct “instance” of x.

That’s only one aspect of the tasks of the run-time environment, there are more. One
needs to arrange for static and dynamic memory allocation, parameter passing, and
garbage collection. The most important control abstraction in languages is that of a
“procedure”. Connected to that is the run-time stack, which is a part of the dynamic
memory. The design of the run-time stack takes a good portion of this chapter.

2 8 Run-time environments
8.1 Introduction

code area

global/static area

stack

free space

heap

Memory

Figure 8.1: Typical memory layout

Figure 8.1 represents schematically a typical layout of the memory associated with one
(single-threaded) program under execution.

One general division is that of static vs. dynamic memory. Static means, addresses
of items are known at compile time (and place in the part called static area), and
dynamic means, they are not.

The static memory contains data for global variables, but also the code of procedures or
functions are typically allocated in the static part of the memory. The dynamic part of
the memory consists of a stack and of a heap, typically.

At the highest level, there is a separation between “control” and “data” of the program.
The “control” of a program is the program code itself; in compiled form, of course, the
machine code. The rest is the “data” the code operates on. Often, a strict separation
between the two parts is enforced, even with the help of the hardware and/or the oper-
ating system. In principle, of course, the machine code is ultimately also “just bits”, so
conceptually the running program could modify the code section as well, wich leads to
self-modifying code. That’s seen as a no-no, and, as said, measures are taken to prevent
that. The generated code is not only kept immutable, it’s also treated mostly as static
(as indicated in the picture): the compiler generates the code, decides on how to arrange
the different parts of the code, i.e., decides which code for which function is placed where.
Typically, as indicated at the picture, all code is grouped together into one big adjacent
block of memory, which is called the code area.

The above discussion about the code area mentions that the control part of a program is
structured into procedures (or functions, methods, subroutines . . . , generally one may
use the term callable unit). That’s a reminder that perhaps the single most important
abstraction (as far as the control-flow goes) of all but the lowest level languages is function
abstraction or procedural abstraction: the ability to build “callable units” that can be
reused at various points in a program, in different contexts, and with different arguments.
Of course they may be reused not just by various points in one compiled program, but
by different programs (maybe even at the same time, in a multi-process environment). A
collection of such callable units, arranged coherently and in a proper manner (and together
with corresponding data structures) is, of course, a library.

The static placement of callable units into the code segment is not all that needs to
be arranged. At run-time, making use of a procedure means calling it and, when the
procedure’s code has executed till completion, returning from it. Returning means that

8 Run-time environments
8.1 Introduction 3

control continues at the point where the call originated.1. This call-and-return behavior is
at the core of realizing the procedure abstraction. Calling a procedure involves executing
a jump (JMP) and likewise the return is nothing else than executing an appropriate jump
instruction, jumping back where one came from originally. Executing a jump does nothing
else than setting the so-called program pointer to the address given as argument of the
instruction. In the typical arrangement from the picture, the addresses jumped to are
supposed to be located in code segment. Jumps themselves are therefore rather simple
things, in particular, they are unaware of the intended call-return discipline: The jump
address related to calling a procedure may be statically known (sometimes also not). The
jump-address related to a return is not statically known.

As a side remark: the platform may offer variations of the plain jump instruction (like
jump-to-subroutine and return-from-subroutine, JTS and RTS or similar).
That offers more “functionality” which helps realizing the call-return discipline of proce-
dures, but ultimately, they are nothing else than a slightly fancier form of jumps, and
the basic story remains: on top of hardware-supported jumps, one has to arrange steps
that, at run-time, realize the call and return behavior of the implemented programming
language, which for instance involve some form of parameter passing.

That involves the data area of the memory (since the code area is kept immutable). To the
very least: a return from a procedure needs to know where to return to (since it’s just
a jump). So, when calling a function, the run-time system must arrange to remember
where to return to (and then, when the time comes, to actually return, look up the return
address and use it for the jump back).

Calls can be nested, i.e., a function being called can in turn call another function. In
that situation, procedure calls or procedure activations, are executed in LIFO fashion:
the procedure called last is returned from first. That means, we need to arrange the
remembered return addresses, one for each procedure activation, in the form of a stack,
the call stack.2 The run-time stack is a key ingredient of the run-time system. It’s part
of the dynamic portion of the data memory and separate in the picture from the other
dynamic memory part, the heap, from a gulf of unused memory. In such an arrangement,
the stack could grow “from above” and the heap “from below” (other arrangements are
of course possible, for instance not having heap and stack compete for the same dynamic
space, but each one living with an upper bound of their own).

So far we have discussed only the bare bones of the run-time environment to realize the
procedure abstraction (the heap may be discussed later): we need to arrange to maintain
a stack for return addresses and manipulate the stack properly at run-time. If we had a
trivial language, where function calls cannot be nested, we could do without a stack (or
have a stack of maximal length 1, which is not much of a stack). In a setting without
recursion (which we discuss also later), also simplifications are possible, and one could do
without an official dynamic stack data structure (though the call/return would still be
executed under LIFO discipline, of course).

1Maybe not exactly at that point or line of code, but the line “immediately afterwards”.
2There may be complications to the LIFO discipline, like exceptions. Or the languages supports something

undisciplined as gotos, maybe even gotos that allows to jump out from a procedure call to “somewhere”.
That’s nowadays seen as undesirable, and the lecture does not discuss it and problems it entails. Neither
do we cover exceptions.

4 8 Run-time environments
8.1 Introduction

But besides those bare-bones return-address stack, the procedure abstraction has more to
offer to the programmer than arranging a call/return execution of the control. What has
been left out of the picture, which concentrated on the control so far, is the treatment of
data, in particular procedure local data. That is related to how to realize at run-time
the scoping rules that govern local data in the face of procedure calls. Related to that is
the issue procedure parameters and parameter passing. A procedure may have its own
local data, but also receives data as arguments upon being called. Indeed, the real power of
the procedure abstraction does not just rely on code (control) being available for repeated
execution, it owes its power on equal parts to the fact that it can be executed variously
with different arguments. Just relying on global variables and the fact that calling a
function in different contexts or situations will give the procedure different states for some
global values provides flexibility, but it’s an undignified attempt to achieve something
like parameter passing. All modern languages support syntax that allows the user to be
explicit about what is considered the input of a procedures, its formal parameters. And
again, it needs to be arranged that at run-time the parameter passing is done properly.
We will discuss different parameter-passing mechanisms later (the main ones being call-
by-value, call-by-reference, and call-by-name, as well as some bastard scheme of lesser
prominence). One complication is that when calling a procedure, the body may contain
variables which are not introduced locally, but refer to variables defined and given values
outside of the procedure (and without officially being passed as parameter). Also that
needs to be arranged, and the arrangement varies depends on the scoping rules of the
language (static vs. dynamic binding).3

Anyway, the upshot of all of this is: we need a stack that contains more than just the
return addresses, proper information pertaining to various aspects of data are needed as
well. As a consequence, the single slots in the run-time stack become more complex;
they are known as activation records since the call of a procedure is also known as its
activation. The chapter will discuss different ingredients and variations of such activation
records, depending on features of the language. See Figure 8.2 for a schematic impression
of an activation record. So in summary: when a procedure is called, at the time of the
procedures activation, the return address plus further information needs to be stored.
This packaged of data to be remember upon activation is called an activation record.
Since calls and returns follow a LIFO discipline, those activation records are arrange in a
stack, the call stack, which is an important part of the run-time environment. Another
name for activation records is a frame. When arranged as part of a stack, another name
for activation records is also stack frame.

Remark 8.1.1 (Non-stack frames?). We said that frames, when arranged on the run-time
stack, are also called stack frames. Does that mean, there are also frames or activation
records not arranged on the stack? Indeed, there are languages where the stack arrange-
ment is too restrictive! The last-in-first-out discipline underlying a stack reflects the way
calls and returns behave during run-time. The return addresss, a crucial part of frames,
certainly behave as stack, that’s the core of calling and returning. Frames, however, con-
tain more than just the return address, they contain also the local memory needs of a

3The chapter about symbol tables showed code examples for that, though the discussion was concerned
with how symbol tables handle that, not how the run-time system deals with it. In the symbol-table
coverage, some solutions for static binding made use of so-called static links. The concept of static
links will reappear later in this chapter, for run-time environments.

8 Run-time environments
8.1 Introduction 5

space for arg’s (parameters)

space for bookkeeping
info, including return
address

space for local data

space for local temporaries

Figure 8.2: Schematic activation record

procedure activation (local variables and parameters). There are situations where the
local data of a procedure activation is needed after the procedure has returned, i.e., after
the activation of the procedure has ended: the procedure has returned but its data lives
on! So the memory needs of an activation “survives” the call itself (the terminology is
that qsome local variables escape).

How is that possible? In lexical scoping and if the language allows nested procedure
definitions, an inner procedure definition can access the local variables of the surrounding
procedure. If calling the outer procedure in turn calls the inner procedure, all is fine: the
stack discipline means that the call of the inner procedure is terminated before the outer
procedure. That means, the data from the other procure is available on the stack while
the inner procedure runs: the life time of the activation of the outer procedure spans the
life time of the activation of the inner procedure.

If, however, the outer procedure does not call the inner procedure itself, but returns the
procedure to the caller for someone else to call it, then the outer procedure terminates
with the inner procedure not yet activated and the activation record of the outer procedure
is popped off the stack. If later, the inner procedure, the one that has been returned is
called and activated, it has no access to local data from the outer procedure, since that
has been popped off the stack. In other words: the activation records in a language with
higher-order functions (and under lexical scoping) cannot be organized in a stack-
based fashion. One still has activation records or frames (but not called stack-frames),
and they will be allocated on the heap.

Figure 8.3 shows the general impression of the code area or code segment. It is almost
always neither moved nor changed at run-time and statically allocated, i.e., memory
content representing machine code is not moved around nor changed or newly allocated
at run-time.

code for procedure 1 proc. 1

code for procedure 2 proc. 2

⋮
code for procedure n proc. n

Code memory

Figure 8.3: Code area

6 8 Run-time environments
8.2 The procedure abstraction: different layouts

The compiler is aware of all addresses of “chunks” of code, which are the entry points of
the procedures. The generated code is often relocatable and final, absolute addresses given
by a linker/loader.

The layout of the code segment here assumes that the addresses of the procedures are
fixed and arranged statically in the code segment. That’s plausible. Note that it’s not the
same as saying “the procedure called P occurring in the source code is located at such and
such statically known address”. That has to do with the fact that the name P may refer to
different procedures, all under the same name. A well-known example of that is late binding
or dynamic binding of methods in object-oriented languages. Binding generally refers to
the association of names with “entities”, like values or procedures. That’s a central aspect
of run-time environments. Sometimes, the binding can be established statically, at compile
time, or dynamically, at run-time. The act of resolving the location of particular method
of function, respectively jumping to that address, is also known as dispatch. In case of
dynamically or late-bound methods, it’s called not surprisingly dynamic dispatch.

The phenomenon of static vs. dynamic binding is not restricted to method or function
names. It can apply also to variables occurring in scopes. When talking about procedures,
it’s not only methods for which dynamic binding is common. Also in languages with
function variables, the dispatch has to be dynamic. That includes languages, which can
take functions as arguments, in particular functional languages.

8.2 The procedure abstraction: different layouts

In the following, we cover different layouts focusing first on the memory need in connection
with procedures (their local memory needs and other information to be maintained at run-
time, to “make it work”). Mostly, that will be a stack-arrangement, though at the end
we will discuss limitations of a pure stack-based run-time environment design for function
calls, and how to get memory layout more flexible than a stack arrangement.

8.2.1 Full static layout

A full static layout means that the location of “everything” is known and fixed at compile
time. All addresses of all of the memory is known to the compiler, for the executable code,
all variables, and all forms of auxiliary data (for instance big constants in the program,
e.g., string literals). Such a layout is shown schematically in Figure 8.4. A fully static
scheme is rare for today’s languages, but was the case for instance in old versions of Fortran
(Fortran77). Nowadays, there could be special applications, where static layout is used,
like safety critical embedded systems.

Let’s look at a more concrete example in some variant of Fortran in Listing 8.1.
PROGRAM TEST
COMMON MAXSIZE
INTEGER MAXSIZE
REAL TABLE(1 0) ,TEMP
MAXSIZE = 10
READ ∗ , TABLE(1) ,TABLE(2) ,TABLE(3)

8 Run-time environments
8.2 The procedure abstraction: different layouts 7

code for main proc.

code for proc. 1

⋮
code for proc. n

global data area

act. record of main proc.

activation record of proc. 1

⋮
activation record of proc. n

Figure 8.4: Full static layout

CALL QUADMEAN(TABLE, 3 ,TEMP)
PRINT ∗ ,TEMP
END

SUBROUTINE QUADMEAN(A, SIZE ,QMEAN)
COMMON MAXSIZE
INTEGERMAXSIZE, SIZE
REAL A(SIZE) ,QMEAN, TEMP
INTEGER K
TEMP = 0.0
IF ((SIZE .GT.MAXSIZE) .OR. (SIZE .LT. 1)) GOTO 99
DO 10 K = 1 , SIZE

TEMP = TEMP + A(K)∗A(K)
10 CONTINUE
99 QMEAN = SQRT(TEMP/SIZE)

RETURN
END

Listing 8.1: A Fortran example

The details of the syntax and the exact way the program runs are not so important. Also
the exact details of the layout from Figure 8.5 don’t matter too much.

MAXSIZEglobal area

TABLE (1)
(2)
. . .
(10)

TEMP

3

main’s act.
record

A

SIZE

QMEAN

return address

TEMP

K

“scratch area”

Act. record of
QUADMEAN

Figure 8.5: Static layout for the Fortran example

Important is the distinction between global variables and local ones, here for those for
the “subroutine” (procedure). The local part of the memory for the procedure is a first

8 8 Run-time environments
8.2 The procedure abstraction: different layouts

taste of an activation record. Later they will be (mostly) organized in a stack, and then
they are also called stack frames but it’s the same thing. It’s space used (at run-time)
to fill the memory needs when calling the function (which is also known the function’s
activation). The necessary space involves slots for parameter passing and space for local
variables. Needed also is a slot where to save the return address. We said 100% exact
details don’t matter, i.e., in which exact order those pieces of information are arranged.
Those details may also depend on the platform and the OS, not just the language being
implemented. But what is often typical (and will also be typical in the lecture) is that the
parameters are stored in slots before the return address and the local variables afterwards.
In a way, it’s a design choice, not a logical necessity, but it’s common (also later in this
chapter). It’s often arranged like that, for reasons of efficiency. Later, the layout of the
activation records will need some refinement, i.e., there will be more than the mentioned
information (parameters, local variables, return address) to be stored, when we have to
deal with recursion.

The back-arrows in the figure refer to parameter passing and the distinction between
formal and actual parameter. We come to parameter passing later.

8.2.2 Stack-based run-time environments

So far, the run-time environment, being static, was for languages without (!) recursion,
where everything is static, including the placement of activation records. That’s a pretty
ancient and restrictive arrangement of the run-time environment.

Practically all full-scale programming languages allow recursion, and therefore need some
form of dynamic management of the activation records. Many use a stack-based arrange-
ment for managing the memory needs for procedure calls at run-time. The stack is also
called call stack or run-time stack. As always, the exact format of the activation records
depends on language and platform. More importantly, the rules how and where procedures
can be defined and what one can “do” with them is different for different languages. In the
following we discuss a sequence of complications, where the language features concerning
procedures in connection with scoping requires increasing complications in the design of
the activation record. The schematic structure of an activation record has been shown in
Figure 8.2 earlier. They have space for passing arguments, for local variables and so-called
temporaries. The gray part in Figure 8.2 was said to be for book-keeping, administering
necessary information to maintain the run-time stack and realize the run-time abstraction
of lexical scopes. That gray part is the part of the activation record that gets more or
less complex depending on the language, and at the bare minimum, it includes the return
address.

Indeed, in the most complex situation, with higher-order functions, not only the activation
records needs more bookkeeping information than in simpler languages, but even the stack-
discipline is not longer adequate (see also Remark 8.1.1).

We mentioned that the complications reflect the treatment of the memory needs for pro-
cedures and the corresponding scope. The following discussion concerning the form of
activation records concentrates solely on languages with static binding (which is more
harder to achieve), not dynamic.

8 Run-time environments
8.2 The procedure abstraction: different layouts 9

C-like languages, i.e., languages without local procedures

The first complication comes from languages with recursion but where all procedures
are global. I.e., it’s not possible to define a procedure nested locally inside another pro-
cedure. Those is sometimes called “C-like” languages, because C is a prominent example
for that situation.

(Besides local variables and parameters:) The specific information needed are the
frame pointer, the control link (or dynamic link) and the return address.
We also discuss and show in the pictures the so-called stack pointer.a

aThe stack pointer does not need to be stored in the activation record, but it will be part of the
discussion.

One step further, in the following section, will be to generalize that to languages that
do support nested procedure declarations (in a setting with lexically bound variables;
Pascal being one example). That’s more general, and that form of nesting will require to
introduce, besides dynamic links, also static links (aka access links).

Remark 8.2.1 (Static link). The mentioned notion of static links is basically the same as
the one encountered before, when discussing the design of symbol tables, in particular
how to arrange symbol tables properly for nested blocks and lexical binding. Here (resp.
shortly later down the road), the static links will serve an analogous purpose, only not
linking up (parts of a) symbol table, but activation records.

Let’s illustrate the different pointer or links in a small example (see Listing 8.2). Not that
it’s the focus of the example, but the C-code represents a simple recursive implementation
for calculating the greatest common divisor of two integers (making use of some modulo
calculation in the recursive call, that’s the % operator). C is also uses call-by-value a
parameter passing mechanism. We will cover parameter passing later.
#include <s t d i o . h>

int x , y ;

int gcd (int u , int v)
{ i f (v==0) return u ;

else return gcd (v , u % v) ;
}

int main ()
{ s c a n f ("%d%d " ,&x,&y) ;

p r i n t f ("%d\n " , gcd (x , y)) ;
return 0 ;

}

Listing 8.2: Euclid’s recursive gcd algo

A snapshot of the memory, in particular of the stack the activations of the gcd-procedure
is shown in Figure 8.6. The three activation records of gcd are shown in blue. The need
for remembering the return address should be obvious. Actually, to remember where to
return to is needed also in the static layout, without recursion (but procedure calls and

10 8 Run-time environments
8.2 The procedure abstraction: different layouts

returns). The return address points to some place in the code area, which is not shown in
the picture; the picture shows only the part of the memory containing data.

x:15
y:10

global/static area

“AR of main”

u:15
v:10

control link

return address

a-record (1st. call)

u:10
v:5

control link

return address

a-record (2nd. call)

u:5
v:0

control link
fp

return address
sp

a-record (3rd. call)

↓

Figure 8.6: Stack for the gcd example (called with 15 and 10)

Besides the return addresses, the picture illustrates the notion of control or dynamic
links, the frame pointer, and the stack pointer. The control links are also called
dynamic links.

It also shows that each of the 3 activations of the gcd procedure has its own data area
where the current values of local variables are held. In this example, the only local variables
of the gcd procedure are the formal parameters u and v.

Conceptually, the stack consists of stack frames (3 in the picture), and each stack frame
consists of a number of slots with information. The frame pointer points to the current
activation record, i.e., the top-most frame in the stack of frames. The stack pointer
points to the top-most slot on the stack that contains information, demarcating the border
between the used and the unused parts of the stack memory. So the frame pointer identifies
a stack frame, the top-most one, and it does so by poiting to definite position inside the
activation record. It’s logically possible to choose the definite possition of an activation
record to be the end of the frame or record. In that case, the stack pointer and the frame
pointer would point to the same address, as the end of the top-most frame is at the same
time the end of the stack-memory currently in use. As indicated in Figure 8.6, this is
typically not done. Instead, the frame pointer points to a well-chosen place somewhere in
the middle of the frame such that some information belonging to the frame comes before
that place, and some comes afterwards. The point is chosen in such a way, that the local
data (variables, etc.) can be accessed fast, relative to the frame pointer, and that the
pushing and popping of stack frame is likewise efficient. Note that access and the stack
manipulations are done at run-time, so a design that allows efficient manipulations will
not make the compiler as such more efficient, but results in faster code. What here is
called vaguely “manipulations” of the stack here will later be discussed in more detail as
so-called calling conventions which are basically the steps taken to build up the individual
slots of a stack frame during calling and parameter passings (= push of a stack frames),
resp. popping it off again upon returning.

8 Run-time environments
8.2 The procedure abstraction: different layouts 11

Popping off a whole stack frame means, to make the second top-most frame the now
top-most one. That means, one has to adapt the stack pointer and the frame pointer.
Now, if the stack frame were uniform in size, that task would be simple, just increase4 the
address of stack and frame pointer but the fixed, uniform offset. Obviously, in general,
activation records are different in size, as different procedures have different memory needs
(a different amount for formal parameters and local variables, of different types). Even
if different in size, frames are uniformely designed, with particular kinds of informations
with known, best fixed, offsets from the frame pointer.

How to deal with the fact that frames are non-uniformely sized? That’s exactly the
purpose of the dynamic link or control link! It’s a slot in a stack frame which points
to the previous, older frame on the stack. Since frames are designed to have a definite
“anchor” point from which a frame is being access, exactly the address pointed at by
the frame pointer for the top-most stack, it’s natural that the dynamic link identifies the
previous stack frame by pointing to that frame’s anchor point.

Alternatively, one could imagine a design, where instead of a dynamic link pointing to the
previous stack, the stack frame contains information about its size and then calculating
how much stack memory needs to be freed. However, using a dynamic link just pointing to
(the anchor of) the previous frame is more efficient (and that’s why we discuss the concept
of dynamic links). In particular it’s more efficient if the fixed anchor inside a frame, i.e.,
the point where the frame pointer and the dynamic links point to is the slot that contains
the dynamic link itself: the frame is designed in such a way that the control link is located
with an offset of 0. As a consequence, the control-links form a chain of addresses, the
control-link in the top-most frame, pointed at by the frame pointer, points to the control
link of the frame below the top-most one, etc., and the control link of a frame in this way
remembers the frame pointer of the caller (at the time when the caller’s frame was current
and on top of the stack. That is shown in Figure 8.6. And popping off the top-most frame
is setting the frame-pointer to the address contained in the slot the frame-pointer points
at (which is control-pointer). That’s fast, in particular when supported by hardware.

The sketched design choices, including the placement of the control link at an offset of 0 to
the achor point of the frame is very common. Also plausible is that the return address is
kept in close and fixed neighborship to the slot with the control link, here in the subsequent
slot. Likewise common is that formal paramaters appear at positive offsets (higher up in
the picture) and (other) local variables appear with negative offsets. It has to do with
the fact that during parameter passing it makes sense to push the parmeters first on the
stack, before proceeding adding the book-keeping informations (pushing the control link
and the return address) and finally allocating space for the local variables of the callee.
In this way, the order in which things are pushed on the stack (following the so-called
calling conventions) reflects the layout of the stack frame (or vice versa). In the concrete
gcd-example, the procedure has no additional local variables, i.e., the return address is
located in the last slot of a stack frame.

Besides the parameters, there can be more local variables: C allows to introduce local
variables, besides the formal parameters, in functions or procedures. What is not allowed

4That the address increases, instead of decreases depends of course on how the stack is layed out in
memory. One convention is, that it grows towards lower addresses, and that is indicated in the pictures
here in that the top of the stack is shown at the bottom.

12 8 Run-time environments
8.2 The procedure abstraction: different layouts

is to introduce local procedures. There is still another general kind of data for which
a activation record needs memory. That’s for holding intermediate results when dealing
with compound expressions. For that, the compiler will typically use so-called temporary
variables, variables introduced in the code generation phase for exactly that purpose: hold
intermediate results. We will see examples of that later.

Side remark 8.2.2 (Tail recursion). As a side remark; the GCD procedure is recursive,
all right. However, it makes use of a restricted form of recursion, namely tail recursion.
In the body of gcd, in each branch, gcd is either not called at all, or it is called at the
end of the procedure body, as last thing before returning. That’s tail recursion.

It’s a simple form of recursion, also in connection with run-time environments. The call
which pushes a new stack frame to the run-time stack, is the last thing that happens
in an activation. That means, the space of the caller’s stack frame and the local data
it contains therein, is not actually needed any longer. That means, one could arrange
the run-time environment in such a way, not to add another stack frame for the callee,
but to recycle the space of the caller’s frame. If one (resp. the run-time system) really
makes use of recursion, one still need to maintain a stack of return addresses, of course.
However, a tail recursive situation can be completely be replaced by an iterative one, using
a loop instead. A compiler that does that automatically, replacing (sometimes) recursion
by iteration when possible, is said to do tail recursion optimization.

At the level of the run-time system, at machine code level (and potentially intermediate
code level), there are typically no looping constructs, of course, so making use of looping
instead of recursion is more a conceptual statement. Recursion would involve jumps plus
arranging a stack with return addresses, so one jumps repeatedly to the beginning of
a body, but at the end, one jumps back (which corresponds to a return). An iterative
solution would not use a stack, and would simply loop thought the body, without need
of returning; except of course, a return to the code calling from the outside needs to be
done, in the example the return to the main method.

Activation trees Next we shortly discuss shortly the related concept of activation tree.
While activation records and stack frames are concrete data structures that need to be re-
alized by the compiler (writer), activation trees are a conceptual description what happens
at run-time, which function calls which other ones.

Example 8.2.3 (Activation records). The code of Listing 8.3 contains some artificial code,
which will use to illustrate the concept of activation trees (and a bit later also for another
illustration of activation records and stack frames.
int x = 2 ; /∗ g l o b . var ∗/
void g (int) ; /∗ pro to type ∗/

void f (int n)
{ stat ic int x = 1 ;

g (n) ;
x−−;

}

void g (int m)
{ int y = m−1;

i f (y > 0)

8 Run-time environments
8.2 The procedure abstraction: different layouts 13

{ f (y) ;
x−−;

g (y) ;
}

}

int main ()
{ g (x) ;

return 0 ;
}

Listing 8.3: Another example illustrating scoping and activations (in C)

The code contains local and global variables under lexical, static scoping in C. There is only
one global variable namely x, all others are local; the formal parameters of the functions
count among the local variables. Note that the procedure f has a local variable likewise
called x. Finally, C is call-by-value, like Java, and many other languages.5

main()

gcd(15,10)

gcd(10,5)

gcd(5,0)

(a) gcd

main

g(2)

f(1)

g(1)

g(1)

(b) f and g example

Figure 8.7: Activation trees

The two pictures illustrate the notion of activation tree, in Figure 8.7a the tree for calling
the functions of the gcd-example from Listing 8.2 on (15, 10), and Figure 8.7b is the
activation tree for the code from Listing 8.3. For the gcd-example, it’s not much of a
tree as it’s linear. An activation of gcd calls itself at most once, and actually, gcd is
tail-recursive.

Variable access and layout of activation records Activation records are structurally
uniform per language, or at least per least per compiler, and platform. However, the acti-
vation records are not identical. In particular, activation records for different functions are
of different size as different functions have different memory needs. But each activation
of the same function, of course, leads to the allocation of the same amount of memory
(here on the stack).

Let’s look at Figure 8.8, which is supposed to give a schematic view of the activation
records for procedure g from Listing 8.3.

5For participants of IN2040: call-by-value, which is also the standard order of evaluation of Scheme, is
there also called applicative order evaluation. The terminology of applicative order vs. normal order
evaluation is often used in the context of functional and declarative languages. We will talk about
parameter passing and various evaluation strategies later.

14 8 Run-time environments
8.2 The procedure abstraction: different layouts

Figure 8.8: Layout g

It shows a plausible arrangement of g’s activation record (and other functions would have
analogous arrangements). In the picture, fp is the frame pointer, m (in this example) is
the (only) parameter of the function g.

For the stack, we assume that it grows to addresses lower in the stack space. As far
as depicting the address space is concerned, we draw higher addresses “higher up” in the
picture, and consequently, the stack “grows” downwards. For the pointers in such pictures:
the “pointers” or arrows point to the “bottom” of the meant slot.6 Different presentations
may employ different graphical conventions. The graphical conventions are of course to be
distinguished from the layout itself of the activation record and the corresponding calling
conventions (see later).

In Figure 8.8 and with the mentioned conventions the fp points to the control link, i.e.,
the memory (perhaps a specific register) corresponding to the frame pointer contains the
address of the control link, i.e., the control link is kept at an offset of 0 from where the fp
points to. The return address given the slot below has a negative offset to that pointer.

Roughly speaking, the frame pointer points “to” the activation record at the top of the
stack, which is the record of the current activation at a given point. However it does not
point to the “top”7 of that frame or stack, but to a well-chosen, well-defined position in
the frame; in the shown layout, this well-chosen anchor point is the location of the control
or dynamic link. All local data, for instance local variables are accessible relative to that,
some with a positive offset, some with a negative offset, and, as mentioned, the control
link is directly pointed at with the frame pointer, with an offset of 0.

As explained, the control or dynamic link is located with an offset of zero (and the return
address with an offset of whatever the space need of the return address is). It’s not a
logical necessity to have them there, the only thing required is that they are located at
a known place in the activation record pointed at by fp. So depending on the language,
compiler, platform etc. there may be other arrangements as well.

However, doing it the way described is a common and plausible one. It has to with the
desire to build up the activation records in an efficient and clean way. When executing
a call at run-time, a new activation record is pushed to the stack. But that is not an
instantaneous thing, it is a step-by-step process, filling one slot after the other, i.e., pushing
one slot after the other to the stack; and when all the slots are filled, one can see it as
having pushed the whole activation records. The steps that do that, connected to the

6In some pictures later, we let them point also to the “middle” of a slot.
7Confusingly, the top of the stack is written at the bottom.

8 Run-time environments
8.2 The procedure abstraction: different layouts 15

layout of the activation records, are called a language’s (or platform’s) calling conventions
(see later).

Layout for arrays of statically known size Procedures can of course declare local data
more complex than data of basic or elementary types. The code from Listing 8.4s show a
procedure with a local array of statically known size.
void f (int x , char c)
{ int a [1 0] ;

double y ;
. .

}

Listing 8.4: Procedure with local array

To calculate the memory need and this the offsets inside an activation record is not much
more complex for arrays (see Table 8.1). As conventional, the identifier a represents also
the (address of the) first slot of the array a(0).

name offset
x +5
c +4
a -24
y -32

Table 8.1: Array of fixed size: offsets

The layout for a corresponding activation is depicted in Figure 8.9 and the codes from
Listings 8.5 and 8.6 how the variables and the array content can be accessed, given the
frame pointer.

Figure 8.9: Layout

c : 4(fp)
y : −32(fp)

Listing 8.5: access of c and y

(−24+2∗ i) (fp)

Listing 8.6: access for a[i]

16 8 Run-time environments
8.2 The procedure abstraction: different layouts

The example makes some plausible assumptions on the size of the involved data: Addresses
count 4 words, the character 1, the integers 2 words, the double 8. Syntax like 4(fp) is
meant to designate the memory interpreting the content of fp as address and add 4 words
to it. We will later encounter, in the context of (intermediate) code, different addressing
modes (like indirect addresses, etc.). Except in the very early day, hardware supports
different ways of accessing the memory, like support for specifying given offsets.

Calling conventions: pushing and popping activation records

The call stack is a stack of activation records; calling a procedure involves pushing an
activation record and returning means popping off an activation record. This is a view
of the stack on the “macro”-level, so to say, which activation records as elements of the
stack, and the frame-pointer pointing the top-most record, resp. pointing to a well-
defined anchor point inside that top-most record. But the stack as well as the pushing
and popping has also some “micro”-level. The stack consists of individual words, and the
top of the stack, separating the occupied part of the memory from the free one, is pointed
at by the stack pointer. So pushing a new activation record onto the stack involves, at
the micro-level, to push the relevant information step by step to the stack, placing them
at the designated places inside the activation record.

Someone has to perform those steps; the corresponding instructions have to be executed
each time a function is called and “undone” when returning from a call. Since that happens
at run-time, so those steps are not not executed by the compiler. But the compiler resp.
compiler writer has to arrange for that they are executed at run-time. Concretely, the
code generator has ultimately to inject small corresponding stretches of instructions, that
perform the necessary steps at machine code level.

Same as the the activation record design is uniform, to the very least per compiler, the
steps that push and pop the activation records are uniform, i.e., done in the same order
for each call (corresponding to a push) and for each return (corresponding to a pop).

Those steps resp. the specification of those steps are called calling sequences, or
also linking conventions or calling conventions.

Example 8.2.4. Back to the C code again from Listing 8.3 with the functions f and g.
Figure 8.10 shows two snapshots of the stack. The stack from 8.10a shows 4 activation
records. It corresponds to the point at run-time, when g is called for the second time,
but the execution has not yet returned from the activation. See also the activation tree
from Figure 8.7b. The stackpointer separates the used part of the stack from the free
one (in gray). In the used part of the stack, there are 4 activation records, one for the
main-function, and 3 for the 2 activations of g and the single activation of f .

Besides the stack, which is part of the dynamic memory, the figures show also part of the
static memory is shown (in white). The example program contains a global variable x.
Additionally, the function f likewise has a variable called x, which is declared as static.
As a consequence, that x is also stored in the static part of the memory (marked as @f in
the picture). The second picture shows the situation after the call to f , and g has again

8 Run-time environments
8.2 The procedure abstraction: different layouts 17

x:2
x:1 (@f)static

main

m:2

control link

return address

y:1

g

n:1

control link

return address

f

m:1

control link
fp

return address

y:0
sp

g

...

(a)

x:1
x:0 (@f)static

main

m:2

control link

return address

y:1

g

m:1

control link
fp

return address

y:0
sp

g

...

(b)

Figure 8.10: 2 snapshots of the call stack

be called. That corresponds to the right-most branch of the activation tree from Figure
8.7b.

• For procedure call (entry)
1. compute arguments, store them in the correct positions in the new acti-

vation record of the procedure (pushing them in order onto the runtime
stack will achieve this)

2. store (push) the fp as the control link in the new activation record
3. change the fp, so that it points to the beginning of the new activation

record. If there is an sp, copying the sp into the fp at this point will
achieve this.

4. store the return address in the new activation record, if necessary
5. perform a jump to the code of the called procedure.
6. Allocate space on the stack for local var’s by appropriate adjustement of

the sp
• procedure exit

1. copy the fp to the sp (inverting 3. of the entry)
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s

Example 8.2.5 (Calling sequence). Let’s look one more time the C code again from Listing
8.3 with the functions f and g. The steps when calling g are shown in the pictures from
Figure 8.11.

Treatment of auxiliary results: “temporaries” As explained, activation records contain
space for various kinds of data, including space for local variables, including values for the
formal parameters of the function in question. There is one part of the local memory need
we have not mentioned yet. The code of the method body will in general do some calcula-
tion. At souce code level resp. in abstract syntax, that involves compound expressions.

18 8 Run-time environments
8.2 The procedure abstraction: different layouts

rest of stack

m:2

control link

return addr.
fp

y:1

...
sp

(a) Before the call

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

...
sp

(b) m pushed

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

control link
...

sp

(c) fp pushed

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

. . .
sp

(d) fp := sp, push return
addr.

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

y:0

...
sp

(e) alloc. local var y

Figure 8.11: Steps when calling g

Such expressivity will not be available in the machine code and typically neither in inter-
mediate code. There are different forms and flavors of intermediate code, but typically
intermediate code is platform independent and somewhere “half way” between souce code
and the ultimate assembler code. At any rate, typical intemediate code does not support
compound expressions. Instead, intermediate code breaks down compound calculation into
their basic steps and uses additional local variables to store intermediate results. Those
are known as temporary variables, or temporaries.8 It’s one task of intermediate code
generation to introduce those additional variables, i.e., generate intermedate code that
makes use of those. Like procedure-local variables introduced at source code level, also
intermediate variables need to be stored in the activation records as well, of course. Ac-
tually, on the (intermediate) code level, there is no real difference between “official” local

8The use of temporaries is at least done for so-called two-address and three-address codes. There exists
also intermediate code formats that don’t use temporaries, but also they break down complex expres-
sions into basic ones. In the chapter about intermediate code generation, we will see both flavors of
intermediate codes.

8 Run-time environments
8.2 The procedure abstraction: different layouts 19

variables and temporary variables. Both represent values stored there, and ultimate slots
i.e., addresses arranged within the activation record. Intermediate code and temporaries
will be discussed in a later chapter.9

For concreteness’ sake, let’s look at the C-code snippet from Listing 8.7.
x [i] = (i + j) ∗ (i /k + f (j)) ;

Listing 8.7: Compound expression

rest of stack

. . .

control link

return addr.
fp

. . .

address of x[i]

result of i+j

result of i/k
sp

new AR for f
(about to be
created)

...

Figure 8.12: Temporaries

The computations in the example are not really complex from a programming perspective,
but they are compound. Perhaps the hardware (and the intermediate code) has support
for x + y, x - y, x + 1 etc., but compound expressions like the one in the example
are of course not natively supported. They have to be broken down to elementary calcu-
lations and the intermediate results need to be stored somewhere, in temporaries and the
activation record must provide enough space so be able to locally store those results.

Variable-length data The examples so far involved variables containing fixed-sized data,
including the oraries. Next we shortly discuss variable-length data, concretely variable-
length arrays.10 Ada is a language that supports such data structures.
type Int_Vector i s array (INTEGER range <>) of INTEGER;

procedure Sum(low , high : INTEGER; A: Int_Vector) return INTEGER
i s

i : i n t e g e r
begin

. . .
end Sum;

Listing 8.8: Variable-length arrays in Ada

9We will look later at two flavors of intermediate code, only one will actually make use of temporaries
(three-address code), the other one will manage intermediate results in a different way.

10Dynamic arrays also exists, and are even more flexible and nowadays more common. They can be
handled the same way as described here.

20 8 Run-time environments
8.2 The procedure abstraction: different layouts

Here, we illustrate how to deal with the situation that an variable-length array is passed
as argument, in particular by value, i.e. the callee receives a copy of the array. In many
languages, including C and Java, this is not the way arrays are passed. Typically, they
are of “reference type” which means, a reference to the array is handed over to the callee,
i.e., copied into the activation record. But, as said, the example is how to pass the whole
array as value.

rest of stack

low:. . .

high:. . .

A:

size of A: 10

control link

return addr.
fp

i:...

A[9]

. . .

A[0]

...
sp

Figure 8.13: AR layout

The treatment is actually unproblematic; Figure 8.13 shows a possible layout . The picture
simply says: if an array is passed as argument, the type may not specify its size, because
only when passing the concrete array, the size is known. Then one just has to store the
size at one particular, agreed upon place in the activation record (here at offset 6), and
then use the value for the calculation when accessing a slot. So, compared to the previous
handling of arrays, there is just one layer of indirection involved. In the shown example,
the access for A[i] would, for instance, be calculated as @6(fp) + 2*i.

Nested declarations Before moving on to the more complex situation of nested procedure
declarations, let’s have a look at how do deal with blocks or scopes inside a procedure.11

void p (int x , double y)
{ char a ;

int i ;
. . . ;

A: { double x ;
int j ;
. . . ;

}
. . . ;

B: { char ∗ a ;
int k ;
. . . ;

} ;
. . . ;

}

Listing 8.9: Nested declarations

Listing 8.9 shows a simple situation, with scopes A and B nested inside a procedure p.
11Some statement(s) enclosed by { and } is also called compound statement in the context of C [4].

8 Run-time environments
8.2 The procedure abstraction: different layouts 21

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

x:

j:

...
sp

(a) Area for block A allocated

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

a:

k:

...
sp

(b) Area for block B allocated

Figure 8.14: Steps when calling g

The gist of the example is: if one has local scopes of that kind “side by side” in the code,
here called A and B, there is no need to allocate space for both. The space for the local
variables from the first scope maybe reused for the needs of the second. In that way it’s
treated in the same spirit as union types in C. There is also no need to officially “push” and
“pop” activation records following the calling conventions, though nested scopes do follow
a stack-discipline and they could be treated as “inlined” calls to anonymous, parameterless
procedures.

Stack-based RTE with nested procedures

What follows in this section, illustrated with Pascal, is to relax one restriction we had
so far wrt. the nature of variables. It may not have been obvious, but it should become
so now: We were operating with a C-like language, which is meant as featuring lexical
scoping and non-nested functions or precedures. That means: there are only two “kinds”
of variables: global ones, which are static, and local ones which reside in the current stack
frame. Languages with nested procedures (but without higher-order functions) are called
Pascal-like languages.

With nested procedures (and lexical scoping) there are variables neither static nor
residing the the current stack frame. So we need a way to access those during
run-time. That will be done by static links.

The code from Listing 8.10 is not just Pascal-like, it’s some concrete Pascal dialect. The
comments after the begin and end statements indicate to which procedure that part
belong). As q is nested in p, and as p has a local variable n in the same scope, this local
variable n is accessible inside q. At run-time, in a call to q, the corresponding activation
record will reside on the run-time stack. If q’s body makes use of n (not explicitly shown
in the skeletal code), it needs a way to locate the variable’s content. From the perspective
of q, the variable is neither local to q nor global. It’s of course local to p

program nonLocalRef ;
procedure p ;

var n : integer ;
procedure q ;

22 8 Run-time environments
8.2 The procedure abstraction: different layouts

begin
(∗ a r e f t o n i s now non−l o c a l , non−g l o b a l ∗)

end ; (∗ q ∗)

procedure r (n : integer) ;
begin

q ;
end ; (∗ r ∗)

begin (∗ p ∗)
n := 1 ;
r (2) ;

end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .

Listing 8.10: Nested procedures in Pascal

Figure 8.15 shows a situation where the main program calls p, which calls r which calls
q. Not all details of the activation records are shown in the picture, it’s just meant as
showing the shape of the stack. When procedure q from Listing 8.10 accesses the variable
n, that refers to n declared in procedure p under lexical scoping.

vars of main

control link

return addr.

n:1

p

n:2

control link

return addr.

r

control link
fp

return addr.
sp

q

...

Figure 8.15: Stack frames (general) for calls m → p → r → q

This lexical nesting of the scopes is not reflected one-to-one in the run-time call stack.
Fortunately, though, the call-stack and the lexical nesting are not completely independent.
Variables defined locally in a procedure, like n in p, can of course be accessed inside p,
including by procedures defined locally in p, like q (though in the shown code, q does not
actually access n). Now, since q (and r) are defined locally inside p, no-one outside can
call them, which would require to allocate an activation record for them when executing
the “outsider”. In other words

q (and r) can be called and activated only during times when p is activated, i.e.,
when there is at least one activation record for p on the stack. With p calling q (or
r), p’s activation record is earlier allocated than that of the callee, which means
it can be found deeper on the stack. The static link (aka access link) points to
the most recent activation of the statically surrounding scope and that serves to
access the relevant activation record. With a nesting depth of more than one, it
may involve following static links multiple times.

Figure 8.16 shows the same sitation as the run-time stack from Figure 8.15, this time filling
out more details. A crucial addition is of course, the static links indicated in red.

8 Run-time environments
8.2 The procedure abstraction: different layouts 23

vars of main

(no access link)

control link

return addr.

n:1

n:2

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

Figure 8.16: Static (or access) link

As everything else, it’s placed at a well-specified position inside the activation record, with
a known offset from the frame pointer. In the picture, it’s shown at a fixed position right
beside the control (or dynamic) link. It points to the stack-frame representing the current
AR of the statically enclosed scope.

Access links, same as control links point “to” a stack frame. As explained, the point of
reference is neither the start nor the end of the frame; the “anchor point” of the stack
frame is the where the frame pointer points to, when the stack frame is on top of the
frame. And that is (in the shown layout) also the slot that contains the control link.

As mentioned, procedures can be nested deeper than just involving one level. Listing 8.11
shows an example of that.
program chain ;

procedure p ;
var x : integer ;

procedure q ;
procedure r ;
begin

x :=2;
. . . ;
i f . . . then p ;

end ; (∗ r ∗)
begin

r ;
end ; (∗ q ∗)

begin
q ;

end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .

Listing 8.11: Example with multiple levels

In the example, procedure p contains procedure q and that in turn contains r. That
is the static structure, which is relevant for lexically scoped variables. At run-time, the

24 8 Run-time environments
8.2 The procedure abstraction: different layouts

main procure calls p which calls q which calls r, so that order is somehow aligned with
the static nesting structure, but that’s not the point of the example. It’s not a complete
coincidence, a call chain like p calls r which calls q is of course not possible, because r is
is nested inside q.

Side remark 8.2.6 (Calling procedure r outside of q?). The explanation claims that r
cannot be called from outside of q in the example. To be precise, that’s not 100% true,
though not shown in the example. As seen earlier, Pascal supports function variables.
With those, it’s possible, to pass a locally defined procedure to the outside, so that it
can be accessed and called from there. We will look at the consequences of that in the
following section, when discussing higher-order functions. The current example and the
current section is not concerned with that more complex setting, it’s only about nested
procedure definitions, not higher-order procedure and/or procedure variables.

When the inner prodecure r is called, the variable x is accessed. That is declared in
the body of procedure p, which is two static nesting-levels away from that. To find
the appropriate activation record, one needs to dereference the access link 2 times (or in
general multiple times), a phenomenon called access chaining.

AR of main

(no access link)

control link

return addr.

x:1

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

Figure 8.17: calls m → p → q → r

Using dot-notation to access slots inside an activation record, we could write fp.al.al.x
for the situation of the example. Note that in the sketched design of activation records, the
static access link al is at a fixed offset inside an AR (as is x in its corresponding record).
Of course the activation records for different procedures are differently sized, which means
the actual offset from the activation record for r to x is statically unknown! What is
statically known is the number of access link dereferences which reflects the lexical
nesting situation. The task of the compiler is to generate an appropriate access chain with
the chain-length statically determined, but the actual computation is done at run-time

How can access chaining be implemented? Implementing means, generating (machine)
code that accesses the corresponding pieces of data in the correct activation record, thus
making the lexical scoping abstraction of the programming language a reality at run-time.
Let’s have a look at the following situation:

fp. al.al.al....al︸ ︷︷ ︸
n

.x

8 Run-time environments
8.2 The procedure abstraction: different layouts 25

involving an access chain to access a variable x. The access, chained or not, needs to be
fast, which means, one would use registers, resp. one would design it in such a way that
the frame pointer fp is held in dedicated register.
4(fp) −> reg // 1
4(reg) −> reg // 2
. . .
4(reg) −> reg // n = d i f f e r e n c e in n e s t i n g l e v e l s
6(reg) // a c c e s s content o f x

Listing 8.12: Access chaining

The “machine code” plausibly uses registers to follow the chain. It’s assumed that the
static link is contained at an offset of 4 in the activation record (pointed at via the frame
pointer fp, which also may be kept in a dedicated register, like typically the stack pointer).
Variable x is assumed at an offset of 6 in the frame that corresponds to the scope where
x is defined. Of course, following a chain of access links is costly. In practice, very long
chains may not occur very often, at least for languages like Pascal. On the other hand, in
languages where functions play a central role (i.e., in functional languages), a programmer
may well structure the code with functions nested inside functions nested inside functions,
etc. Of course that depends a bit on the problem and the personal programming style,
but still, nesting of functions comes easy in functional languages.

As noted earlier: a stack-based run-time environment will no longer be doable for fully
higher-order functions; we will cover that later to some extent. However, the concept of
static links is still relevant then, even if it does not connect activation records on a stack.

Now, that the activation records have mildly become more complex, adding static links,
also the calling sequence need to be adapted, but that’s like a mild adaption, and the
principles of what calling sequences do is conceptually unchanged.

Calling sequence, now with static links: For procedure call (at entry):
1. compute arguments, store them in the correct positions in the new activation

record of the procedure (pushing them in order onto the runtume stack will
achieve this)

2. • push access link, value calculated via link chaining
• store (push) the fp as the control link in the new AR

3. change fp, to point to the “beginning” of the new AR. If there is an sp,
copying sp into fp at this point will achieve this.

4. store the return address in the new AR, if necessary
5. perform a jump to the code of the called procedure.
6. Allocate space on the stack for local var’s by adjusting sp

For procedure exit, steps are reversed
1. copy the fp to the sp
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s and the access link

Figure 8.17 illustrated lexical nesting involving more than just one nesting level, which
required access chaining. There is another aspect we have mentioned only in passing.

26 8 Run-time environments
8.2 The procedure abstraction: different layouts

The access link points to an activation record corresponding to the lexically enclosing
procedure. But of course the enclosing procedure could have been called multiple times
in recursive situations, which means that there are multiple activation records for the
enclosing procedure on the stack. Which is the one should the static link point to? It’s
probably clear: it’s the “most recent” stack frame. That’s illustrated in Figure 8.18.

AR of main

(no access link)

control link

return addr.

x:...

access link

control link

return addr.

access link

control link

return addr.

no access link

control link

return addr.

x:...

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

Figure 8.18: main → p → q → r → p → q → r

Functions as parameters, closures, and higher order functions

There is more to scoping and run-time environments than nested procedure declarations.
We have seen glimpses of that before, mostly in the context of Pascal. In particular, in the
chapter about type checking, we have seen a Pascal example with procedure variables,
which we will revisit here. We also shortly mentioned in connection with static links,
without a concrete example involving procedure variables and without going into details,
that such variables complicate matters. Ultimately, when dealing with full higher-order
functions, one cannot arrange the activation records on a stack.

Of course, also for higher-order functions, the calls and returns follow a LIFO discipline.
So, there is still a notion of a call-stack. The stack in the run-time system is not just there
to manage the return addresses and to regulate thereby the proper control-flow of calls
and returns in a stack-like manner. The stack also allocates and de-allocates the memory
needs of the activated functions (plus some mechanism to find the proper lexical scope,
if the language is lexically scoped; that’s the static links). However:

8 Run-time environments
8.2 The procedure abstraction: different layouts 27

A stack arrangement for the data needs works for languages where the life-time of
the data for a function activation is aligned with the life time of the activation
itself: when a function returns, and when removing the return address for the
stack, also the local data is no longer needed. This means, one can treat the return
addresses and the data jointly on the call stack in the way dicussed.

For higher-order function, this alignement of the life-times of function activations and data
declared in functions is no longer given. Same if one has variables containing (pointers to)
functions, as in the Pascal example. Therefore, one needs a more general form of run-time
environment, putting the activation records on the heap. The corresponding concept is
typically not called activation record any more, but it’s called closure.

Procedures as parameters We start less ambitious and don’t fully embrace higher-order
functions. Instead we look at functions or procedures as parameters only. In that
setting, the alignment of local data and function activation still holds, though it get’s
more complex, but one still can make a stack-based run-time environment. In a way,
one has stack-arranged closures. There are not many languages nowadays that bother
to support procedure parameters without also support procedures as return values, and
generally, when talking about full closures, they are normally heap arranged.

Pascal supports procedure parameters (and local procedures), but cannot give back pro-
cedures via “return”, so it’s not a higher-order language. See Listing 8.13.
program c l o s u r e e x (output) ;

procedure p(procedure a) ;
begin

a ;
end ;

procedure q ;
var x : integer ;

procedure r ;
begin

writeln (x) ; // ``non−l o c a l ' '
end ;

begin
x := 2 ;
p (r) ;

end ; (∗ q ∗)

begin (∗ main ∗)
q ;

end .

Listing 8.13: Procedures as parameters

Listings 8.14 and 8.15 contain the “same” example in go and ocaml. To test the code,
perhaps Go or ocaml compilers are more easy to get hold of. Unlike Pascal, Go and ocaml
support higher-order functions, but that includes passing functions as parameters.
package main
import (" fmt ")

28 8 Run-time environments
8.2 The procedure abstraction: different layouts

var p = func (a (func () ())) { // (un i t −> uni t) −> uni t
a ()

}

var q = func () {
var x = 0
var r = func () {
fmt . P r i n t f (" x = %v " , x)
}
x = 2
p(r) // r as argument

}

func main () {
q () ;

}

Listing 8.14: Procedures as parameters, same example in Go

let p (a : un i t −> uni t) : un i t = a () ; ;

let q () =
let x : i n t ref = ref 1
in let r = function () −> (pr int_int ! x) (∗ d e r e f ∗)
in
x := 2 ; (∗ assignment to re f −typed var ∗)
p(r) ; ;

q () ; ; (∗ ``body o f main ' ' ∗)

Listing 8.15: Procedures as parameters, same example in ocaml

Here, as said, we are not “going full higher-order” and thus we can still stay within a stack
design of the activation records. However, we need to add another complication, which
can be called closure. As far as closures are concerned, it will be a rather restrictive form
of closures. Typically, when talking about closures, those are data structure for managing
the run-time needs for higher-order functions and one might stumble upon statements like
“closures are heap-allocated”. In general, that’s the case, but, as said, we are restricting
ourselves to procedures as parameters, which allows to work with a stack. So we are
talking about stack-allocated closures. The discussion is is also rather low-level, i.e.,
we talk about a specific way to achieve closures, namely by a modest extension on our stack
frames. Finally, the presentation here presents a specific (but most common) semantics
of how non-local variables are treated by the stack allocated closures: they are treated
“by reference”. The concepts of passing values “by reference” and “by value” will be
discussed in the section about parameter passing. Activation records can access variables
which are neither local nor handed over officially as formal parameters. So for those one
normally does not speak about parameter passing, but the distinction of accessing values
of variables outside the current activation either by value or by reference makes also sense
for closures. As said, we only look at a by-reference design.

Before we see how to extend the design of the activation records, let’s start with a con-
ceptual picture of what a closure is, independent from concrete design of the run-time
environment, the activation records, and of whether they are stack or heap allocated.

8 Run-time environments
8.2 The procedure abstraction: different layouts 29

A closure is a function body together with (access to) the values for all its variables,
including the non-local ones.

When saying, the closure “contains” the function body, we mean in an implementation
not that the code is stored in he closure, it’s rather a pointer to where to find the code in
the code segment.

Let’s go back to the Pascal example from Listing 8.13. The call chain in the example
is that the main program calls q which in turn calls p, and when calling p, a procedure
is handed over, called r. When p is called, of course a stack frame is allocated. If p is
executed, upon being called, it calls a procedure referred to as a in the body of p. That
variable is the formal parameter of the procedure p. What is actually called is the actual
parameter of the call, in this example that’s the procedure r. but that’s just parameter
passing, when calling p, a pointer to r will be handed over and stored in the activation
record of p. With (reference to) r stored, one can arrange the call to r, i.e., jump to the
corresponding address in corresponding step the call-sequence.

To be able to cal r (via a in the source-code), not only the address needs to be known, but
also the “lexical nesting situation” of the called procedure, so that we can fill the static
link slot in r’s activation record properly. At static time, that is not known, i.e., it’s not
known which procedure a represents, and that includes of course, not knowhing where the
called function is placed in the scoping hierarchy.

The solution is simple: it might not be known statically, but at least is known at run-time,
namely when calling p(r). So when calling p, one not only hands over the reference to r
as part of the parameter passing and stores that in p’s activation record, one also passes
at run-time the “static link” for the eventual activation record of r/a. So, in a way, when
calling p, (a pointer to) r together with the needed static link is handed over at
run-time. So the RTE stores reference to the frame, i.e., the relevant frame pointer,
which is here to the frame of q where r is defined. In Figure 8.19a, it’s the information
⟨ipr, ep⟩, where ipr represents r’s instruction pointer and ep refers to q’s frame pointer.

This pair represents the closure!

Limitations of stack-based run-time environments Procedures are one, if not the, cen-
tral control-flow abstraction in programming languages. A stack-based allocation is intu-
itive, common, and efficient. Calls and returns follow a LIFO strategy anyway, i.e., show a
stack-like behavior, and that is also supported by hardware, in the form of providing a ded-
icated stack-pointer register and instructions that assist making the stack manipulations
efficient. Indeed, a stack-based arrangement is used in many languages.

Let’s remember the purpose of the activation records. They maintain relevant informa-
tion that allows to implement procedures. That involves the control-flow, remembering
the return address, and the memory needs (local variables etc.), plus some book-keeping
information, depending on the language, to make the scoping work. The return addresses
need a stack, that’s for sure, but that one can also put the dynamic memory need in

30 8 Run-time environments
8.2 The procedure abstraction: different layouts

(a) Closure for formal parameter a of the ex-
ample (b) After calling a (= r)

Figure 8.19: Stack-allocated closures

connection with procedure calls and return on the same stack rests on one underlying
assumption:

The data (which is part of the activation record) for a procedure cannot outlive
the procedure’s activation.

As long as that is the case, stack allocation of frames is fine. But there are situations
where the data is needed after the corresponding call has returned in whose activation
record the information is placed. In that case, the a stack-allocated frame would have
been “removed” already when the data is needed, so it would be no longer available,

There is a number of reasons why procedure-local data can outlive the duration of the
corresponding activation. Data that outlives the return of the procedure is a situation,
where (a reference to) the data is “returned” to the outside of the procedure, explicitly
or implicitly. Explicitly in the sense that there is some return statement or similar and
the return value is reflected in the procedure’s type. Data could also be “returned” via a
side effect. Finally if functions or procedures are returned, then, under a lexical binding
regime, the body of the returned procedure may make use of variables declared in the
procedure that returns the procedure. So far we dealt only with procedures as arguments
of other procedures, which can still handled by a stack-arrangement (with stack-allocated
closures). When returning procedures, that’s no longer the case. Higher-order functions,
which involve both, as well as the possibility nested procedure declaration, can thereby
not covered by a stack-based arrangement of activation records.

Using an explicit return on some data value does not per se mean the returned data
outlives the activation, because it’s about the data but it’s location, where it’s stored
(here on the stack). If returning involves copying the data back to the callee, for instance
into a variable located at the callers activation record, then all is fine. But in a language
with pointers, one can returh the address of a local procedure variable. See the code
snipped from Listing 8.16.
int ∗ dangle (void) { q// return type : p o i n t e r to an i n t

8 Run-time environments
8.2 The procedure abstraction: different layouts 31

int x ; // l o c a l var
return &x ; // address o f x

}

Listing 8.16: Dangling ref’s due to returning references

Obviously, the caller of this procedure gets hold of an address in an activation record of
dangle and thus access to a part of the stack that is “no longer there”.12 The example
uses address and pointers as in C. The variable’s lifetime may be over, but the reference to
the address lives on. Of course the same problem would occur in languages like Java, with
references creating an object in the dangle procedure and then returning the reference to
the object. I.e., it would occur, if Java would have stack-allocated objects, which of course
it does not Objects live on the heap. The life-time of objects or other reference data
is decoupled from the activation records of the procedures that creates them. That’s why
such data is stored in a dynamic memory structure where allocation and deallocation of
the memory content does not follow a LIFO strategy. That’s of course the heap!

Another thing that can break the stack-discipline of a call stack is “undisciplined” control
flow, if the language supports goto. Goto’s are of course nowaday’s rather deprecated
and unsupported by most languages, but C, for instance supports it.13 Goto’s easily break
any scoping rule, including the procedure abstraction. Of course, also explicit memory
allocation (and deallocation), pointer arithmetic etc. gives freedom of memory handling
that defies a stack-discipline.

As mentioned, also returning functions from a call in a language with lexical scope breaks
the stack discipline. In the Pascal example from Listing 8.17, a procedure defined nested
in another is “returned” via a side-effect, storing the returned procedure in a function
variable.
program Funcvar ;
var pv : Procedure (x : integer) ; (∗ procedur var ∗)

Procedure Q() ;
var

a : integer ;
Procedure P(i : integer) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` return ' ' P (as s i d e e f f e c t) ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
begin (∗ here : f r e e Pascal ∗)

Q() ;
pv (1) ;

end .

Listing 8.17: Function variable (in Pascal)

12Of course the part of the memory is still “there”, perhaps even, if lucky, the latest value of x is still
there. But the memory may also have in the meantime been reused for a different activation record
with different data. At any rate, it should be considered an “illegal” access.

13Starting end of the 60ies, and in the seventies, there were the so-called structured programming wars.
The first important salvo in these was were one of Dijkstra’s notes, the particular one titled “Go To
statement considered harmful”.

32 8 Run-time environments
8.2 The procedure abstraction: different layouts

The program is legal and type correct Pascal, it can be compiled and run. Doing so results
in a run-time error as follows:

funcvar
Runtime error 216 at $0000000000400233
$0000000000400233
$0000000000400268
$00000000004001E0

That the programs crashes is, to some extent, a good thing, at least better than the
alternative, that some random bits from a deallocated or reallocated stack area are given
back without the user knowing. Basically it means, Pascal opted for a stack-based run-time
environment, but supports features where that is not powerful enough.14

The Pascal code uses function variables and side-effects to “return” a locally defined nested
function. The Go code from Listing 8.18 officially returns a locally defined function.
package main
import (" fmt ")

var f = func () (func (int) int) { // un i t −> (i n t −> i n t)
var x = 40 // l o c a l v a r i a b l e
var g = func (y int) int { // nes ted func t i on

return x + 1
}
x = x+1 // update x
return g // func t ion as re turn va lue

}

func main () {
var x = 0
var h = f ()
fmt . P r i n t l n (x)
var r = h (1)
fmt . P r i n t f (" r = %v " , r)

}

Listing 8.18: Function as return value

The function g is local to f and uses x, which is non-local to g but local to f, and is being
return from f. One also say, it’s a situation when x escapes its scope.

In languages supporting full higher-order functions, functions are treated as “data” same
as everything else. This is captured by say that functions are first-class citizens. Without
higher-order functions, there is a “two-class society” in the language (there may even
be more classes). For instance, procedures can take all kind of language entities as a
argument and can return them. Objects, references, integers, compound data, all that
can be handed over and return and locally declared. But for functions or procedures,
different rules apply. They may only be used as arguments but not for returns or not
even as arguments. Or, as in C-like languages, they cannot be declared in a nested way,
something possible for ordinary data. At any rate, they are treated in a more restricted
manner. For higher-order functions, there are no such restrictions. Like all (other) data,
functions can being locally defined, are allowed as arguments and as return values for
14Pascal also supports pointer arithmethic, so also dangling references can break the stack-discipline there.

8 Run-time environments
8.3 Parameter passing 33

other functions. To manage the memory needs for such language, one needs a so-called
fully-dynamic run-time environment. For that one needs heap-allocated closures,
i.e., more flexibel ones than those stack-allocated closures, but conceptually, closures have
the same function as before. Memory management in general gets more challenging. In
Pascal, which is not a functional language and does not support higher-order functions,
it may be acceptable to run into crushing programs like the one from Listing 8.17 (or
actually maybe not). Using side effects on functional variables is not central to a language
like Pascal, and if used, it should be used with care. However, returning functions and
(re-)combining them to new functions is encouraged by functional languages. Instead of
trusting that the programmer will be able to handle the memory needs for that, such
languages rely on an automatic memory management. Like the stack arrangement,
the management is part of the run-time environment, and thus covered in this chapter.
The automatic mechanism managing the heap is known of course as garbage collector.
In principle, the stack discipline can be seen as a particularly simple (and efficient) form
of garbage collection: returning from a function makes it clear that the local data can be
thrashed. Only the word “garbage collection” is typically not used to refer to that part of
the memory managent in the run-time environment.

8.3 Parameter passing

We discussed how the run-time environment treats procedures as a central abstraction
of programming languages. Often, it results in activation records allocated on the run-
time stack; sometimes that’s not needed if the language is quite primitive (no recursion),
sometimes allocating activation records on the stack is not possible, if the language is
expressive as far as procedures are concerned (higher-order functions).

We also discussed typical designs of activation records, with the frame pointer as the
“anchor” to the activation record. Besides other information, the activation records in
particular contains space for the parameters of a procedure. We discussed that calling
a procedure means going through some well-defined sequence of steps (called the calling
sequence among other things) filling in information into a new activation record, and those
steps include handing over the arguments from caller to callee.

Parameter passing is the mechanism by which the caller and the callee commu-
nicate, via appropriate slots in their activation records. The communication is
bi-directional in the general case: the caller hands over the arguments to the callee
at call-time and, upon returning, the callee can hand back a result.

Let’s focus for a start on the input parameters of a called procedure, not the return. As we
have sketched earlier, a typical arrangement is that those parameters are located “at the
end” of the caller activation record resp. “at the beginning” of the callee activation record.
We also discussed or sketched the concept of calling sequence, the steps the machine code
does to realize the calls and returns, including handing over the parameters from caller to
callee (and later dealing with the return value).

One aspect, however, was not really discussed, namely what exactly is passed from caller
to callee (and back), and how. Sure, the “parameters” are passed, but there are different

34 8 Run-time environments
8.3 Parameter passing

ways to do that. Two basic alternatives are: make a copy of the value to hand over, or
alternatively hand over a reference to the slot where the caller keeps the value, such that
the callee can access it. This latter way, using a reference not a value, is more obvious for
the calling a procedure. For returns, the callee cannot just return the reference to a slot
where it stores the value to be returned; after all, after returning, that part of the stack
is popped off and thereby not usable anymore (the reference would have to be counted as
dangling). Still, one can also handle return in a “by reference” manner, just not in the
naive way using a reference in the callee activation record. We will see later examples.
These two ways are called call-by-value and call-by-reference (and in this terminology,
one focuses on calling, not returning).

8.3.1 Call by-value, by-reference, and by-value-reference

Call-by-value is conceptually probably the simplest and clearest. Parameter passing (when
calling) is the act of providing the callee with a copy of the data used by the caller in the
call. Call-by-refennce is conceptually also simple, though sometimes one finds it confused
with something else, also on the internet and in text-books. In the above texts, it was
formulated like that: the caller hands over to the callee a reference to the place in its
activation record where the caller keeps the data being handed over.

One could say shorter that in call-by-reference, a reference to the data is handed over.
That’s correct, but it can easily be misinterpreted. The confusion starts if one has a
programming language which supports references or pointers, as most languages do.
Either explicitly and visible to the user, as for instance in C, or implicitly as in Java. In
Java, instances of classes and arrays, for example, are treated as references. A variable of
a class type or of an array type does not contain the object itself or the array itself, but
a reference or pointer to the data (typically on the heap).

Now assume to call a function with (a reference to) an object or array as argument, or
references in general. If we assume a language with call-by-value and a situation where
a reference is handed over, is that call-by-reference? From the perspective of a compiler
writer and in particular from the perspective of the calling sequence, the answer is clear:
of course not! The data is copied from the caller to the callee, that’s call-by-value
without any doubt. Passing a reference by-reference would mean, the callee would receive
a reference to the caller’s slot which in turn contains a reference to the data.

The parameter passing mechanism of Java (and C, and many other languages) is call-by-
value, period. Still, one finds statements like “in Java, objects and arrays are passed by
reference, unlike data like integers or floats”. And that may lead to confusion. To avoid
that, the situation where references are passed by value is sometimes called “call-by-
value-reference”, though one would not need a special word for that: all data is passed
uniformely by by-value, and that includes references.

Does it matter? It depends, perhaps it’s a bit splitting hairs, especially from the perspec-
tive of the user of a language. Passing a reference or a reference data in a call-by-value
language certainly feels like call-by-reference. Both for true call-by-reference and in call-
by-value-reference, the callee works on the data “shared” with the callee, i.e., the callee’s
version is aliased. Only in the case of call-by-reference, the data being sharing is on the
stack, in the caller’s activation record, in the case of a call-by-value-reference, the sharing

8 Run-time environments
8.3 Parameter passing 35

is done via the heap. But that may be a fact internal to the run-time system and of
little interest to the programmer. With the data being shared, if the calling procedure
does some changes to the values of the parameters, those changes become available to the
caller. This way, in a call-by-reference language, the formal parameters are commonly not
just used to communicate data from caller to callee, but also to communicate information
back, in that the handed over arguments have been changed. In that way, the param-
eters take also the task of “returning results”. In a call-by-reference language, one can
thus work without ever officially returning a result value (via return v), but works with
functions of return type void or similar. Sometimes that’s used to distinguish procedures
from functions, which do return a value. Of course, one can program the same way in a
call-by-value language which supports pointer or references.

In a language with call-by-value , one cannot not use the call-parameters for (also) com-
municating results back to the caller (if we ignore call-by-value-reference). For that, one
has a return statement. But that’s not the only way. One finds also languages which
support two kinds of parameters, parameters for calling, as usual, and parameter(s) for
returning. They are sometimes called in-parameters and out-parameters. In such a
setting, a procedure declaration specifies in-parameters for receiving the arguments and
out-parameters for returning the results (often multiple in-parameters but at most one
out-parameter) In such a design, the caller can use call-by-value when calling. However,
out-parameter is treated in a by-reference manner. Upon calling, the caller informs the
callee where it wants to find the result after the callee is finished, and for that it the
callee activation record stores the address of that call-parameter, of course, the actual
call-parameter, not the formal one.

Call-by-value is in a way the prototypical, most dignified way of parameter passsing,
supporting the procedure abstraction. If one has references (explicit or implicit, of data
on the heap, typically), then one has call-by-value-of-references, which, “feels” for the
programmer as call-by-reference. Some people even call that call-by-reference, even if it’s
technically not, as mentioned earlier.

Procedures or functions may operate with variables in their body, that are not handed over
as parameters. Even in the simplest setup, a procedure can operate on global variables.
Access to non-local variables necessitated static links in the activation record for languages
supporting nested procedures, and to deal properly with higher-order functions, one needs
heap-allocated activation records (closures). Independent from how complex the language
design is wrt. procedures, there are two kinds of variables whose values originate from
outside the procedure itself. One are of course the input parameters, the topic we are
currently discussing. The “official” parameters of a procedure are handed over via call-
by-value, call-by-reference, or some other scheme. But what about the “inofficial input
parameters”, the variables that come from somewhere outside?

For the global variables, they are of course not copied, their address is globally known.
For the variables originating from an surrounding procedure body, in which the procedure
of the current activation record is nested in, the corresponding activation record can be
located via following static links. At least that’s the situation for languages with lexical
scoping. Anyway, also the values for those variables, when used in a procedure body
are not copied in, i.e., even in a call-by-value parameter-passing scheme, they are treated
typically by-reference.

36 8 Run-time environments
8.3 Parameter passing

Go, for instance, is an imperative language with call-by-value parameter passing, which
supports higher-order functions and thus closures, which treats “smuggled in” variables
by-reference. That is the standard treatment. If in such a language, one is unhappy
with the by-reference treatment of the smuggled-in variables, one can of course rewrite
the procedure, add more input parameters and hand over the value officially, thereby
obtaining a call-by-value treatment. The technique to systematically promote outside
variables to official parameters is known as λ-lifting. It’s mostly used in some compilers
for functional languages [2].

Parameter passing by-value

Let’s looks at very simple examples, using C, a prominent example of an imperative,
procedural language using call-by-value. Listing 8.19 and 8.20 shows two versions of a
procedure inc2 taking one parameter. The function has void as return type, i.e. no
value is returned via a return statement.

void inc2 (int x)
{ ++x , ++x ; }

Listing 8.19: Integers as arguments

void inc2 (int ∗ x) { /∗ c a l l : inc(&y) ∗/
++(∗x) , ++(∗x) ; }

Listing 8.20: Pointers as arguments

The first inc2 example does not work, of course, if the intention of the function is to do
a double increment. The function increments its integer argument by 2, alright, but it
increments a copy of the actual parameter, passed by value and does not do anything with
the increased value otherwise. In particular, it does not return the incremented value; the
procedure’s return type is void. The second version, what is passed is a pointer to, i.e.,
address of an integer value, as indicated by the parameter type int *. Of course, the
plausible intention is not to increment that address by two, but to increment the value at
that address accordingly. So the increment operation ++ is applied to *x, not x.

In C and Java (and many other languages), call-by-value is the only parameter passing
method. Some language insist that formal parameters are immutable. Of course, if one
passes by value a reference to a piece of data, the variable itself may be immutable, but it
does not disallow changing the content of the referenced data. The code from Listing 8.20
is an example for that. As mentioned earlier, the passing of parameters is simply placing
a copy of the values of the actual parameters in the slots of the activation records.

Arrays are in many languages treated as reference data. So a variable “containing” an
array actually is containing a reference to a place where the slots of the arrays can be
found. So, having an array-typed formal parameter means, that a reference to the array
is handed over, not a copy of the array itself. So if the caller changes the content of the
array, that will be visible by the caller (or any other place in the program that references
that array). For instance, the code in Listing 8.21 “erases” the content of the array where
the first argument references the array.15

15At least it erases the array, if the second parameter is actually the array size. Otherwise either not all
of the array is set to zero, or an out-of-bounds situation occurs, which is something to be avoided, and
checked for . . .

https://en.wikipedia.org/wiki/Lambda_lifting

8 Run-time environments
8.3 Parameter passing 37

void i n i t (int x [] , int s i z e) {
int i ;
for (i =0; i<s i z e ,++ i) x [i]= 0

}

Listing 8.21: An array as argument

Side remark 8.3.1 (Interplay of language features may muddy the water (Java)). The
following discussion can be skipped, as it has nothing much to do with parameter passing.
But it highlights that languages, for instance, Java have quite a number of features that
can interplay with each other. And suddenly, something that seems clear enough, like
call-by-value(-reference) seems to have unexpected outcomes.

The fact that some variables do not contain data values directly but a pointer to the place
where to find the value is not visible directly to the programmer in Java. There is no need
to explicitly figure out the address of some place of data nor to explicitly dereference and
address to obtain the value. That’s all behind the scenes.

Let’s try to mimic the two versions of inc2 in Java. To not muddy the water even more
with late binding, let’s use static methods (see Listing 8.22). There are two variants of
inc2, one with its paramter of type int and one of type Integer. The latter expects
an instance of the class Integer as argument, i.e., a reference to such an instance.
public class Inctwo {

public stat ic void inc2 (int x) {++x;++x ; }
public stat ic void inc2 (I n t e g e r x) {x++;x++;}
public stat ic void main (S t r i n g [] arg) {

int x1 = 0 ;
I n t e g e r x2 = new I n t e g e r (0) ; // deprecated
inc2 (x1) ;
inc2 (x2) ;
System . out . p r i n t (x2) ; // guess what ' s p r i n t e d

}
} ;

Listing 8.22: Call-by-value or by-value-reference, or what?

There are some aspects of the code unrelated to the issue at hand, which is parameter
passing. One is that there are two methods called inc2. Depending on whether the
method is called with x1 (an int) as argument or x2 (an Integer), the appropriate one
is chosen. The parameter for both versions is of different type, int vs. Integer, and
that’s good enough for disambiguation. That’s an example of overloading, more precisely,
of method overloading, a variant of polymorphism. We brushed upon overloading
in the chapter about types and type checking. Another aspect not crucial for parameter
passing is the fact that the methods are static, the same would occur when using late-
bound methods.

What then is the issue? According to the discussions about call-by-value used on reference
data, one could suspect, that the value of x2 printed at the end is 2, i.e., the second
version of the method inc2 in the example corresponds to the second version of the C-
code, passing a refence by value to a called procedure or methods. Call-by-value-reference
is also what happens there. However, the printed value is not 2, but 0. So the method

38 8 Run-time environments
8.3 Parameter passing

behaves as if it were call-by-value on an integer value, not as the counter-part in C. The
reason(s) for that are actually quite simple, and they have not much to do with parameter
passing. You may try to reflect on why the result is 0 before reading on.

The reasons have to do with with the ++ operation and some conversions done behind the
scene. First to the ++ operator. It’s not defined on integers, i.e., expressions like 5++ are
illegal. What is allowed are ++x and x++, the pre-increment resp. post-increment of the
integer content of the variable x (the difference between pre- and post-increment are not
so relevant in the context of this discussion). If x is of type int, the operator increments
the content of the variable by 1 and stores the result back to x. So far, so obvious.

The operator, however, works also on variables typed by Integer. An expression like
(new Integer(5))++ is illegal; as said, ++ works on variables only. In particular ++ is
not interpreted as to invoke a “method” on the integer object, perhaps like the following:
I n t e g e r x = new I n t e g e r (5) ;
int h = h . intValue () ; // t h a t ' s p o s s i b l e
x . s e t In tVa lue (h+1); // t h a t ' s i m p o s s i b l e

Listing 8.23: Pseudo-Java

That’s illegal in Java. Instances of Integer are immutable, in particular, they don’t
have a set-method (but they do have a “get-method”, called intValue).

If, however, ++ is applied to a variable of type Integer, the object of type Integer is
converted to the corresponding integer value of type int, and in that way x++ in the
second method is well-typed and works, with some conversion going on behind the scenes.
This implicit conversion can be interpreted as a form of polymorphism. The line between
overloading and conversions of that kind is a bit blurred; both count among so-called
ad-hoc polymorphism. We discussed that in the typing chapter.

That should make clear what happens in Listing 8.22. The reference to the integer object
is passed by-value, the body operates on the formal parameter x of type Integer, which
contains a copy of a reference, at least at the beginning. Doing x++ does not change
the state of the integer object, but creates a new one, to which the parameter x points,
thereby severing the connection to the caller’s reference kept in x2.

In general, the remark still holds: in a call-by-value language, passing references as values
makes it behave like call-by-reference, though it technically is not. If, for instance, passes
a “real object” (not a special case of an immutable value object as here with some specific
conversions going on) and the callee mutates instance variables in that object, then of
course the calleer will see those changes. But for the special case of Integer objects, the
code of C with pointer behaves different from the “analogous” code in Java with references.
In connection with that: as said, integer object are immutable, and for immutable data
call-by-reference and call-by-value are the same anyway.

Call-by-reference

The main alternative to call-by-value in procedural, imperative languages is call-by-
reference. Instead of handing over a (copy of the) value, the callee receives a reference to
the actual parameter. That may be advantageous especially for large data structures. As

8 Run-time environments
8.3 Parameter passing 39

disucssed earlier, call-by-reference “feels” much like doing call-by-value with a reference
(as done for instance in Listing 8.20), but it’s not the same. It’s conventional for call-by-
reference, that the actual parameters have to be variables. Calling a procedure by
reference on, say 5 makes not much sense; what’s the address of 5 anyway. . . 16

void P(p1 , p2) {
. .
p1 = 3

}
var a , b , c ;
P(a , c)

Listing 8.24: Call-by-reference

A corresponding layput of an activation record is shown in Figure 8.20.

Figure 8.20: Call-by-reference, activation record layout

Call-by-value-result

As said, call-by-value and call-by-result are the two main alternative for procedural, im-
perative languages. But there exist also lesser known alternatives. One is call-by-value-
result. As said, the communication between caller and callee is a bi-directional thing,
passing arguments from the caller to the callee and returning results back. When calling,
the actual parameter are handed over to the formal parameters, when returning the con-
tent of the formal parameters is hand back to the caller. Some languages, like Ada, are
quite explicit about that fact, in that the distinguishe between in and out parameters. In
contrast, the strategy here is not explicit about that, it just has one kind of parameters,
but they are used in a two-way form of communcation. The mechanism is also known as
copy-in-copy-out or copy-restore.

When calling, the arguments are copied in, i.e., that part works as in call-by-value. How-
ever, to get potential results back, the mechanism works like call-by-reference, as it uses
the reference of the actual parameters to place the returned values. Let’s remember the
C example from Listing 8.19. Under call-by-value, the procedure changed the copy of the
actual argument, but if the intention was to get a double increment as a side-effect, that
did not happen. Under call-by-value-result, that’s exactly what would happen, so it would
16Fortran actually allows things like P(5,b) and P(a+b,c).

40 8 Run-time environments
8.3 Parameter passing

behave more like call-by-reference. But of course, similar to call-by reference, it makes no
sense to call the function inc2 under this regime like inc2(4). To achieve the intended
effect, one would have to do x=4;inc(x). The x here is of course a different x than
inc2’s formal parameter from Listing 8.19, the usual scoping rules still apply.

That may sound straightforward enough. But there issues and corner cases where it is
suddenly not so clear anymore. For instance: when are the value of actual variables
determined when doing “actual ← formal parameters”. Is it done when calling? Or when
returning? For instance, what would or should happen in the code of Listing 8.25? The
example has some form of aliasing in its arguments, using a for both argument. In general,
call-by-value result gives the same results as call-by-reference, unless aliasing “messes it
up” as in Listing 8.2517.
void p(int x , int y)
{

++x ;
++y;++y ;

}

main ()
{ int a = 1 ;

p(a , a) ; // :−O
return 0 ;

}

Listing 8.25: Call-by-value-result example

Call-by-name

The last parameter-passing mechanism covered here is call-by-name. We present it in a
C-like syntax. When calling a function with an argument, it’s not the value that is handed
over, but the “name” of the argument. So when calling f(x), with x containing 4, the
formal parameter of f is replaced by x, not by 4 or a reference to the variable x. Calling a
function therefore works with a form of substitution. It resembles also macro expansion,
but scoping still applies. In that scheme, the value of the actual parameter is not fetched
or calculated before actually used. It’s therefore corresponds to delayed evaluation. If
the argument is needed more than once, it needs to be recalculated over and over again,
which can degrade performance (unless remedied by a technique called memoization).

A possible way to implement that scheme is the following. In case the actual parameter
is a compound expression, it’s representend as a small procedure (also called thunk or
suspension). That then will be “called”, i.e., the expression evaluated, when the function
needs the value of the parameter. If the actual parameter is a variable, not a compound
expression, one can optimize that and pass the variable directly, thus avoiding turning
it into a thunk. Indeed, with a variable as actual parameter, call-by-name results in the
same behavior as call-by-reference.

In a few examples below, call-by-name will lead to confusing behavior and programs hard
to understand. One may even be tempted to say: don’t try to understand it, it’s just a
17One can make the argument, though, that call-by-reference would be messed-up in an aliasing situation

as well. Though at least the answer in a function as in Listing 8.25 under the call-by-reference analogon
would be clear, it would be 4.

8 Run-time environments
8.3 Parameter passing 41

brain teaser. Just avoid programming that way, you will only shoot yourself in the foot
. . .

In principle, call-by-name seems innocent enough. Textual replacement (or substitution)
of the formal parameter variable by the variable that represents the actual parameter
looks straightforward. For expression arguments, replacing the formal parameters in the
body by the argument expression seem likewise easy. The only price to pay in that case is
that at run-time, the expression may have to be evaluated more than once. Indeed, there
is an optimization of call-by-name that avoids that. In case the expression needs to be
evaluated, the result is remembered (“memoization”) and fetched when needed gain.

All that is clear enough, but it becomes rather less so, if the evaluation of the argument
has side-effects. Indeed, remembering the result of the evaluation for later reuse as in
call-by-need makes only sense, if the later evaluations will result in the value and if the
expression itself it has no side effects. If an expression have side-effects, of course, executing
it twice is different from executing it once (or not at all if not needed). “Expressions” with
side-effects, like (x++) + (15*y), are perfectly fine in many languages, like C or Java
(which of course have call-by-value).

What some languages do not support is passing procedures as arguments. What makes the
examples below a bit hard to decypher is exactly that: side-effects in combination with
handing over an argument that requires calculation, a calculation, that under call-by-name,
is delayed and potentially done multiple times. The argument that requires calculation
in the examples will be an array access a[i]. Even if in “C-like” languages, one cannot
hand over procedures, arrays can be seen as procedures. An integer-indexed integer array
is a realization of a function from of type int→int (with a finite domain and mutable).
The example from 8.26 shows a function with one integer argument. Additionally, the
changes the argument, incrementing it:
void p(int x) { . . . ; ++x ; }

The example then calls the procedure with a[i] as argument. Under call-by-name, not
the value corresponding to the array access is handed over, but the evaluation is delayed.
Another way of seeing it is that ++x in the body of the procedure is executed ++(a[i]).
int i ;
int a [1 0] ;
void p(int x) {

++i ;
++x ;

}

main () {
i = 1 ;
a [1] = 1 ;
a [2] = 2 ;
p(a [i]) ;
return 0 ;

}

Listing 8.26: Call-by-name example

That’s not the only side effect the procedure does, it additionally increments i in Listing
8.26, So the delay in the evalutation of a[i] is not just a delay. Since the “argument”

42 8 Run-time environments
8.3 Parameter passing

of the array access it mutated, it also accesses a slot that reflects the content of i at the
time of the access.

The next example from Listing 8.27 is basically analogous, and perhaps a little less artifi-
cial. It uses a procedure called swap, whose body executes a typical way of swapping the
content of two variables, here containing integers, corresponding to the formal parameters
a and b. Swapping can be achieved by introducing an auxiliary variable, here called i and
doing the obvious three swapping steps:

i=a ; a=b ; b=1;

Under call-by-value, the procedure would not work, for the same reason that inc2 from
Listing 8.19 did not work. How about call-by-name?
int i ; int a [i] ;

swap (int a , b) {
int i ;
i = a ;
a = b ;
b = i ;

}

i = 3 ;
a [3] = 6 ;

swap (i , a [i]) ;

Listing 8.27: Swapping

Applying the swap-procedure under call-by-name may run into problems: Applying it to
the the pair i,a[i] does not swap the contents of i and the slot a[i] of the array. Note
that the example uses a local and global variable i, but that’s not really the problem,
at least not if we are clear about how call-by-name is supposed to work. Earlier we
said, parameter-passing can be understood as replacing the variables “textually” by the
arguments. For that replacement, though, some fine-print applies. If we simply replaced or
substituted the first formal parameter a by i, then the first assignment i=a would be i=i.
That’s not how one should interpret “use the name of the actual parameter” or “textual
replacement”. At least not under lexical scoping. Under lexical scoping,18 the global and
the local i are different variables, and they reside also in different parts of the memory.
Indeed, the choice of names should not matter, it’s the run-time system task to keep them
apart and track which one is meant at each point. For instance, the auxiliary local variable
i might as well have been called aux or h or other name that is not in use otherwise.
One way if understand substitution as explanation call-by-name is that the substitution
must avoid variables being re-bound. If we simply interpret the program as writing i for
a (similarly for the other function argument), the variable i representing the argument
would suddenly, looking at the body after the replacement, be rebound. One also says,
by substituting in this careless manner, the variable would be captured, namely captured
by the local declaration int i (which would not happen of the swap-procedure would
have called the auxiliary variable aux. This capturing corresponds to dynamic binding,
and we are doing call-by-name with static binding. The form of substitution adequate for
lexical binding, that avoid that problem is known as capture-avoiding substitution.
18Actually also under dynamic scoping.

8 Run-time environments
8.3 Parameter passing 43

So, we silently assume capture-avoiding substitution or assume that the swap uses j
instead of i from the start. At any rate, “capturing” i is not what prevents swap to
properly swap the content of its arguments in Listing 8.2719

Now, avoiding to confuse the global i with the local auxiliary variable, and carefully doing
the steps

j = i ;
i = a [i] ;
a [i] = j ;

should make clear what the result of the procedure is, and it’s not a swap.

With substitution as parameter passing, one has also to watch out that not at each place
where a variable is syntactically allowed, the formal parameter, also some more complex
expressions are allowed. We have seen a similar restriction for call-by-reference. Listing
8.28 shows some Pascal program making use of call-by-name and Table 8.2 shows, what’s
allowed and what not. The situations should be fairly self-explanatory.
procedure P(par) : name par , i n t par
begin

i n t x , y ;
. . .
par := x + y ; (∗ a l t e r n a t i v e : x:= par + y ∗)

end ;

P(v) ;
P(r . v) ;
P(5) ;
P(u+v)

Listing 8.28: Call-by-name

v r.v 5 u+v
par := x+y ok ok error error
x := par +y ok ok ok ok

Table 8.2: Not everything makes sense under call-by-name

Lazy evaluation

The previous discussion may give the impression that call-my-name is more than a bit
weird. It may perhaps be historically interesting and used in languages like Algol 6020,
but otherwise the evolution of programming languages left behind call-by-name as a bad
idea, forgot about it, and the only place where it occasionally shows up is in academic
compiler construction or programming language courses, discussing it as curiosity.
19Of course, if i would be recaptured, that would additionally be problematic. But that confusion would not

be caused by the combination of delayed execution and side-effect, it would be caused by coincidentally
using the variable name i twice.

20It has even been called a misfeature of Algol 60.

https://wiki.c2.com/?CallByName

44 8 Run-time environments
8.3 Parameter passing

A valid point, for imperative languages. Combining side effects and delayed evaluation
leads to behavior hard to understand, error prone, and with no obvious upside. If a
procedure depends on concrete arguments that can change, it matters when the procedure
is called, before or after a possible change to its arguments. And if the procedure has side
effects itself, it matters how often it is called. Of couse the latter point is quite common,
for instance a procedure doing a double increment like the call-by-reference version inc2
from Listing 8.20 is intented to be called multiple times, and if called 5 times on the same
argument, it has incremented that by 10. Of course, when handing over a “functional
expression”21 like a[i] in the examples, how many times that expression is evaluated
is far less obvious, and likewise, what value i will have when being evaluated. In other
words, all that can get much more confusing than invoking inc2 a fixed number of times
(or in a loop, or at the beginning of a procedure as a form of counter).

However, without side-effects those problems disappear. Still it may be unclear how
often a functional argument is evaluated (if at all), but it does not matter. In a purely
functional setting, invoking a function now or later will give the same result. Indeed,
no matter how many times it will get evaluated, it always gives the same result (for the
same input). Call-by-value corresponds to a scheme, where arguments are evaluated at
the time when they are passed over to a procedure as parameters. Call-by-name hands
over the arguments “as is”, potentially unevaluated, and delays their evaluation only when
used. But it does not matter when and how often the arguments are evaluated. It does
not matter wrt. the returned value, that is. Of course, if the unevaluated argument is
a complex computation, evaluating it repeatedly is not the best of idea, efficiency-wise,
given the fact that the result is always the same. Better would be to remember the result
after the first time it’s needed, for for all potential subsequent uses, just look it up; that’s
called memoization.

That optimization of call-by-name, in a functional setting, using memoization, is
called lazy evaluation or call-by-need.

Lazy evaluations features prominently in Haskell, a purely functional language. Haskell
has other interesting features as well, but sticking to parameter passing, let’s answer the
obvious question: what is lazy evaluation good for? If it basically does not matter if things
are evaluated lazily (call-by-need) or eagerly (call-by-value), why bother?

The answer comes from that fact that it lazy and eager evaluation do not lead to 100%
the same behavior. Thought it’s true that given two functional programs, one evaluated
lazily, the other eager, they give the same result when returning. But doesn’t the latter
just contradict the previous sentence that both behave differently? Actually it’s not a con-
tradiction: both evaluation strategies do give the same result if terminating. However,
there are situations, when lazy evaluation terminates but eager evaluation does not (not
the other way around). That sounds like an awfully miniscule difference, and who needs
non-terminating (functional) programs anyway, at least non-terminating when evaluated
the wrong way?

Actually, there is an area where that difference plays a crucial role. It allows ot program
21It’s of course not a function but an array access expression, but it behaves as applying a function a to

an argument i.

8 Run-time environments
8.4 Virtual methods in object-oriented languages 45

with operating on infinite data structures. The simplest example for that are infinite
versions of lists, known a streams. Perhaps it’s better to say, streams are potentially
infinite lists, not actually infinite lists, where there is always a next element or tail, when
needed. I.e., the data structure itself is “lazy”. Of course, infinite lists cannot be passed or
operated on in a by-value manner. After all, the infinite list in evaluated form corresponds
to an infinite amount of data, and calculating all the data elements at once would not
terminate, and there’s not enough memory to store an infinite list anyway.22 But under
a lazy interpretation, one only evaluates or operates on one element of a stream after each
one when actually needed.

Without exploring that further, we simply show an example of procedure (a stream of
integers, actually, the infinite Fibonacci series.
f i b : : Int −> Int −> [Int]
f i b 0 _ = []
f i b m n = m : (f i b n (m+n))

Listing 8.29: Lazy evaluation/streams

The first line indicates the type of the function fib, taking two numbers (the “seed” of
the series, typically 1 and 1) and returning an element of [Int]. That’s a list, more
precisely in Haskell a lazy list, i.e., a stream. The generation is done it the recursion case
in the last line of the snippet, where the colon-operator : appends m to the rest of the
stream, generated by the recursive call to fib.

8.4 Virtual methods in object-oriented languages

Next, we shed some light on aspects of the run-time system relevant for object-oriented
languages. Not too much light, though, and basically only for one aspect for some main-
stream object-oriented languages, like C++ or Java (and a bit on Smalltalk). Those are
class-based languages with class inheritance and the aspect we look at in this context is
late binding or dynamic binding of methods. We use the terminology of virtual methods
here, which is common for C++ and is also used for languages like Object Pascal. However,
the terminology “virtual” as well as the concept is older. It originates from Simula, the
first object-oriented language, developed in Oslo by Ole-Johan Dahl, Kristen Nygaard,
and colleagues [1], who got the Turing award for their contribution. For Java, one often
does not use that word, but conceptually, methods in Java are late-bound by default, i.e.,
in they are virtual in C++ terminology. We use the words virtual method, late bound
method and dynamically bound method interchangably.

Connected to this concept is also dynamic dispatch. Dispatch is what the run-time
system has to do when calling a procedure, function, method etc., i.e., jumping to the
beginning of the code of a procedure body. Determining the jump target, i.e., locating
the code of the procedure, can be done at compile time or at run-time. That’s static
dispatch resp. dynamic dispatch (and it corresponds to static binding resp. dynamic
binding of the name of the procedure, method, function . . .). If the compiler can determine
22There are simply ways to simulate lazy evaluation in an eager language. It’s analogous to what we called

earlier thunk or suspension.

46 8 Run-time environments
8.4 Virtual methods in object-oriented languages

the jump-target, then it can produce code with the jump address “hard-coded” into the
jump-command, which is more efficient. When writing, for intstance, x.m(), establishing
the connection between the source-code level name m of the method and the corresponding
method body, ultimately the address in the code section, that’s also called binding. Binding
names to addresses is, of course, more general than for methods or procedure names only.
The association of x with its address is likewise called binding. We have mostly looked a
statically or lexically bound variables. For instance, using static links to locate the proper
address of a statically bound variable in languages with nested procedures.

The concept of late-bound method is central object-orientation (class-based or otherwise).
It just means the binding is done at run-time and done dynamically not statically. The
concept is so characteristic for methods, that one might get the impression that it’s the
feature that distinguishes methods from procedures or functions from non object-oriented
languages. Both methods and procedures/functions are “callable units” with parameter
passing, i.e., comparable languages concepts. In non higher-order languages, procedures
are indeed statically bound (and handled by static dispatch). Of course, there are many
languages that support higher-order functions. Even an old-school language like Pascal,
which is not higher-order, features procedures as parameters (and references to proce-
dures). Having formal parameters for functions means, that there are situations (maybe
in the body of the function with a functional parameter) where statically its unknown
which concrete function will be called. In other words, it’s a situation of dynamic binding
and dynamic patch. It’s only that no one calls it late binding of function, as it’s just
the standard parameter passing and that of course always “binds” dynamically the actual
parameters to the formal ones.

Let’s have a look at the code from Listing 8.30.
class A {

public :
double x , y ;
void f () ;
virtual void g () ;

} ;

class B: public A {
public :
double z ;
void f () ;
virtual void g () ;
virtual void h () ;

} ;

class C: public B {
public :
double u ;
virtual void h () ;

} ;

Listing 8.30: Inheritance, virtual and non-virtual methods + fields

The code sketches a situation with class inheritance showing an inheritance hierarchy with
three classes. The classes implement virtual and static methods, as well as some fields.

The interesting part are the virtual or late bound methods, g provided in classed A and B,
and h provided in classes B and C. The example also shows non-virtual, static methods,
namely f in A and B.

8 Run-time environments
8.4 Virtual methods in object-oriented languages 47

For the static methods, the situation is called shadowing (not overriding). We have
encountered a Java-example for that earlier in the lecture. This part of the code will be
less relevant for the discussion here, as we are focussing on how to realize late-binding.

Assume we have three instances for the three classes. The objects are allocated on the heap,
and Figure 8.21 sketches their layout. The figure focuses on the fields, as we will different
design choices how to represent method only later. In Figure 8.21, information concerning
methods is still missing, as we will different representational alternatives later.

The identifiers A, B, and C from Listing 8.30 are, in languages like C++, Java etc., at
the same time the names of classes that are used to create instances or objects. In the
material about typing, we discussed that in many (statically typed) class-based object-
oriented languages, the class names not only serve the role to denote the class, but also
play the role of (names of) static types

A a

x

y

. . .

A-object

x

y

z

. . .

B-object

x

y

z

u

. . .

C-object

Figure 8.21: Layout

So a in the figure is a variable of static type/class A, and containing a reference to an
instance of class A. Now B is subclass of A, and C a subclass of C. That means, C is a
subtype of B, which in turn is a subtype of A (which also implies that C is a subtype of
A). I many types languages that support class inheritance, subclassing implies subtyping.
What does subtyping exactly means? It’s a form of polymorphism, as discussed in the
chapter about typing: variables or pieces of data of some type have also as further types
all supertypes. Here, an object of static type C also has types B and A. In a type-safe
language this is analogous to say that at places where an object of static type A is allowed,
also objects of B or C are welcome, without causing problems, i.e., all fields an methods
that are needed of an A-typed object are offered by B and C-objects. That’s assured by the
fact that inheritance (in it’s conventional form) only adds new members (or overrides
i.e., replace existing ones with a new implementation). In figure 8.21, the dotted arrows
indicate that a with static type A can point also to instances of B or C, as mentioned.

Table 8.3 gives an overview, which code is executed when invoking a method with a
particular name on an instance of which class. So, a is meant as as variable with a
static type A, b of static type B

The columns on the left shows the situation for the non-virtual, static method f. For
f, the code that is executed is determined by the static type. More interesting (and
more compex) is the situation for g and h. For instance, when calling a.g() (where a is
assumed to be of static type A, the a can refer to an instance of A, B, or C. Said differently,
the run-time type of the object a refers to can be A, B, or C. With late-binding, it’s not
the static type that determines which code is executed, but the object. That corresponds

48 8 Run-time environments
8.4 Virtual methods in object-oriented languages

to the standard mental picture, that an object is an entity consisting of “data, i.e., the
fields, together with procedure that operate on the data, the methods”. Both fields and
methods together are also known as the object’s members. So a.g() can refer to the g’s
code fom class A or form the code from class B, if a contains an instance of B or C. Since
C does not override g, instances of C operate with g inherited from B. For the virtual
method h the situation is similar.

call target
a.f A::f
b.f B::f
c.f B::f

call target
a.g A::g or B::g
b.g B::g
c.g B::g

call target
a.h illegal
b.h B::h or C::h
c.h C::h

Table 8.3: Call targets for non-virtual method f and virtual methods g and h

So far a recap of what late-binding of methods has to achieve. Now to the correspinding
arrangement in memory, and how to realize the dispatch; for late-bound methods, dynamic
dispatch.

As mentioned, objects are allocated on the heap (Figure 8.21), and contain the content for
the fields. . Their representation frames or activation records, which is not surprising as
they serve an analogous purpose: provide space for the “local information”. For objects,
the content of the fields and for frames the content of local variables. Frames also have
additional information for book-keeping (return addresses, dynamic links . . .) which is
missing from objects. Missing, however, is information about the objects’ methods. We
discuss two arrangements for late-bound methods.

For static methods, the object representation on the heap does not contain any informa-
tion, as the instances have nothing to do with static methods resp. static methods have
nothing to do with instances. In particular, the body of f from our example has no
access the instance variables like x.23 For non-virtual methods like f, the corresponding
code is statically know, and the dispatch code for calls like a.f() involves a staticically
determined jump-address, based on its the static type. So the missing information in the
objects in Figure 8.21 only refers to virtual methods. The obvious solution would be to
simply add enough slots into the objects, so that every member is represented: not only
slot for every field, but also one slot for (a reference to) every virtual function. That
is known as embedding, but many conventional object-oriented languages chose different
representations. We discuss two prominent solutions, virtual function tables and relying
on a representation of the inheritance relation between classes.

8.4.1 Virtual function table

The layout based on virtual function table for the example is sketched in Figure 8.22. Each
object points to one its virtual function table, which in turn contain the information where
to find the corresponding code. For instance the instance of C at the bottom supports
the virtual methods named g and h, where the code for g is inherited and the one for h
provided by C, in a situation of overriding.
23Unless the variable would be declared as static (in Java) as well, and then represented as “part” of

the class. Indeed, invoking notationally the static method f “on” an instance as in (new A().f());
feels misleading and writing A.f(), which is possible in Java, may seem clearer.

8 Run-time environments
8.4 Virtual methods in object-oriented languages 49

That looks just like an additional layer of indirection (which it is), compared to embed-
ding the corresponding pointers directly into the objects. The advantage is that it allows
for a compact, uniform design with statically fixed off-sets. The slot for the virtual
function table is placed at a known offset inside the object’s memory.24 And the indi-
vidual tables place methods uniformely at fixed offsets. That’s shown in the figure that
g is placed at offset 0 not just in the instance of class A, the top-most class, but at the
same offset for instances of all its subclasses. Analogously for method h, which is placed
at offset 1 in instances of B and C and further potential subclasses. This allows to gen-
erate code for a dynamic dispatch for calling g with commands that correspond to jmp
a.virttab[g_offset]: get the object referenced in a, then to the slot pointing to
|its virtual function table, with a fixed offset, and then another statically known offset to
locate the proper code for g.

x

y

virtual function
table pointer A::g

x

y

virtual function
table pointer

z

B::g

B::h

x

y

virtual function
table pointer

z

u

B::g

C::h

Figure 8.22: Virtual function table

If placing the pointers to the code section uniformely and with fixed offset is such a good
idea, why place them in external virtual function tables instead of doing the same with
slots inside the object, avoiding one layer of indirection? One could do that, but the price
of a uniform layout with fixed offsets would be that one had to reserve fixed slots for all
methods throughout the program maybe including libraries, so there would be (empty)
slots in an object reserved for methods not even supported and thus never called.

8.4.2 Less disciplined and/or more flexible object-oriented languages

Virtual tables are a good data structure to realize dynamic method dispatch for C++

or similar languages. There exist, however, differently designed object-oriented languages
with different features. Common for all object-oriented languages are certainly objects and
late binding of methods. Some of the features known from C++ or Java may be missing, or
realised differently, and as a consequence, virtual function tables may no longer be practical
or possible. One important, object-oriented language is Smalltalk,25 predating C++ and
24That need not be the first slot, as anyway only objects with virtual methods need a virtual function

table anyway.
25One should mention that there exist many flavors of Smalltalk.

50 8 Run-time environments
8.5 Garbage collection

influenced by Simula, the first object-oriented language. One feature that distinguishes
Smalltalk from C++ or Java is that it lacks a static type system. In a way, Smalltalk
is a kind of “object-oriented Lisp”, in contrast to C++ which is an “object-oriented C”.
Also, (most versions of) Smalltalk makes no real distinction between classes and objects,
resp. classes are also objects. Another related complication is that “classes” or objects in
Smalltalk can be extended by adding a new method. Smalltalk is not the only language
that allows to add at run-time new methods to objects (or other changes). Sometimes
such languages are called object-based instead of object-oriented.

Anyway, such flexibility comes as a price. It’s no longer possible to have the efficient
arrangment where the run-time system can realize the dynamic dispatch with statically
known fixed offsets. Instead, the run-time system needs to consult the class-hierarchy and
search for the correct method, resp. its code to dynamically dispatch to it. For instance,
for the code from Listing 8.30 we use before, when calling g() on an instance of C, the
search follows the links from classes to super-classes until the method is in, in the example
in the class called C. Smalltalk, however, is not statically typed. So unlike the situation in
statically typed languages like Java or C++, it may happen that one invokes a method on
an object that is not offered, in which case an run-time (type) error is raise. In the picture,
the case when a method cannot be located is indicated by the undefined “super-class” ⊥.

head

x

y

A-object

super

A::g

head

x

y

z

B-object

super

B::g

B::h

head

x

y

z

u

C-object

super

C::h

⊥

Figure 8.23: Late-binding à la Smalltalk, . . .

8.5 Garbage collection

The dynamic part of the memory consists of the stack and the heap (remember the general
layout shown in Figure 8.1).26 We discussed the stack at some length, but remarked also
which kind of data is allocated on the heap, basically dynamic data whose lifetime is not
aligned with the activations of procedures. That may be reference data (like objects) but
also activation records in a language with higher-order functions.

Dynamic memory means that it’s allocated and deallocated at run-time. There are
different alternatives for that, including that it’s left to the programmer, i.e., the allocation
is done at program-level with specific commands (“alloc”, “free”). That can be efficient,
but is seen as error prone. Garbage collection is a part of the run-time environment
26Just in case someone wonders: the notion of heap here unrelated to the well-known heap-data structure

from algorithms & data structures.

8 Run-time environments
8.5 Garbage collection 51

that manages the dynamic memory automatically, in particular reclaims unused parts:
it collects the “garbage”. The run-time stack of course is an automatic and important
management system for dynamic memory. Popping off an activation record frees a segment
from the stack memory and reclaims the corresponding portion for reuse. One could call
it therefore a form of garbage collection and it certainly is a form of automatic memory
management, but normally it’s not called garbage collection.

Compared to the stack, memory allocation on the heap does not follow a LIFO discipline
that stems from calling and returning from procedure calls. Automatic memory allocation
and deallocation on the heap is less disciplined, more complex and less efficient.

The heap contains all all dynamically allocated data that cannot be managed by the stack.
That consists of all data whose life time can exceed the lifetime of the procedure call that
allocates the data. This concerns typically data that is “pointed to”, i.e., where the creator
keeps a pointer or reference to the created data, not the value itself. The pointer can be
returned when an activation ends, which means the pointer is copied whoever called the
procedure, and the callee activation record can be deallocated. That frees also the space
containing the original pointer, but not the space of the data being pointed at. Since the
callee has gotten a copy of the pointer, the data is still accessible, it’s not garbage, and
thus the data needs to be created outside the stack, on the heap.27

As a consequence, the heap typically contains: records, objects, arrays, all of which are
mostly reference data structures. For languages with higher-order functions and lexical
binding, also their memory needs need to be represented at the heap: the memory needs
of procedures that are returned from another procedure outlive the latter procedure’s acti-
vation. We have also discussed what happens in Pascal, which supports function pointers
and some (not so elegant) way to give access to a nested procedure from the outside with-
out allocating the corresponding piece of memory on the heap. The (erroneous) situation
is analogous to the dangling-reference mentioned above.

To do automatic garbage collection, the run-time environment need to figure out, at run-
time, what is garbage and what is not. That is basically impossible in languages with
pointer arithmetic, like for instance in C. We have not really discussed pointer arithmetic,
we have discussed the phenomenon of dangling references in Listing 8.16, which is a prob-
lem of the stack, not the heap. For the compiler, pointers and pointer arithmetic as such
are unproblematic. If the programmer can access and calculate directly with addresses,
that’s at a very low level of abstraction, and so the compiler has not much to do there.
And since operating on the heap is given in the hands of the programmer, it’s the pro-
grammer’s task to use, reusing, and free the memory the way it suits the needs of the
programmar. Of course, there is support by the compiler by compiling commands like
alloc, but a garbage collector cannot reasonably figure out which memory locations are
free and for not. In such a setting, it’s not unreasonable to expect from the programmer
to clean up unused memory. After all, it’s hard to have it both ways: low-level access and
27Earlier in this chapter, Listing 8.16 showed an example where the callee gets hold of an address on the

stack (using C’s address operator &). That’s an “illegal address” and known as dangling reference.
Proper garbage collection (on the heap) makes sure that on the heap, there are no dangling references:
if some piece of program points to a cell on the heap, it’s by definition no garbage and the reference does
not dangle . . . Of course, garbage collection and pointer arithmetic as in C don’t live in easy harmony,
standard C does not have a garbage collector.

52 8 Run-time environments
8.5 Garbage collection

free manipulation of memory and support of the compiler to protect oneself to misuse the
freedom.

For higher-order functions, the situation is different. Functions are a powerful abstrac-
tion. Programming with higher-order procedures can lead to complex access patterns on
the heap and in the address space. Higher-order function would basically be unusable if
one offers the user those abstractions, but at the same time expects that the user cleans
up the activation records, which would require low-level understanding of what’s going
on. It would make higher-order functions error-prone and probably unattractive. In other
words, garbage-collection is a must-have in such languages, and indeed, garbage collection
is pretty old, already dating back to 1958 and Lisp.

Some basic design decisions

We don’t go into much details concerning garbage collection, but let’s start with some basic
design decisions As part of the run-time system, garbage collection is done at run-time.
Still, it works approxiatively, that’s a (general) feature it shares with static analysis,
even if it’s dynamic. The approximation realizes the non-negotiable condition to assume
memory safety:

never reclaim cells which may be used in the future.

.

The reason why that garbage collection works only approximatively is of course, that it
cannot precisely foresee the future, even if it tried. Neither the compiler nor the running
program can know if a particular address will be accessed in the future or not, as it does
not know which steps will be done.

There are different ways to do garbage collection, and one basic decision is whether it
involves moving objects during the clean-up or not.28 By moving an object, we mean,
copying the content from one place in the heap to another, better suited one and of course
adapt according the addresses that mention the object.

Never moving objects (in that sense) will lead to fragmentation of the heap space. One
may end up with many stretches of unused space, many of which so small that they are
unusable for larger objects. This way one ends up with all heap space effectively gone (or
should one say, non-effectively . . .), even if the space is still sprinkled with many small
pieces of free space. That can be avoided if the garbage collector can move non-garbage
objects. There are different ways to do that and we look at two variations of that, known
as mark-and-sweep and stop-and-copy.

Another design decision is to when to do garbabe collection. On obvious answer here
might be: “do it only when really needed”. Collectors that kick in when the program runs
out of memory are also called batch collectors.
28Let’s call data pieces in the heap with the generic name “object”, even if the data represents records,

closures or other heap allocated data, not just objects in the object-orinented sense.

8 Run-time environments
8.5 Garbage collection 53

Alternatives may be to do it somehow “continuously”, always cleaning up “a bit”. Of
course, there is also a trade-off between having an overly eager garbage collector and one
that only kicks in when the memory runs full: doing it agressively, where the garbage
collector kicks in after each couple of steps of the program or in very short intervals to try
to hunt down possible new pieces of garbage may be inefficient.

Also there are different ways how the garbage collector gets or mainains information about
definitely unused resp. potentially used objects. The garbage collector could “monitor”
the running program, resp. the interaction of the program and the heap, to keep more or
less up-to-date inforation all the time. Alternatively, the garbage collector could inspect
(at approriate points in time) the state of the heap

Generally, garbage collection is based on the following observation: heap addresses are only
reachable in the following two ways: either directly through variables.29 or indirectly
following fields in reachable objects (or other heap-located forms of data), which point to
further objects . . . In this way, the heap forms a graph of objects. The entry points to
the graph, i.e., data directly accessible from the program are are called the roots and all
the entry points are the root set.

Mark-and-sweep

Mark- and-sweep is pretty simple and works in two phases, the marking and the sweeping
phase. Marking basically does a graph search, starting from the the root set: find
reachable objects, mark them as (potentially) used. One bit of information is good
enough for marking. The search can typically be done as depth-first search of the graph.
The layout (or “type”) of the objects need to be known to determine where pointers are,
and then follow them. One should keep in mind that doing a DFS requires a stack, in the
worst case of comparable size as the heap itself

After marking one knows all the potentially used objects. Implicitly one has determined
also all definitely unused ones, the garbage, namely all unmarked one. Now, having
determined the garbage as the pool of unmarked objects, however is not in itself useful,
as one does not have the information readily at hand.

That’s where the second phase comes in, the sweep. The garbage collecter goes through
the heap again, this time sequentially, i.e., no graph search is needed. It collects all
unmarked objects in the so called free list, while all objects remain at their place. If the
run-time environment needs to allocate a new object it grabs a slot from free list.

Afterwards, there is, as optional third phase, compaction to avoid fragmentation. That
moves all the non-garbage to one place and the rest is one big and unfragmented free
space. Moving the object obviously involves adjusting pointers.

29The variables may have their allocated memory in the static part of the memory, or on the stack, but
may also and additionally have their value kept in registers.

54 8 Run-time environments
8.5 Garbage collection

Stop-and-copy

Another form of garbage collector is is known as stop-and-copy. It can be seen as
improvement over the mark-and-sweep type of garbage collectors. Here, the space for
heap-management is split into two halves, and only one is in use at any given point in
time. So one half contains the heap data including garbage, the second half is unused.
From time to time, namely when the garbabe collector has done its jobs, the two halves
flip their role: the garbage collector stops the program, marks the heap data similar as
in the mark-and-sweep method, and copies the non-garbage to the unused half, freeing
thereby the previously used one. When copying the used data, it’s of course compacted
in the process and all pointers and addresses have to be adapted, same as before.

The marking phase now does not have to use an extra bit to label pieces of data to be
treated in a subsequente sweep phase. The collector can copy the data during one recursive
pass through the graph, and by copying it into the free half, doing compaction at the same
time.

The “stop”-part of the stop-and-copy terminology hints at a problem with this and also
the mark-and-sweep style of garbage collection: the garbage collector from time to time
stops execution of the user program to do its clean-up. In interactive applications, not to
mention those with real-time requirements, that is problematic, as the program freezes in
unpredicable intervals.

The “stop-the-world” kind of garbable collection have been improved, to avoid that a pro-
gram has to pause intermittently. There are “generational” garbage collectors concurrent
garbage collector, whole books have been written on engineering garbage collectors [3],
but it’s beyond the scope of this lecture.

Bibliography
Bibliography 55

Bibliography

[1] Dahl, O.-J., Myhrhaug, B., and Nygaard, K. (1968). Simula 67, common base lan-
guage. Technical Report S-2, Norsk Regnesentral (Norwegian Computing Center), Oslo,
Norway.

[2] Johnsson, T. (1985). Lambda lifting: Transforming programs to recursive equations.
In Jouannaud, J.-P., editor, Second Functional Programming Languages and Computer
Architecture (Nancy, France), volume 201 of Lecture Notes in Computer Science, pages
190–203. Springer Verlag.

[3] Jones, R. and Lins, R. (1996). Garbage Collection – Algorithms for Automatic Dynamic
Memory Management. John Wiley & Sons Inc.

[4] Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Language. Prentice
Hall Professional Technical Reference, 2nd edition.

[5] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

56 Index
Index

Index

λ-lifting, 36

access chaining, 24
access link, 9, 22
activation record, 4, 8, 13

variable access, 13
activation tree, 12, 13
ad-hoc polymorphism, 38
Ada, 19, 39

C, 9, 38
call-by-name, 40
call-by-reference, 34, 39
call-by-result, 39
call-by-value, 34, 38
call-by-value-reference, 34
call-by-value-result, 39
call-stack, 8
callable unit, 2
calling convention, 16, 17
calling sequence, 17
class inheritance, 46
closure, 27
code area, 2
coercion, 38
compaction, 53
compound statement, 20
control link, 9
coroutine, 51

delayed evaluation, 40
dispatch

dynamic, 45
dynamic dispatch, 6, 45
dynamic link, 9

escape, 5, 32
evaluation strategy

lazy, 43

garbage collection, 50
stop-and-copy, 54

garbage collector
mark-and-sweep, 53

heap, 27, 31, 50, 51

higher-order function, 51

in parameter, 35
inheritance, 46

lazy evaluation, 43
lazy evalution, 44
library, 2
linker, 6
loader, 6

macro expansion, 40
memory layout

static, 6

nested declaration, 20
nested procedure declaration, 21
nested procedures, 9

out parameter, 35
overloading, 38
overriding, 46

parameter
in, 35
out, 35

parameter passing, 3
call-by-name, 40

Pascal, 21
polymorphism, 38
procedure abstraction, 3
procedure call, 3

recursion, 8
return address, 9
root, 53
root set, 53
run-time environment

fully dynamic, 33
run-time environment, 1

stack based, 8
run-time stack, 3, 8

Simula, 51
Smalltalk, 49
stack, 1
stack pointer, 9

Index
Index 57

statement
compound, 20

static link, 9, 22
static memory layout, 6
stop-and-copy garbage collection, 54
string literal, 7
suspension, 40

temporaries, 17
thunk, 40

	Contents
	Run-time environments
	Introduction
	The procedure abstraction: different layouts
	Full static layout
	Stack-based run-time environments

	Parameter passing
	Call by-value, by-reference, and by-value-reference

	Virtual methods in object-oriented languages
	Virtual function table
	Less disciplined and/or more flexible object-oriented languages

	Garbage collection

