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10.1 Introduction

10.1.1 General overview and issues for code generation

This chapter covers the last step, the “real” code generation. Much of the material is
based on the (old) dragon book [2]. There is also a newer edition [1]. The book is a
classic in compiler construction. The principles and issues of code generation from [2]
are still fine. Technically, the code generation is done for two-address machine code,
i.e., the code generation will go from 3AIC to 2AC, i.e., to an architecture with 2A
instruction set, instructions with a 2-address format. For intermediate code, the two-
address format (which we did not cover), is typically not used. If one does not use a
“stack-oriented” virtual machine architecture, 3AIC is more convenient, especially when
it comes to analysis (on the intermediate code level).

For hardware architectures, 2AC and 3AC have different strengths and weaknesses, it’s
also a question of the technological state-of-the-art. There are both RISC and CISC-style
designs based on 2AC as well as 3AC. Also whether the processor uses 32-bit or 64-bit
instructions plays a role: 32-bit instructions may simply be too small to accommodate
for 3 addresses. These questions, how to design an instruction set that fits to the current
state or generation of chip or processor technology for some specific application domain
belongs to the field of computer architecture. We assume a instruction set as given, and
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base the code generation on a 2AC instruction set, following Aho et al. [2]. In the newer
edition of the dragon book [1], the corresponding chapter has been “ported” to cover code
generation for 3AC. But the core principles and challenges are the same.

Register allocation

One core problem is register allocation, and the general issues discussed in that chapter
would not change, if one would do it for a 3A instruction set. Of course, details would
change. The register allocation we will do is, on the one hand, actually pretty simple.
Simple in the sense that the code generator does not make a huge effort of optimization.
One focus will be on code generation of “straight-line intermediate code”, i.e. code inside
one node of a control-flow graph. Those code-blocks are also known as basic blocks.
Anyway, the register allocation method walks through one basic block, keeping track of
which variable and which temporary currently contains which value, resp. keeping track
for values, in which variables and/or register they reside. This book-keeping is done via
so-called register descriptors and address descriptors. As said, the allocation is
conceptually simple:

It focuses on not very aggressive allocation inside one basic block.

The presentation also ignores the more complex addressing modes discussed in the previous
chapter. Still, the details will look, well, already detailed. Those details would, obviously
change, if we used a 3AC instruction set, but the notions of address and register descriptors
would remain. Also the way, the code is generated, walking through the instructions of
the basic block, could remain. The way it’s done is “analogous” on a very high level to
what had been called static simulation in the previous chapter. “Mentally”, the code
generator goes line by line through the code, and keeps track of where is what (using
address and register descriptors). That information is useful to make use of registers, i.e.,
generating instructions that, when executed, reuse registers, etc.

That also includes making “decisions” which registers to reuse. We don’t go much into
that one (like asking: if a register is “full”, is it profitable to swap out the value?). By
swapping, I mean, saving back the value to main memory, and loading another value to
the register. If the new value is more “popular” in the future, needed more often or sooner
etc., and the previous value maybe less so, then it is a good idea to swap them out, in
case all registers are filled already. An extreme case of being used less often and not so
soon is to be never used in the future. The corresponding variable is then called dead
(at the current point), or rather not live, and the corresponding analysis is called liveness
analysis.

Optimization (and “super-optimization”), local and global aspects

Focusing on straight-line code, we are dealing with a finite problem, so there is no issue
with non-termination and undecidability. One could try therefore to make an “absolutely
optimal” translation of the IC, the one with an optimal use of registers. The chapter will
discuss some measures how to estimate the quality of the code in the form of a simple
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cost model in Section 10.2. One could use that cost model or other, more refined ones, to
define what optimal means, and then produce optimal code for that. Optimizations that
are ambitious in that way are sometimes called super-optimization [4] and compiler
phases that do that are super-optimizers. Super-optimization may not only target register
usage or cost-models like the one used here, it’s a general (but slightly weird) terminology
for transforming code into one which genuinely and demonstrably optimal (according to a
given criterion). In general, that’s of course fundamentally impossible, but for straight-line
code it can be done.

The code generation here does not do that. Actually, super-optimization is not often
attempted. One reason should be clear: it’s costly. For long pieces of straight-line code
(i.e., big basic blocks) it may take too much time. There is also the effect of decreasing
marginal utility. A relatively modest and simple “optimization” may lead to initially
drastic improvements, compared to not doing anything at all. However, to get the last 5%
of speed-up or improvement pushes up the effort disproportionally.

A related reason is: super-optimization can be achieved anyway only for parts of the code
(like straight-line code and basic blocks). One can genealize that and push the boundaries,
as long as it remains a finite problem, e.g., allowing branching, but leaving out loops. That
will make the problem more complicated and targets larger chunk of code, which drives
up the effort, as well, but still remains a finite problem.

But there are limits of what can be done. If we stick to our setting, where we currently
generate code per basic block, super-optimization may be costly but doable. But it would
be only locally optimal, per one block. Especially when having a code, where local
blocks are small, that would have the positive effect that locally super-optimized code
may be done without too much effort. But what good would that do, if the non-local
quality is bad? Focusing optimization effort onto the local blocks and ignoring the global
situation may be an unbalanced use of resources. It may be better to do a decent (but not
super-optimal) local optimization that achieves already drastic improvements, and also
invest in a simple global analysis and optimization, to also reap there low-effort but good
initial gains.

That’s also the route the lecture takes: now we are doing a simple register allocation,
without much optimization or strategy to find the best register usage (and we discuss also
one global aspect of program, across the boundaries of one elementary block). That global
aspect will be global live variable analysis. It will come later (in Section 10.7), because
first we discuss local live variable analysis which is used for the local code generation.
We can remark already here, that live variable analysis can be done locally and globally;
the generation just uses live variable information for its task, whether that information is
local or global. So the code generation is, in that way, independent from whether one
invests in local or in global live variable analysis. It’s just produces better code, i.e., makes
better use of registers, when being based on better information (like using live variable
information coming from a global live variable analysis). Indeed, the code generation
would produce semantically correct code, without any live variable analysis! In that way,
the analysis and the code generation are separate problems but not independent, as the
register allocation in the code generation makes use of the information from live variable
analysis.

https://en.wikipedia.org/wiki/Superoptimization
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Concerning the “degree of locality” of the code generation: The algorithm later will work
“super-locally”, insofar that it generates 2AC and makes decisions on registers line by
line: every line of 3AIC is translated onto 2 (or sometimes one) line of 2AC. There is no
attempt afterwards to go through the 2AC again, getting some more global perspective
and them optimize it further, for instance rearranging the lines, or obtaining a register
usage better that the one that had been arranged for by the line-by-line code generation.
The code generation steps through the 3AC line-by-line but is not completely local, it does
some book-keeping about registers used, i.e., allocated in the past. And, not to forget, the
code generator has access to liveness information, which is information about the future
use of registers. In the previous chapter, the macro expansion was really line-by-line
local, where 3AIC was translated to 1AIC (i.e., p-code): each 3AIC line was expanded into
some lines of p-case in a completely “context-free” manner, focusing on each individual,
line independent from where the line is used. That simplistic expansion ignored the past,
i.e., what happened before, and it ignored the future, i.e., what will happen afterwards.
The code generation here takes care for both aspects:

What has happened in the past is kept tracked by the register and address
descriptors. Aspects of the future are taken care of by the liveness analysis.

Depending on whether one does as block-local liveness analysis or a global analysis just
changes how “far into the future” the analysis looks. As far as the past in concerned:
that one is (in our presentation) just block-local. The book-keeping with the register and
address descriptor starts fresh with each block, there is here no memory of what potentially
had happened in some earlier block.

Live variable analysis

Now, what is live variable analysis anyway, if we mention it here already, and what role
does it play here?

A variable is live (at some point in a program) if it “will be used” (= read) in the
future.

One could dually also say, a non-live variable at a given point is dead, but it’s still live
variable analysis since “death analysis” would not sound appealing. . . . It’s important
information, especially for register allocation: if it so happens that the value of a variable
is stored in a register and if one figures additionally out, that the variable is dead (i.e.,
not used in the future), the register may be used otherwise. We elaborate on that further
below, in first approximation we can think that the register is simply “free” and can just
be used when needed otherwise.

Now, the above characterization about liveness is a bit imprecise, and we wrote “will be
used” in quotation marks. What’s the problem? The problem is that the future may be
unknown, and in general it’s impossible to know the exact future, for different reasons.
One is, that in general, undecidability may prevent the the future behavior to be known.
There can be actually another reason, namely if one analyzes not a global program but only
a fragment (maybe one basic block, one loop body, one procedure body). The program
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fragment being analyzed is “open” insofar its behavior may depend on data coming from
outside. In particular, the program fragment’s behavior depends on that outside data or
“input”, when conditionals or conditional jumps are used. Even if the possible input is
finite, it may influence the behavior. One behavior where, at a given point, a variable
will be used, and another behavior, where that variable will not be used: In one future
behavior, the variable is live, in the other future, it is dead. Without knowing the input
or context, one cannot say that the variable “will” be used or not, it simply depends.

Coming back to the “definition” of liveness. The long discussion hopefully clarified, that
in a general setting, when analyzing a (piece of ) program it cannot be about whether
a variable will be used. Liveness of a variable is used here to see whether a register
that contains (the value of) variable can be considered free. That leads to the following
interpretation:

If there exists a possible future where the variable stored in a register may be
used, then the code generator cannot risk reusing the register and the variable is
considered (statically) live.

That means, the notion of (static) liveness is a question of a condition that “may-in-
the-future” apply. There are other interesting conditions of that sort. Some would be
characterized by “must” instead of “may”. And some refer to the past, not the future.
That would lead to the area of data-flow analysis (or more ambitiously, abstract inter-
pretation). We won’t go deep there, we stick to live-variable analysis (for the purpose of
code generation). However, if one understands live variable analysis, especially the global
live variable analysis covered later, one has understood core principles of many other
flavors of data flow analysis (may or must, forward or backward).

Talking about conditions applying to the “past”, perhaps we should defuse a possible
misconception. Liveness of a variable refers to the future, and we said, there are situations
when the future is unknown. So one may come to believe that analyzing the past would not
face the same problems. When running a (closed) program that may be true: we cannot
know the future, but we can record the past (“logging”), so the past is known. But here
we are still inside the compiler, doing static analysis and we may deal with open program
fragments. For concreteness’ sake, let’s use some particular question for illustration: nil-
pointer analysis. That refers to figuring out whether a variable is properly initialized
or not, perhaps containing a nil-pointer, i.e., there was a point in the past run where
the variable was initialized or not. Statically, a compiler warning about “uninitialized
variables” typically means, the variable is potentially uninitialized (“may”), namely there
may exist a run, where there is no initialization of a variable. Or dually, a variable is
properly initialized at some point, when for all pasts that lead to that point the variable
has been initialized. But for open programs (and/or working with abstractions), there may
statically be more than one possible past and we cannot be sure which one will concretely
be taken. Maybe indeed all or some of them will be taken at run time, when the code
fragment being under scrutiny is executed more than once. That is the case when the
analyzed code is part of a loop, or correspond to a function body called variously with
different arguments. In summary, the distinction between “may” and “must” applies also
to statically analyzing properties concerning the past.
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Reusing and “freeing” a register

The liveness status of variables is crucial for register usage: the value for a variable being
dead does not need to occupy precious register space. We promised in the previous para-
graph to elaborate on that a bit, as it involves some fine points that we will see in the
algorithm later, which may not be immediately obvious from reading the code.

First of all, as far as the hardware is concerned, there is no such thing as a full, non-
free, resp. empty or free register. A register is just some fast and small piece of specific
memory in hardware in some physical state, which corresponds to a bit pattern or binary
representation. The latter one is a simplification or abstraction, insofar the registers may
be in some “intermediate, unstable” state in (very short) periods of time between “ticks” of
the hardware clock. So, the binary illusion is an abstraction maintained typically with the
help of a clock, and compilers rely on that: registers contain bit strings or words consisting
of bits. Of course, 00000000 does not “mean” empty. But when is a register empty then?
As said, as far as the hardware is concerned, fullness and emptiness of registers simply
does not exist. Those concepts only exist conceptually in the context of the semantics of
the implemented programming language, in particular in the code generator, which has to
keep track of the status and tracking the status of registers as full or empty. If the code
generator wants to use a register (in that it generates a command that loads the relevant
piece of data into the chosen register), generally “empty” ones are preferred, for instance
one that so far has not been used at all. Initially, it will rate all registers as empty (though
certainly some bit pattern is contained in them in electric form, so to say). Now in case
a register contains the value for a variable, but the variable is known to be dead, doesn’t
that qualify for the register being free? So isn’t it as easy as the following?

A register is free if it contains dead data (or “no data” insofar as the
register has not been used before)?

Sure enough, that’s indeed why liveness analysis is so crucial for register allocation. One
has, however, to keep in mind another aspect. Just because the value of a register is
connected to a variable which is dead does not mean one can “forget” about it and, by
reusing the register, overwrite it. There are two reasons why that’s not enough. One is,
that the content of a variable is kept in two copies, one in main memory and one in the
register. And it may well be the case that the one in main memory “is out of sync”.
After all, the code generator loaded the variable to register to do faster manipulations on
the “variable”, therefore it is a good sign, so to say, that it’s out of sync. Keeping main
memory and registers always 100% in sync is meaningless; then we would be better off
without registers. Still, if the variable is really dead, what does this inconsistency matter?
That’s the second point we need to consider: the concrete code generator later will do a
block-local life analysis, only. So it can only know what’s going on locally and whether in
the current block the variable is life or dead (respectively, all variables are assumed to be
live at the end of a block). That’s different from temporaries, that are assumed to be dead
at the end of the block . That means, “one” has to store the value back to main memory.
Actually, “one” needs to store that value back, if “one” suspects the values disagrees,
if there is an inconsistency between them. Who is the “one” that needs to store them
value back? Of course that’s the code generator, that has to generate, in case of need, a
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corresponding store command, and it has to consult the register and address descriptors
to make the right decision. After “synchronizing” the register with the main memory, the
register can be considered as free.

Local liveness analysis here

That was a slightly panoramic view about topics we will touch upon in this chapter, but
only slightly panoramic, as register allocation in general is a complex and much addressed
problem. But the chapter will be more focused and concrete: code generation from 3AIC
to 2AC, making use of liveness analysis which is mainly done locally, per basic block. We so
far discussed live variable analysis and problems broader than we actually need for what is
called local analysis here (local in the sense per basic block local). For basic blocks, which
is straight-line code, there is neither looping (via jumps) nor is there branching (which
would lead to “don’t-know” non-determinism in the way described). Therefore we use
techniques similar to what has been earlier called “static simulation”: The live variable
analyzer steps through the code line by line, and that may be called simulation.

There are two aspects worth noting in that context. One is, when talking about “simu-
lation” it’s not that the analysis procedure does exactly what the program will do. Since
we are doing local analysis of only a fragment of a program, a basic block, we don’t know
the concrete values, that’s not easily done (one could do it symbolically, though). But we
don’t need to pre-calculate the outcome, as we are not interested in what the program
exactly does, we are interested in one particular aspect of the program, namely the
question of the liveness-status of variables. In other words, we can get away with work-
ing with an abstraction of the actual program behavior. In the setting here, for local
liveness, even given the fact that the basic block is “open”, that allows exact analysis, in
particular we know exactly whether the variable is live or is not. So the “may” aspect we
discussed above is irrelevant, locally. The fact that we don’t use the exact values of the
variables (coming potentially from “outside” the basic block under consideration) does not
influence the question of liveness, it’s independent from concrete values. If we would have
conditionals, that would change, because values would influence the control-flow. So, in
that way it’s not a “static simulation” of actual behavior, it’s more simulating stepping
through the program but working with an abstract representation of the involved data. As
said, the concrete values can be abstracted away, in this case without loosing precision.

There is a second aspect we like to mention when calling the analysis some form of
“static simulation”. Actually, the live analysis that comes before the code generation,
steps through the program in a backward manner. In that sense, the term “simulation”
may be dubious (actually, the term static simulation is not widely used anyway, as men-
tioned earlier). But actually, in a more general setting of general data flow analysis, there
are many useful backward analyses (live variable analysis being one prominent example)
as well as many useful forward analyses (undefined variable analysis would be one).

With the liveness information at hand, the code generation will “step” though the 3AIC
in a forward manner, generating 2AIC, keeping track of book-keeping information known
as register descriptors and address descriptors. In that process, the code generation makes
use of information whether a variable is locally live or is not locally live (or on whether a
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variable may be globally live or not when having global liveness info at hand). That means,
prior to the code generation, there is a liveness analysis phase, which works backwardly.

Side remark 10.1.1 (Exactness of local liveness analysis (some finer points)). To avoid
saying something incorrect when interpreted literally, let’s qualify the claim from above
that stipulated: for straight-line 3AIC, exact liveness calculation is possible (and that
what we will do). That’s pretty close to the truth. . .

However, we look at the code generation ignoring complicating factors, like more com-
plex addressing modes, and “pointers”. We stated above: liveness status of a variable does
not depend on the actual value in the variable, and that’s the reason why exact calculation
can be done. Unfortunately, in the presence of pointers, aliasing enter the picture, and the
actual content of the pointer variable plays a role. Similar complications for other more
complex addressing modes. We don’t cover those complications though. We focus on the
most basic 3AIC instructions, but when dealing with a more advanced addressing modes
(as done in realistic settings), the exact future liveness status would be known, not even
for straight-line code. [2] covers also that, but it’s left-out from the slides and the pensum.

There is another fine point. The assumption that in straight-line code, we know that
each line is executed exactly once is actually not true! In case our instruction set
would contain operations like division, there may be division-by-zero exceptions raised
by the (floating point) hardware. Similarly, there may be overflows or underflows or other
hardware-triggered errors. Whether or not such an exception occurs depends on the
concrete data. So, it’s not strictly true that we know whether a variable is live or is not.
It may be, that an exception derails the control flow, and, from the point of the exception,
the code execution in that block stops (something else may continue to happen, but at
least not in this block). One may say: if such a low-level error occurs, probably trashing
the program, who cares if the live variable analysis was not predicting the exact future
100%? That’s a standpoint, but a better one is: the analysis actually did not do anything
incorrect. The liveness analysis is a “may” analysis, and that even applies to straight-line
code. The analysis says a variable in that block may be used in the future, but in the
unlikely event of some intervening catastrophe, it actually may not be used. And that’s
fine: considering a variable live, when in fact it turns out not to be the case

means to err on the safe side.

Unacceptable would would be the opposite case: an exception would trick the code gener-
ator to rate variables as dead, when, in an exception, they are not. But fortunately that’s
not the case, so all is fine.

10.1.2 Code generation

In this section we work with 2AC as machine code (as from the older, classical “dragon
book”). An alternative would be 3AC also on code level (not just for intermediate code);
details would change, but the principles could be comparable. Note: the message of the
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chapter is not: in the last translation and code generation step, one has to find a way to
translate 3-address code two 2-address code. If one assumed machine code in a 3-address
format, code generation would face similar problems. The core of the code generation is the
treatment of registers. The code generation and register allocation presented here is rather
straightforward; it may look “detailed” and “complicated”, but it’s not very complex in
that the optimization puts very much computational effort into the code generation. One
optimization done is based on liveness analysis. An occurrence of a variable is “dead”,
if the variable will not be read in the future (unless it’s first overwritten). The opposite
concept is that the occurrence of a variable is live. It should be obvious that this is
essential for making good decisions for register allocation. The general problem there is:
we have typically less registers than variables and temps. So the compiler must make a
selection: which data should be in a register and which not not?

A scheme like “the first variables in, say, alphabetical order, should be in registers as
long as there is space, the others not” is not worth being called optimization. . . First-
come-first-serve like “if I need a variable, I load it to a registers, if there is still some
free, otherwise not” is not much better. Basically, what is missing is taking into account
information when a variable is no longer used (when no longer live), thereby figuring out,
at which point a register can be considered free again. Note that we are not talking about
run-time, we are talking about code generation, i.e., compile time. The code generator
must generate instructions that loads variables to registers it has figured out to be free
(again). The code generator therefore needs to keep track over the free and occupied
registers; more precisely, it needs to keep track of which variable is contained in which
register, resp. which register contains which variable. Actually, in the code generation
later, it can even happen that one register contains the values of more than one variable
(in case two variables at some point are known to contain the same value). Based on
such a book-keeping the code generation must also make decisions like the following: if a
value needs to be read from main memory and is intended to be in a register but all of
them are full, which register should be “purged”. For that question, the lecture will not
drill deep. We will concentrate on liveness analysis and we will do that in two stages: a
block-local one and a global one in a later section. the local one concentrates on one basic
block, i.e., one block of straight-line code. That makes the code generation kind of like
what had been called “static simulation” before. In particular, the liveness information is
precise (inside the block): the code generator knows at each point which variables are live
(i.e., will be used in the rest of the block) and which not (but remember the remarks at
the beginning of the chapter, spelling out in which way that this may not be a 100% true
statement). When going to a global liveness analysis, that precision is no longer doable,
and one goes for an approximate approach. The treatment there is typical for data flow
analysis. There are many data flow analyses, for different purposes, but we only have a
look at liveness analysis with the purpose of optimizing register allocation.

The goals of code generation is to produce efficient code. Small code size is also
desirable, but less important. But the primary goal is, of course, correct code!

When not said otherwise: efficiency refers in the following to efficiency (or quality) of
the generated code. Fastness of compilation, or with a limited memory footprint may be
important, as well (likewise may the code size of the compiler itself be an issue, as opposed
to the size of the generated code). Obviously, there are trade-offs to be made. But note:
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even if we compile for a memory-restricted platform, it does not mean that we have to
compile on that platform and therefore need a “small” compiler. One can, of course, do
cross-compilation.

Correctness this is non-negotiable and a “binary” goal, the code generation is either correct
or is not. Of course, compilers are complex, and bugs exists (and if found hopefully
repaired) but no self-respecting compiler writer would describe a compiler with some
known cases where the generated code does something erroneous as an “almost correct”
compiler. Optimization is different, it’s an important goal, and correct compilers can be
more or less “optimal”. Often there are also conflicting goals. We also mentioned that
optimization can be (and is) done in different stages of a compiler (and in different ways).
But later stages, like code generation is a prime arena for achieving efficiency. As also
mentioned earlier, optimal code undecidable anyhow, and even if decidable (perhaps
restricting oneself for straight-line code) it may be intractable)1.

Besides that, one should also not forget that there are trade-offs, one has to agree on a
measure of how “good” the produced code is. Later we will introduce a (simple) cost-
model for that. Even if one agrees on a measure, the word optimization is not meant
as producing an optimal piece of code in the conventional sense of being optimal. Its
interpreted as techniques to achieve “good code”.

Due to the importance of optimization at code generation time, it’s often then time to
bring out the “heavy artillery”. So far, all techniques (parsing, lexing, even sometimes type
checking) are computationally “easy” or made easy. Sure, one could invest in a parser that
is computationally not easy, like defining a syntax that is ambiguous and handle that with
a parser not only with unbounded look-ahead, but even using back-tracking. But what for?
But at the later stages like code generation and optimization, even taking the platform
into account: that’s the time when an investment in aggressive, computationally complex
and advanced techniques may be worth it. And indeed many different techniques are
being used.

Concerning type checking, the situation is a bit different from parsing. Type checking
(in particular in the way we presented it) can be simple. But that’s not always the case.
Type inference, aka type reconstruction, is typically computationally heavy, at least in
the worst case and in languages not too simple. There are indeed technically advanced
type systems around (including undecidable ones, like the one for C++. . . ). Nonetheless,
it’s often a valuable goal not to spend too much time in type checking and furthermore,
as far as later optimization is concerned one could give the user the option how much
time he is willing to invest and consequently, how aggressive the optimization is done. For
our coverage of type systems in the lecture and the oblig: that one is rather simple and
elementary, and poses no problems wrt. efficiency.

1The word “intractable” refers to computational complexity; intractable problems are those for which
there is no efficient algorithm to solve them. Tractable refers conventionally to polynomial time effi-
ciency. Note that it does not say how “bad” the polynomial is, so being tractable in that sense still
might not mean practically useful. For non-tractable problems, it’s often guaranteed that they don’t
scale.
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10.2 2AC and costs of instructions

Here we look at the instruction set of the 2AC, resp. a small subset of an instruction set.
We look at it from the perspective of a cost model. Later, we want to at least get a feeling
that the code we are generating is “good” but then we need to what the cost is of the
generated code, i.e., the cost of instructions.

Two-address code

When talking about 2AC, it’s actually not a concrete instruction set of a concrete platform.
Concrete chips have complicated inststruction sets, so it’s more that we focus on a (very
small) subset of what could be an instruction set of a 2A platform. Now, isn’t that another
“intermediate code”? We will see that the code now (independent from the fact that its
2AC) is more low-level than before. In that way, it could be a real instruction set of some
hardware. The intermediate code from before could not. One could tell the same story
we are doing here, translating from 3AIC to 2AC also by doing a translation from 3AIC
to 3AC. Still that would pose equivalent problems (register allocation, cost model, etc.),
but the presentation here happens to make use of a 2AC.

The not too many op-codes we cover are “typical” two-address op-codes, but not meant
representing a particular concrete machine.

The 2-address instructions format looks as follows

OP source dest (10.1)

dest is not just the destination for a binary instruction, it’s also a source for binary
operations. The format describes the most general form of instruction (and that’s what
we will focus on), but also instructions with less arguments may be supported. Also
instructions, where the dest is really just the destination, not also as source, an in the
general case. Note the order of arguments here (esp. for minus). The order is not really per
se important, nor is it a law of nature that the source must be mentioned first. But to be
able to read later code snippets of generated code and to understand the code generator,
one has to keep that order in mind.

As said, it’s not only the number of allowed arguments which is a crucial difference between
3AIC and 2AC, and reducing 3 arguments into to is not the crucial challenge for this
chapter. The important difference is that there are restrictions on source and target
arguments:

Source and target arguments can only be refer to register or memory cell. The
source can additionally be a target.

Besides the shown instruction format, there are of course further opcodes for conditional
jumps, procedure calls . . . .
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Here is a simple code snippet containing a few lines of numerical operations, followed by
some jump.
ADD a b // b := b + a
SUB a b // b := b − a
MUL a b // b := b ∗ a
GOTO i // u n c o n d i t i o n a l jump

Remark 10.2.1 (3A machine code as alternative and restrictions on operands). Following
[2], we base the presentation on 2AC. Note, machine code is not lower-level or closer to
HW because it has one argument less than 3AIC. Instead of the format from equation
10.1, 3AC instructions could look as follows:

OP source1 source2 dest (10.2)

That resembles 3AIC instruction. The fact that the corresponding command would have
been written like dest = source1 OP source2 is more a syntactic issue or an issue of
readability. Of course, being basically at HW level now, the actual format of instructions
is no longer a syntactical issue, it has become a “physical” issue. Instructions is a sequence
of words, loaded by the processor on the chip over some bus, the single bits traveling as
electrons over parallel lines of conductivity, so the format of the instruction (10.2) also
reflects the design of the underlying hardware. And that will load the bits for the operator
OP first etc., so the sequence of words in the format also reflects the way the bits are
arranged in memory and the order in which they are handled by the hardware. See also
Figure 10.1 for our 2AC.

Of course, if one programs in assembler code, the assembler editor may hide this and
arrange the display for the progammer in a visually different way (perhaps using infix).
At any rate, the order of how the individual instructions are written “notationally” is also
not the main distinguishing point between intermediate code and actual code.

But what’s then in general the difference of typical 2 (or 3) address machine code to
3A intermediate code? A main differerence is often a restriction on the operands.
Hardware may for instance impose one or more of the following restrictions.

• only one of the arguments is allowed to be a memory access (or even: all arguments
must be registers).

• no fancy addressing modes (indirect, indexed . . . see later) for memory cells, only
for registers.

• not “too much” memory-register traffic back and forth per machine instruction.

For instance
&x = &y + ∗z

may be 3A-intermediate code, but not 3A-machine code. Perhaps the machine code can
do things corresponding to *z only on registers (maybe even so some specialized registers)
and cannot have two operations like & and * in one instruction.

As we said, the code generation could analogously be done for 3AC instead of 2AC. But
what’s the difference then between 3AIC and 3AC, would the translation not be trivial?
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Not quite, there is a gap between intermediate code and code using the instruction set.
The most important difference is the use of registers. Related to that, 3AC instructions
typically impose restrictions on the operands of the instructions. In the purest form, one
may allow instructions only of the form r1 := r2 + r3 (here addition as an example),
where all arguments, sources and target, must all be in registers. That would result in a
pure load-store architecture: before doing any operation at all, the code generator must
issue appropriate load-commands, and the result needs to be stored back explicitly. That
obviously leads at least to longer machine code, measured in number of instructions (but
perhaps the instructions themselvelse may be represented shorter). Analogous restrictions
may concern the indirect addressing modes. Instruction sets with a load-store design are
often used in RISC architectures.

10.2.1 Cost model

To speak about optimization, we need some well-fined measure of quality of the pro-
duced code. That’s the cost model. It captures the fact that some instructions takes more
time than others, without being exact in giving realistic timings for various reasons.

As for cost-factors. One is the “size” of the instruction, which is the base cost.
On top of that comes the influence of different address modes as additional costs
(see later). I.e. there are different (additional) costs for register access vs. main
memory access vs. constants. Or also direct vs. indirect vs. indexed access.

How does the size of the instruction influences the time? Instructions need to be loaded
into the processor. I.e., longer instructions may need longer, perhaps it takes 2 or more
machine cycles to load the needed operator and operands into the processor.

The cost model (like the one here) is intended to model relevant aspects of the code, that
influence the efficiency, in a proper and useful manner. The goal is not a 100% realistic
representation of the timings of the processor. It will be based on assigning rule-of-thumb
numerical costs to different instructions. Actually, the cost model captures not much more
than the following very simple and obvious fact:

Accessing a register is “very much” faster than accessing main memory. And loading
(and processing) longer instructions requires more cycles than shorter ones.

But the model does not use realistic figures (maybe by consulting the specs of the machine
or doing measurements). Indeed, “main memory” access may not have a uniform access
cost (in terms of access time). There are factors outside the control of the code generation,
which have to do with the memory hierarchy. The code is generated as if there are only
two levels: registers and main memory. But, of course, that’s not realistic: there is caching
(actually a whole hierarchy of caches may be used). Furthermore, data may even be stored
in the background memory, being swapped in and out under the control of an operating
system. Being not under the control of the code generator, those are stochastic influences.
The compiler is not completely helpless facing caches and other memory hierarchy effects.
Based on assumptions how caching and paging typically works, the code generator could
try to generate code that has good characterisics concerning “locality” of data. Locality

https://en.wikipedia.org/wiki/Load%E2%80%93store_architecture
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means that in general it’s a good idea to store data items “than belong together” in close
vicinity, and not sprinkle them randomly across the address space (whatever “belonging
together” means). That’s because the designer of the code generator knows that this suits
chaching or swapping algorithms, that perhaps swap out cache lines, banks of adjacent
addresses, whole memory pages etc. As far as caches are concerned, that’s simply a
rational hardware design. But one can also turn the argument around: hardware designers
know, that it’s “natural” that data structures coming from a high-level data structure of
a structured programming language (and which contain conceptually data “that belongs
together) will be generated in a way being “localized”. Even if the compiler writer has
never thought of efficiency and memory hierarchies, it’s simply natural to place different
fields of a record side by side. Also for more complex, dynamic data structures, such
principles are often observed: the nodes of a tree are all placed into the same area and
not randomly. More tricky maybe the the presence of a garbage collector, that could
mess that up, if done mindlessness. But also the garbage collector can make an effort to
preserve locality. So, in a way, it all hangs together: well-designed memory placement
will be rewarded by standard ways managing the memory hierarchy, and well-designed
memory management will run standard memory layout by compilers faster. It’s almost a
situation of co-evolution.

But all that is more a topic for how the compiler arranges memory (beyond the general
principles we discussed in connection with memory layout and the run-time environments).
Here we are looking more focused on the code generation and trying to attribute a round-
about costs on individual instructions. So questions of locality cannot be considered,
as they are about the global arrangement, neither are questions of caching, etc., as one
individual instruction and the instruction set is not aware of caching, let alone the influence
of the operating system.

So, how can we express the very rough above observation “registers are very much faster
than memory accesses”? That’s easy, register access costs “nothing”, it will have a zero
costs. Main memory accesses will have cost of 1. Also, the cost of 0 vs. the cost of 1, it’s
about time additional to the load and execution time to the operation. So doing ADD
r1 r2, an addition involving 2 registers, costs 1 (say, one load cycle), only the register
accesses don’t add to the costs, their access and carrying out the addition are done within
one single load cycle. Even if we had realistic figures from somewhere (via profiling and
measuring average execution times under typical conditions or similar), the use would be
limited: as stressed a few times, genuine and absolute optimal performance is (and cannot
be) the goal (super-optimization aside). The goal is getting good or excellent performance
with a decent amount of effort. We are content to use the cost model as a guideline (for
the code generator) on decisions like

when translating one line of 3AIC, shall I use a register right now or rather not?

We will see that this is the way the code generator will work. One might not even call it
“optimization”: it’s not that first some not-so-good code is generated which afterwards is
improved and optimized. The code generator takes the cost model into account on-the-
fly, while spitting out the code. It does not even consult the cost model (by invoking a
function, comparing different alternatives for the next lines, and then choosing the best).
It simply compiles line after line, and the decisions are plausible, and one can convince
oneself of the plausibility by looking at the cost model. Actually, one can convince oneself
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of the plausibility even without looking at the cost model, just preferring values from
registers over main memory when possible. And that simple fact is one of two important
pieces of common knowledge the cost model captures.

What’s the second piece then? The other piece is that executing one command costs also
something. So, each “line” costs 1. In that sense, the 0-costs of register access is realistic,
insofar registers access is typically done in one processor cycle, i.e., in the same time slice
than the loading and executing the instruction as a whole. So, in that sense, register
accesses really don’t cost anything additional. Other accesses incur additional costs, and
since we don’t aim at absolute realism, all the non-register accesses costs 1.

After all that background information, let’s get more concrete. Figure 10.1 describes the
instruction format in terms of bytes and their layout

op mode (s) mode (d) source address destination address

4 bytes 4 bytes 4 bytes

Figure 10.1: Instruction format

mode abbr. address added cost
absolute M M 1
register R R 0
indexed c(R) c + cont(R) 1

indirect register *R cont(R) 0
indirect indexed *c(R) cont(c + cont(R)) 1

literal #M the value M 1 only for source

Table 10.1: Address modes and cost model

In the most general case, for our 2AC and for instructions with 2 arguments, an instruction
is split into 3 parts each 4 bytes or 4 octets long. 4 bytes are also called one word in that
architecture. The first word represents the op-code including information how to interpret
the following two words, namely the source and the destination address; as mentioned,
the destination address is also the address of a source, in a binary operation. The content
of the source and destination arguments can be interpreted differently, that called their
mode in the corresponding op-code. The mode of the two instruction arguments can
be specified independantly and the various modes are summarized in Table 10.1 (in the
right-hand column).

The modes called indirect and indexed in the table correspond to those discussed in
connection with intermediate code (in connection with accessing slots in an array or fields
of a struct). Note that those more advanced access modes assumes that their arguments
reside in registers already.

We see that there are no real restictions when and when not memory access are allowed
and when registers. Earlier we mentioned something like “load-store” architectures, where
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binary operations may only work on registers, or other restrictions. That is not the case
here.

Remark 10.2.2 (Instruction format, HW architecture and comparison to byte code for-
mats). The format here corresponds to a 32-bit architecture, which is a popular format
(actually, it’s pretty old, there had been 32-bit machines early on, likewise also 64-bit (not
micro-processors at that time). There are 16-bit microprocessors (in the past), and there
are 64-bit processors as well. Of course, having 4 bytes for the op-code does not mean
all bit patterns are used for actual instructions (that would be way too many). But we
have to keep in mind (or at least in the back of our mind, as that’s no longer the concern
of a compiler writer): the instructions need to be handled by the given hardware with
a given size of the “bus”, there is no longer the freedom and flexibility of software. In
particular, it’s not “byte code” (more like 4-bytes code. . . ) It’s nice to think of a binary
opcode as to represent “addition” or “jump”, but the 0 and 1’s in the code actually are
connected to hardware, the slots in the 32-bit word are “wired up” connecting them to
logical gates that open and close and trigger other bits/electrons to flow from here to
there that ultimatly result in another bit pattern that can be interpreted as that an ad-
dition has happened (on our level of abstraction). So the actual bit-codes for the logical
machine instructions are are “sparcely” distributed, and most bit-patterns are not simply
unused (“undefined”). If used they would open and close the “logic gates” of the chip in a
weird, meaningless manner. As said, all that is not the concern of a compiler writer, who
can see an add-code as addition, but it’s interesting that the story does not end there,
there are complex layers of abstraction below that and also, that we are leaving the world
of “anything goes” of software: the compiler writer can design any form of intermediate
representations in intermediate codes and translate between them etc. But below that,
things get more restricted by physics and the laws of nature.

Example 10.2.3 (Cost model example a := b + c). The following examples are not
breathtakingly interesting. They show different possible translations and their costs. The
first two Listings 10.1 and 10.2 show two equivalent ways of translating the given assign-
ment, one operating directly on the main memory, one partly loading the arguments to a
register and then using that. Both versions have the same cost, in our cost model (despite
the fact that the first program executes 3 commands and the second only 2).

The other two examples from Listing 10.3 and 10.4 represent the same command, but
under a different assumption, namely: the arguments are already loaded in some registers.
Listing 10.3 assumes that R0, R1, and R2 contain addresses for a, b, and c. In Listing
10.4 in contrast, the assumption is that R1 and R2 contain values for b, and c. Either
way, that drives down the costs. But that should be pretty clear, that’s why one has
registers, after all.

We also see that to profit from the use of registers, the code generator needs to know
which variables are stored in the registers already. That will be done later by so-called
address descriptors and register destriptors.

Also, especially the second example shows, that sometime the generated code is a bit
strange: Since we have only 2AC, one argument is source, the other one is source and
destination. That means, 2AC like addition “destroys” one argument. That means, in
general we need to temporarily copy that argument somewhere else, otherwise it gets lost.
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In the second example, since a is updated anyway, the first step uses a for that temporary
copy of b. That’s a general pattern of this form of code.

MOV b , R0 // R0 = b
ADD c , R0 // R0 = c + R0
MOV R0 , a // a = R0

Listing 10.1: Using registers, costs=6

MOV b , a // a = b
ADD c , a // a = c + a

Listing 10.2: Memory-memory ops, costs=6

MOV ∗R1 , ∗R0 // ∗R0 = ∗R1
ADD ∗R2 , ∗R0 // ∗R0 = ∗R2 + ∗R0

Listing 10.3: Addresses in registers,
costs=2

ADD R2 , R1 // R1 = R2 + R1
MOV R1 , a // a = R1

Listing 10.4: Storing back to memory,
costs=3

10.3 Basic blocks and control-flow graphs

In the introductory overview of this chapter and elsewhere, we have mentioned the concepts
of basic blocks and control-flow graphs already. The notion of control-flow graph is used,
in this lecture, at the level of IC (maybe 3AIC), resp. also machine code. The notion of
CFG makes also sense on highler levels of abstractions, i.e., one can do a control-flow graph
also for abstract syntax. In our setting, there would be not much difference between to
control-flow graphs from intermediate code and machine code. Both representations make
use of jumps and conditional jumps and labels (resp. addresses), and that determines the
edges of the graph.

In this section, we work with 3AIC, generated from some AST probably with higher-level
control-flow constructs like two-armed conditionals and loops. Now we “reconstruct” a
more high-level representation of the code by figuring out the CFG (at that level). It is
not uncommon extract a CFG first,2 and use the CFG assisting in the (intermediate) code
generation. In such a settings, the control-flow graphs are and explicit data structure, as
another intermediate representation.

Anyway, the general concept of CFG works analogously at different levels, same for basic
blocks, at least when working with a standard procedural language.

Basic blocks are largest possible sequences of straight-line code. A control-flow
graph is basically graph with basic blocks as nodes and jumps, resp. conditional
jumps and fall-throughs as edges.

The characterization of control-flow graph does not cover procedure calls. In its basic
form, a control-flow graph represents the control flow of the body of one procedure. One
basic block, corresponding to a node in the control-flow graph, is (a largest possible)
sequence of instructions without jumps in or out. It’s also the elementary unit of code
analysis/optimization.

2See also the written exam 2016.
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When saying, a CFG is “basically” a graph, we mean that, apart from some fundamentals
which makes them graphs, details may vary. In particular, it may well be the case in a
compiler, that cfg’s are some accessible intermediate representation, i.e., a specific
concrete data structure, with concrete choices for representation. For example, we present
here control-flow graphs as directed graphs: nodes are connected to other nodes via edges
(depicted as arrows), which represent potential successors in terms of the control flow of
the program. Concretely, the data structure may additionally (for reasons of efficiency)
also represent arrows from successor nodes to predecessor nodes, similar to the way, that
linked lists may be implemented in a doubly-linked fashion. Such a represantation would
be useful when dealing with data flow analyses that work “backwards”. As a matter of
fact: the one data flow analysis we cover in this lecture (live variable analysis) is of that
“backward” kind. Other bells and whistles may be part of the concrete representation,
like dedicated start and end nodes. For the purpose of the lecture, when don’t go into
much concrete details, for us, cfg’s are: nodes (corresponding to basic blocks) and edges.
This general setting is the most conventional view of cfg’s.

10.3.1 From 3AC to CFG: “partitioning algorithm”

As said, control-flow graphs are reconstructed here from a linear representation, said
3AIC. Actually, the fact that we use 3AIC as starting point for the extraction of the
graph is not really important. It would also work the same way for our p-code, or any
comparable linear instruction formal. All what’s needed is that the code supports jumps
and conditional jumps and label, and that’s characteristic from linear intermediate codes
and also machine code. Actually, even if the code does not officially have labels, as
for instance in plain machine code and addresses as jump targets, one can do the same
with addresses instead of symbolic labels (or the graph extraction at the same time also
introduces symbolc labels for the relevant adresses, which at the same time serve as name
of the control flow graph).

The CFG is determined by something that is called here partitioning algorithm. That’s
a big name for something pretty simple. We have learned in the context of minimization
of DFAs the so-called partitioning refinement approach, which is a clever thing. The
partitioning here is really not fancy at all. The task is to find in the linear code largest
stretches of straight-line code, which will be the nodes of the CFG. Those blockes are
demarkated by labels and gotos (and of course the overall beginning and end of the
code.) There is only one small addition to that: an unused label, i.e., a label not used
as target of some jump, does not demarkate the border between to blocks, obviously. An
unused label might as well be not there, anyway.

The construction is often described making use of the concept of a leader of a basic block.
That’s a fancy name for the first line of a basic block.

If the code contains a statement GOTO i, then line labelled i is a leader. Instruction
after a GOTO or a conditional goto is a leader. And the instruction sequence from
(and including) one leader to (but excluding) the next leader or to the end of code
forms one basic block.
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In case the labels are not “before” a line, but as pseudo instructions occupying a line
themselves, the leader would be the first real instruction in the basic block. Either way,
it’s the same thing, pseudo instructions are not really there anyway, they as are just used
to give a name to real instructions.

An example for a partitioning of a piece of code is illustrated in Listing 10.2. The red lines
show the demarcations between the code of the basic blocks. The lines at the same time
correspond to what we called leaders: the leaders are the lines following the the red lines
and they indicate the first line of a basic block. Threre is one exception, that’s the red
line at the end of the program. That one, obviously, does not correspond to a leader or
the beginning of some bacic block. It demarcates, however, the end of the last basic block.
Note also that the line labelled L2 is not a leader. The reason is that in the sketched
program, this label is not used as jump target, unconditional or otherwise.

..............

..............

..............
if ... goto L5

L1 .............
L2 ..............

..............

..............
goto L3

L5 .............
..............

L3 .............
.............
if ... goto L1
.............
goto L3

Figure 10.2: Partitioning (illustration)

It is worth thinking about what would happen if we considered L2 a header nonetheless. In
that case, the basic blocks would no longer be the largest sequences of straight-line code.
In our example, we would end up with 6 basic blocks instead of 5. That should, however,
not affect the correctness of the generated code. As mentioned, basic blocks are the
elementary levels of optimizations and code generation. Cutting the basic blocks smaller
than necessary will lead to smaller stretches of code targeted by local analysis. An example
would be the local liveness analysis covered later. If one uses liveness analysis only on
the local level, i.e., only inside basic blocks, then the smaller than necessary basic blocks
would lead to a less precise analysis. Liveness analysis (like others) can be precise within
basic block, but typically resorts to approximation more globally, like doing analysis for a
whole control-flow graph. In Section 10.7, we will look into that kind of global analysis.
But when doing only a local one, the analysis ignores what happens outside the current
basic block, and thus, to play it safe and assumes variables at the end of a basic block
potentially used later. It assumes a variable at the end of a block to be live, though a global
analysis may reveal that it is not. This safe overapproximation is typical for many forms
of analyses, in particular data flow analyses, but also type checking. As a consequence,
unnessessarily small blocks of straight-line code lead loss of precision, an approximation
which is still safe safe but needlessly approximative.

Indirectly therefore, also register allocation is affected by a too finegrained block structure.
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As long as the lifeness approximation is correct or safe, the register allocator will lead to
correct code as well, though presumably slower code compared to more precises liveness
information.

This describes what happens to liveness analysis and register allocation if the straight-line
code blocks are needlessly small, if one assumes local analysis only. The situation for other
kinds of analyses would be similar.

What would happen using small straight-line blocks if one employed a global analysis?
In this case, one typically would not loose precision. The global analysis anyway looks at
the whole control-flow graph. Unlike for local liveness analysis, to stick with this form of
analysis, a global analysis will not of course assume that a variable at the end of a basic
block is live, just to be safe. It will investigate to figure out if the variable may be used in
the future or if it’s sure it’s dead. That’s what the global analysis is good for, after all.

Does it mean, if one is doing a global analysis anyway, the size of the blocks of straight-line
code does not matter? In a way, yes. As said, one will not loose precision by being to
finegrained. In an extremal case, one could use every instruction line as one elementary
block. Why would one still like to work with the largest possible stretches of straigh-line
code, i.e., with basic blocks of the form introduced?

The reason is mostly that the global analysis can be done if not more precisely, but more
efficiently. Global analysis typically involves the analysis of loops or cycles, something
that, by definition, is not needed for straight-line code. The analysis of cycles in the
control-flow graph entails that one does analysis steps repeatedly for nodes participating
in a cycle. If one has a large basic block as part of a cycle, one can analyse relevant
information (for instance concerning the liveness status of variables) one in summarized
form. For instance, let’s assume the first usage of a a variable, say x in a given basic
block is that it’s assigned to like in a line of the form x := e, where e does not refer
to x. That means, x actually is dead at the beginning of said basic block. A local
analysis of the block will find that out, and one can use the information in summarizing
corresponding information for the basic block for all variables. Resp. one could do that
summary information for all basic blocks, which form the nodes of the control flow graph.
What good would that do? The local analysis, needed for the summary information
steps through the lines of the basic block. As we will see, one single pass through the
lines is enough. Actually, it should be even intuitively clear, that one pass should be
enough to see locally, for each variable, if it’s used or not. Anyway, the basic block,
as said, may be part of a cycle in the graph, and cycles need repeated treatment. But
with the summary information precomputed by local analyses, one at least need not step
through the individual ones over and over again, to (re-)discover the liveness status of the
involved variables, like rediscovering that x is dead at the entrance of the basic block; that
information is remembered in the summary. It’s in a way like memoization of the the local
liveness situation for the basic blocks. In this way, the analysis may become faster.

Let’s have a look at some more concrete example. Listing ?? shows 3AIC for the factorial
function from the previous chapter, and Figure 10.3 shows the corresponding control-
flow graph. The code contains 5 basic block and thus the illustration of the control-flow
graph 5 nodes. The first line in each node is the corresponding header. Unlike in the
schematic example from Figure 10.2, all labels in the code are jump targets. Typically,
the (intermediate) code generator would not generate labels not being used as jump-target,
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though they are not “harmful”; the partitioning algo does not treat them as leaders and
the label instructions from the 3AC are pseudo-intructions, i.e., the don’t correspond
ultimately lead actual machine-code instructions.

Example 10.3.1 (Control-flow graph of the factorial function). Let’s use as example the
3AIC for the factorial function. We had encountered the example already for intermediate
code generation. The corresponding CFG is shown in Figure 10.3.

read x
t1= x>0
if_false t1 goto L1

fact = 1

label L2
t2 = fact * x
fact = t2
t3 = x - 1
x = t13
t4 = x==0
if_false t2 goto L2

write fact

label L1
halt

true

false false

b0

b1

b2

b3

b4

Figure 10.3: Control-flow graph (factorial)

We see that gotos and conditional goto never inside a block, but not every block ends in a
goto or starts with a label. So it’s not that labels and blocks are in exact correspondance
(and in the picture, the blocks are named bi).

10.3.2 Levels of analysis

Figure 10.3 contains the control-flow graph of the factorial procedured, resp. the graph
for a main procedure of a program that realizes the factorial function. Note that the
program does not do procedure calls; the factorial is calculated using a while-look in the
source language and it’s not the recursive factorial solution, one often finds. Anyway, the
control-flow graph and the analysis one can do on that graph is intra-procedural. That
refers to notions and analysis “inside” one procedure, not across

More general is inter-procedural analysis. Inter-procedural analyses are harder, resp.
require more effort than intra-procedural. In this lecture, we don’t cover inter-procedural
considerations. Except that call sequences and parameter passing has to do of course
with relating different procedures and in that case deal with inter-procedural aspects. But
that was in connection with run-time environments, not what to do now in connection
with analysis, register allocation, or optimization. So, in this lecture resp. this chapter,
“local” refers to inside one basic block, “global” refers to across many blocks (but inside
one procedure). Later, we have a short look at global liveness analysis. As mentioned,
we don’t cover analyses across procedures, in the terminology used here, they would be
even more global. Actually, in the more general literature, global program analysis would
typically refer to analysis spanning more than one procedure. Indeed, one should avoid
talking about local analysis without further qualifications; it’s better to speak of block-
local analysis, procedure-local, method-local, or thread-local, to make clear which level of
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locality is addressed. We are doing block-local analysis resp. procedure-local analysis and
will call the latter “global”. In general, the more global, the more costly the analysis and
especially the more costly the corresponding optimizations.

10.3.3 Loops in control-flow graphs

Next we comment on so-called loops in control-flow graph, without going into much detail.
Loops in programs are thankful places for optimizations. That’s sometimes called loop
optimization. That’s not necessarily specific analysis or optimizations working only for
loops. For instance, liveness analysis the way presented here work for control-flow graphs
with or without cycles in the graph. But a good or aggressive analysis and register
allocation for loops, specially for smalls ones that are taken very often during execution
may greatly improve the performance.

Programming language looping constructs —while-loop, for-loop etc.—- leads to cycles in
the graph. However, not all cycles in a cfg are loops. In other words, the concept of
loops in control flow graphs is not identical with cycles in a graph.

All loops are graph cycles but not vice versa.

Intuitively, loops are cycles originating from source-level looping constructs, like while.
Gotos, on the other hand, may lead to non-loop cycles in the CFG.

Why does one even bother to make that distinction? Actually, sometimes one does not.
For instance, later we will look into global liveness analysis, a form of data flow analysis.
For that we sketch an algorithms, that works for general control flow graphs, with loops or
cycles (and also for control-flow graphs without cycles . . . ). We won’t show in detail how
to tune the data flow analysis algorithm for efficency, for instance relying on particular
graph traversal strategies.

But that’s the point: loops as a restricted form of cycles would allow particular traversal
strategies that perform better, but they can’t be applied on general cycles. Of course,
with no cycles at all and the control-flow graph as directed acyclic graph, even better
strategies are possible. As a matter of fact, the local liveness analysis we look at first deals
with basic blocks, i.e., straight-line code, and that is even more restricted than just being
acyclic. And thus the liveness analysis become even more simple and efficient.

Besides that fact that loops have have better properties compared to non-loop cycles
when it comes to analysing the CFG, they are also more well-behaved when considering
certain optimizations or code transformations (based on analyzing the code). That’s a
slightly different thing. Certain analyses may get slower for non-loops, but certain code
transformations don’t work for non-loops. We will come back to that a bit later after
defining in more detail what a loop actually is, not just stating that it comes from a
source-code looping construct.

The analysis, that figures out which cycles in a graph are actually loops and which not
is sometimes called loop discovery. However, in modern lanuages, it’s no longer an
important analysis; in the absence of gotos or similar commands, all cycles are loops.
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B0

B1

B2 B3

B4

B5

Figure 10.4: Loop example

Cycles in a graph are well-known. As said, loops, while closely related, are not identical
with cycles. So, loop-detection is not the same as cycle-detection. Otherwise there’d be
no much point discussing it, since cycle detection in graphs is well known, for instance
covered in standard algorithms and data structures courses like INF2220/IN2010.

Definition 10.3.2 (Loop in a (control-flow) graph). A loop L in a CFG is a set
of nodes, including header node h ∈ L such that

1. for any node in L, there is a non-empty path inside L to h, and there is
2. a path inside L from h to any node in L. Finally,
3. there is no edge in the graph that goes into a node of L other than h from

the outside of L.

In control-flow graphs, one often has an additional assumption. It’s actually not so much
a restriction on loops, it’s more an assumption on control-flow graphs. It’s assumed that
the “initial node of a control flow graph for a procedure is not itself an entry or header
node of a loop. Same for cycles: the entry node should not be part of a cycles, should the
control-flow graph have cycles. That’s mostly for convenience, making certain analysis a
tiny bit more straightforward (avoiding to take care of some corner cases.3

The definition is best understood in a small example.

Example 10.3.3 (Loop example). See the control-flow graph from Figure 10.4. The graph
contains the following two loops

{B3, B4} and {B4, B3, B1, B5, B2}

The first loop is a nested loop. The unique entry for the loops is marked in red. The set

{B1, B2, B5}
3We had comparable and actually related restriction for context-free grammars, where it also helped

avoiding said corner cases. There we sometimes assumed that the start-symbol should never occur on
the right-hand side of a production. That would mean it would occur in a cycles. To “repair” that,
one could add an addition start symbol, say S′ instead of S. But the fact that context-free grammars
and control-flow graph are both abbreviated as CFG, that’s of course coincidence . . . .
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Figure 10.5: Non-loops

is not a loop.

Figure 10.5 shows some graphs without loops, but cycles.

The first two points from the definition make the nodes of a loop strongly connected:
all nodes in a loop can reach each other. From the algorithm and data structure lecture
INF2220/IN2010, one may have encountered the notion of strongly connected component
and the corresponding algorithm. A strongly connected component adds “maximality”
to the requirement of being strongly connected; i.e., a strongly connected component is a
maximal set of strongly connected nodes. This maximality is not required for loops.

For instance in the graph from Figure 10.4, the inner loop {B3, B4} is strongly connected
(and a loop), but it’s not a strongly connected component, since one could enlarge it
to {B1, B2, . . . , B5} and still stay strongly connected. The notion of stronly connnectd
components corresponds to outermost loops (including all nested loops within).

Let’s look at a small example for optimization opportunities in connection with loops. We
don’t look at a control-flow graph representation, as an analyser and optimizer might do,
but illustrate optimizations at source code level (see Listing 10.5).
while ( i < n) { i ++; A[ i ] = 3∗k }

Listing 10.5: Loops as fertile ground for optimizations

One possible optimization is to move the computation 3*k out of the loop. In the control-
flow graph, it would be placed right in front of the header node.4 That this is possible of
course rests on the observation, that 3*k is constant inside the body of the loop. That’s
easy enough to see here in the example, but that needs to be established by a particular
analysis. Another form of optimization in connection with loops is to put variables used
repeatedly in the loop into registers (like i here.)

We don’t need to explore loops further, actually for the way we do global analysis later
(in the form of global liveness analysis) that will work for non-loop cycles (“unstructured”
programs) as well as for loop-only graphs, in the version we present it. If one knows that
there are loops-only, one could improve the analysis (and others). Not in making the result
of the analysis more precise, but making the analysis algorithm more efficient. That could
be done by exploiting the structure of the graph better, for instance exploiting that loops
are nested, targeting inner-loops first. In the examples from Figure 10.5, such strategy

4That’s one of the motivations for unique entries.
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would not apply, as cycles are not necessarily nested. Since we don’t exploit the presence
of loops, we don’t dig deeper here. It should be noted that the definition of loops (with
unique entry points) is a classical concept for CFGs and program analysis. One may,
however, find material ignoring the subtle, traditional difference between cycles and loops
and where the two notions are used interchangably.

One is interested in loops not necessarily as a concept in itself, but in the larger context
of optimization. We called loops a fertile ground of optimizations, which is of course also
true for general cycles: both involve (potential) repetition of code snippets, and shaving
off execution time there, that’s a good idea. Often, the optimization is about moving
things outside of the loop, typically “in front” of the loop. That’s when a unique entrance
of a loop comes in handy (sometimes called a loop-header). The non-loop examples don’t
have a single loop-header.

In the more or less distant past, loop detection (and cycle detection) would be a task
a compiler would engage in. Now, that most programs are written following structured
progamming, there a no non-loop cycles. Additionally, when compiled from source code,
the program structure contains all the information where the loops are, so there not need
to do an analysis (for instance for the intermediate code) to (re-)discover them at the lower
level. However, the partitioning algorithm we discussed is a bit in that spirit. The control
flow structure is (re-)discovered from (intermediate) code, in the form of the control flow
graph.

10.3.4 Data flow analysis in general

Data flow analysis is a general analysis technique (or a class of analysis techniques)
working on control flow graphs. There are many different concrete forms of such analyses.
Often analyses work hand in hand with a particular optimization. For a particular
optimization, one needs particular pieces of information, for instance about variables, or
about values at different points in the control-flow graph. For instance, for optimizations
like the one sketched in Listing 10.5, one needs to figure out if variables change their values
in the body of the loop (k in the example).

In our lecture, the optimization goal is to obtain a decent register allocation, and the
corresponding information is the liveness status of variables and the data flow analysis we
use is liveness analysis.

Not all data flow analyses are done with optimization in mind. For instance, the user could
be interested to know, whether there are potentially unititialized variables in the program
or potential nil-pointer exceptions. etc. Such questions can be analyzed by tailor-made
data-flow analyses, but there are no optimizations connected to it. The only results are
warnings to the user about potential sources of trouble, and it’s left to the user to deal
with it.

Why are such analyses called data flow analyses, resp. what’s data-flow anyway? And
while at it: what’s control flow? After all we are doing data-flow analysis on a control-flow
graph. The words refer to the fundamental separation between two aspects of a program:5
There is the data on the one hand, stored in memory/temporaries/registers etc. On

5At least in procedural languages, in functional languages the line is blurred.



26 10 Code generation
10.3 Basic blocks and CFGs

the other hand, there is the control. That’s the code. The current point of control
is a particular point in the control-flow graph. Ultimately, in the running program it’s
represented by instruction pointer, pointing to the address of the next instruction to be
executed in the code segment. So the “control” of a running program moves by changing
the instruction pointer. Inside elementary blocks, the instruction pointer is incremented,
moving though instruction after instruction, and (conditional) jumping corresponds to
setting the instruction pointer to the target address of the jumps (and that corresponds
to an edge in the CFG). The distinction between “data” and “control” is also visible in
the memory layout discussed in connection with run-time environments, where the code
in the code segment, and all the data placed separately.

Side remark 10.3.4 (Control-flow analysis). We have data-flow and control-flow and we
are discussing data-flow analysis on control-flow graphs, in particular later in the form of
liveness analysis. Is there also something like control-flow analysis?

Indeed there is. Earlier we discussed a way to extract the control-flow graph from a given
linear code representation (say, 3AIC or similar). That was called a bit bombastically a
partitioning algorithm. In effect, it can be called a control-flow analysis. Actually, most
would not bother to call it control-flow analysis, because also that is too bombastic for
the simple thing it does. “Proper” control-flow analysis is reserved for complex situations,
when the control-flow situation is not as obvious as in our case. It is obvious in our setting
since the jumps go to fixed labels.

Things get more complicated, in particular in connection with functions. Function calls
involve jumps (as part of the call sequences), and in complex enough languages, the called
function may not be statically known. That’s the case for languages with references to
functions or function variables, in particular also for language with higher-order function.
Also for late-bound methods, the jump-target as part of the call is not known statically.
In such situations, the compiler may invest in an analysis to narrow down potential jump-
targets. That’s normally what would be called control-flow analysis, though calling our
partitioning algorithm is certainly also a control-flow analysis, though a very trivial one,
and one that does not need techniques similar to data flow.

Data flowing from (a) to (b): Given the control flow of the program, normally as
control-flow graph, the question is: is it possible or is it guaranteed that some “data”
originating at one control-flow point (a) reaches control-flow point (b). (“may” vs.
“must” analysis).

The characterization of data flow may sound plausible: some data is “created” at some
point of origin and then “flows” through the graph. In case of branching, one does not know
if the data “flows left” or “flows right”, so one approximates by taking both cases into
account. The “origin” of data seems also clear, for instance, an assignment “creates” or
defines some piece of data (as l-value), and one may ask if that piece of data is (potentially
or necessarily) used someplace else (as r-value), without knowing resp. being interesting in
its exact value that is being used. This is sometimes also called def-use analysis. Later we
will discuss definitions and uses. Another illustration of that picture may be the following
question: assuming one has an data-base program with user interaction. The user can
interact by inputting data via some (web)-interface or similar. That information is then
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processed and forwarded to some SQL-data base. Now, the inputs are points of origin,
and one may ask if this data may reach the SQL database without being “sanitized” first
(i.e., checked for compliance and whether the user did inject into the input some escapes
and SQL-commands).

Anyway, this picture of (user) data originating somewhere in a CFG and then flowing
through it is plausible and not swrong per se, but is too narrow in some way. It sounds
as if every data flow analysis traces (in an abstract, approximative manner) the flow of
pieces of data through the graph.

Not all data flow analyses are like that. Actually, the live variable analysis will be an
example for that. So more generally, it’s more like that “information of interest” is traced
through the graph. Since the information of interests may not be an abstract version of
real data, it may also not necessarily be traced in a forward manner. For liveness analysis,
one is interested in whether a variable may be used in the future. So the information of
interest is the locations of usage. That are the points of origin of that information one is
interested in. And from those points on, the information is traced backwards through
the graph. So, this is an example of a backward analysis (there are others). Of course,
when the program runs, real data always “flows” forwardly, as the program runs forwardly:
first data orignates and later is may be consumed. But for some analysis, like liveness
analysis, one changes perspective: instead of asking: where will information originating
here (potentially or necessarily) flows to in the future, one asks:

where did information or data arriving here orignate from (potentially or nec-
essarily) in the past.

Let’s also comment on the treatment of basic blocks. Basic blocks are maximal sequences
of straight-line code. We encountered a treatment of straight-line code also in the chapter
about intermediate code generation. The technique there was called static simulation (or
simple symbolic execution). Static simulation was done for basic blocks only and for the
purpose of translation. The translation of course needs to be exact, non-approximative.
Symbolic evaluation also exist (also for other purposes) in more general forms, especially
also working on conditionals.

In summary, the general message is: for SLC and basic blocks, exact analyses are possible,
it’s for the global analysis, when one (necessarily) resorts to overapproximation and ab-
straction. After a general discussion of liveness analysis in Section 10.4, we cover liveness
analysis in basic blocks in Section 10.5 and global liveness analysis in Section 10.7.

10.4 Liveness analysis (general) and a variation (def/use)

Liveness analysis is a classical data flow analysis. The introductory remarks of this chapter
already introduced what liveness of a variable means, and why that is important for register
allocation. There are many different data flow analyses, and liveness anaysis is only one
typical example of that form of semantics analysis (but a very important one). It’s typical
insofar that the ideas and technique for liveness analysis apply analogously to other data
flow analyses. By the underlying principles, we mean mostly the way the global analysis
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is approached in Section 10.7 and the way the approximation is done in an iterative
manner.

Let’s first think about how to tackle basic blocks (more details in Section 10.4). The
question is to figure out at each point in a given block, whether a variable is live or not.
Live at least as far as the current block is concerned. Focusing locally one single block
means, the analysis does not have information about what will happen after that block.
As a consequence, the analysis assumes that variables are live at the end of a basic block.
This assumption is done in the spirit of safe approximation. If, seen globally, a variable
would actually not be live (statically or dynamically), the register allocation would at least
make no error. On the other hand, if a variable would be judged dead in contrast to the
real situation, that could lead to wrong code in that the content of the variable may get
lost, even if it still needed in the future.

In the local live variable analysis, variables and temporaries (i.e., temporary variables) are
treated analogously, with one exception, an that the mentioned assumption at the of a
block: proper variables are assumed live, as explained. For temporaries, the liveness anal-
ysis exploits knowledge about how temporaries have been generated in the intermediate
code generated. For each intermediate results, for instance for compound expressions, a
new temporary variable is created to hold that intermediate value temporarily. The way
that works also implies that temporary variables are never (re-)used across the boundaries
of a basic block. So that means, at the end of a basic block, temporaries are assumed to
be dead, and that is more than an assumption; it reflects reality, at least as long as the
intermediate code is generated the way described.

In the following, when we say “variable” we mean proper variables as well as temporary
variables.

The question whether a variable is live or not refers to “control points” in the program.
So it’s not about “is variable x live or dead?”, it’s about “is variable x live at this point”.
Obviously, at some points in the program, x may be used in the future, and, at other
points, it may no longer be used. If held in a register, when a variable’s status turns from
live to dead, the register allocator may decide to re-use the register, which may involve
to save the register back to main memory. But that will the register allocator’s task in
Section 10.8, here we are just figuring out the liveness information the allocator can make
use of.

The “points” in the program here refers to “lines” in the straight-line code. Actually,
it’s not actually that variable live in a given line, that is too imprecise. It’s actually the
question

whether a variable is live right before a given line, or right after it.

One has to make that distinction, since obviously, the liveness status of a given variable
can change at a given line. For example, for a statement x := 4, variable x is definitely
dead before that statement, but may well be live afterwards.

Of course, the liveness status right after line number n is identical to the live status right
in front of line n + 1. This distinction between “right-in-front-of” and “right-afterwards”
can also be applied to whole basic blocks. One can figure out, what is the liveness status
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of a variable right in from of a basic block, which means right in front of its first line, and
right afterwards. One cannot do that for a single basic block in isolation. For the same
reason, one cannot for instance, figure out for a single line inside a basic block in isolation,
say for x := 4 from above, whether x is live or not afterwards inside. Neither can one
figure out whether y is live in front (assuming x and y are different variables). That’s
also the reason why for local blocks and local liveness analysis only, proper variables are
assumed live at the end; when doing only local analysis, one simply does not know what is
the case. So when lifting the “right-in-front-of” and “right-afterwards” considerations to
the level to whole basic blocks, that will be done for the global level, analysing a complete
control-flow graph in Section 10.7. The corresponding information will be called inLive
and outLive.

Coming back to the local analysis: it should be intuitively clear that it’s quite straightfor-
ward to do the liveness analysis, i.e. to determine the liveness status for each each variables
and for each point after resp. before each line in block. A variable is live at a given point,
if it is used later, but without being overwritten in the meantime. The situation where
a proper variable is neither used nor overwritten for the rest of the block is not much
different.

So to check if a variable, say x is live at a given point, one may be tempted to proceed
forwardly and check for the following lines if x will be used in the future inside this
block without being overwritten first (then it’s live), or the first thing that happens in
the future is being overwritten (then it’s dead), or nothing happens the future inside this
block, neither reading from it nor overwriting it, in which case the variable is assumed live
resp. dead, depening on whether we are speaking about a proper variable or a temporary
variable.

One can do that for all points in the straight-line code and for all variables, and that con-
siderations shows that the determining the lifeness status inside a basic block is decidable.
However looking for future uses of variables in the sketched way, checking each point in
the program independently is absurdly inefficient.

The reason why it’s inefficient is that an independent checking partly obtains the same
information over and over again. As part of the problem, one needs to determine the
liveness status for a variable at a point say at beginning of line n (or for all variables at
that point, it does not matter for the argument). For instance in Figure 10.6a, assume
we want to determine the liveness status for x for all lines. For instance, if one wants to
determine it at the end of line 2, one can search forward. Assuming that the lines of the
form ..... have nothing to do with x, then the first use of x is discover in line 7, at
which point it becomes clear that x is not live at the end of line 2.

To do local liveness analysis means we need to do similar considerations for all points in
the basic block. For instance for the end of 3 and line 4 etc, as illustrated by the other
two arrows in the figure. Of course, figuring out the liveness information for the end of
line 3 and 4 simply repeats the search done for the end of line 2 already. So, the different
lines are better not treated as independent problems; one better reuses the information
obtained for one line when doing another line. And the best way to do that is to proceed
backwardly
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1 ...........
2 y := x + 4
3 ...........
4 ...........
5 ...........
6 ...........
7 x : = 0
8 ...........

(a) Forward

1 ...........
2 y := x + 4
3 ...........
4 ...........
5 ...........
6 ...........
7 x : = 0
8 ...........

(b) Backward analysis

Figure 10.6: Local liveness: forward vs. backward

That is illustrated in Figure 10.6b, again for variable x. Of course, the analysis that steps
through the program in the sketched backward manner will treat all variables at the same
time, not doing the same backward scan over and over for each variable. Anyway, pro-
ceeding backwards means, the analysis starts at the very end of the basic block. Assuming
that x is a proper variable, it means, the x is assumed live at the end of the block. That’s
indicated by the green arrow. Stepping thought the code backwards, it remembers right
in front of the assignment in line 7, resp. at the end of line 6, that variable x is dead now,
indicated by the black arrows. Continuing the backward scan, this information is prop-
agated though the lines with decreasing number, since nothing happens wrt. to variable
x, until at the beginning of line 2 resp. end of line 1. At this point, the variable is live
again, indicated the green arrow. The being live information is then propaged further on
backwards, in the example till the beginning of the program. Actually, the liveness algo
later will not just propagate the binary liveness information live vs. dead (here green vs.
black), but it also indicates for live variable, the location of the next use.

That’s an information that could be exploited by the code generator resp. register allocator.
When it has to make the decision which of two live variables to keep in a register, preference
could go to the one whose next use is nearer in the future. The actual code generator we
look at in Section 10.8, does not actually make use of that information, resp. we don’t
go so deep into the details of the decision making process of the code generator to see in
which way that next-use information of life variables can be used.

Figure 10.6b sketches how the “data” is propagated through the lines of the basic block,
resp. information of interest about the data. The real data, integers in the example, is
handled in the programs via assigning it to variables (“defs”) an reading the variable later
(“uses”). In this way, the data “flows” forward in an execution. After all, an execution
does so in a forward manner. Here, the information of interested is not the data itself,
but information about when corresponding variables are assigned to resp. read. This
(information about the) data flows backwards. For straight-line code as in this section,
that leads to a single pass through the code. In that sense the information “flows” through
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the code exactly ones, here backwardly (which corresponds to the fact, that the lines of a
piece of straight-line code in isolation execute exactly onces, as well, though in a forward
manner, of course.)

Going beyond straight-line code, there will be edges of the control flow graph to be con-
sidered. In case of multiple edges connected to a node, the information of the analysis will
flow equally “both ways” (or more in case of more than two edges). In the more general
setting, the basic blocks are then part of a control flow graph, which typically contains
cycles. Thus, a single-pass of analysis is no longer sufficient, and the “data flow ” circulates
through the graph. That will be covered in Section 10.7.

This treatment, single pass for straight-line code resp. circulating data flow in a whole
control-flow graph is characteristic for data-flow analysis. What is not characteristic for
all of them is that the analysis data flows backwards through the straight-line code as in
10.6b, resp. backwards through the graph as discussed later. Liveness is information about
the future, i.e. whether there will be (or might be) a place where a variable is used. As
explained, instead of seaching forward as illustrated in Figure 10.6a, one arranges for a
backward propagation of the relevant information. In other situations, one is interested in
information about the past instead. For instance, analyzing wheher all variables have been
properly initialized previously. This reverses the picture, and the corresponding analysis
works by forward data flow.

Definition 10.4.1. A “variable” is live at a given control-flow point if there exists
an execution starting from there (given the level of abstraction), where the variable
is used in the future [Make more precise]

The notion of liveness given in the slides corresponds to static liveness, he notion that
(static) liveness analysis deals with. That is hidden in the condition “given the level of
abstraction” for example, using the given control-flow graph. A variable in a given concrete
actual execution of a program is dynamically live if in the future, it is still needed (or,
for non-deterministic programs: if there exists a future, where it’s still used.) Dynamic
liveness is undecidable, obviously. We are concerned here with static liveness, if one wants
to be very precise.

10.4.1 Variation on the topic: def/use analysis

We should have a good impression of what liveness analysis is supposed to do. It’s about
analyzing whether, at a given point in the program, a variable will (potentially) be used in
the future.6 Thinking about it, that formulation is factually not really precise. A variable
being dead at some point may well be used in the future! The more precise formulation is
that liveness is the question whether for a variable at a given point the current value at
that point will be used in the future. Despite that, conventionally one talks about (static)
liveness of variables. With this clarification, it’s also clear, a dead variable variable may
well be used in the future, being dead just means it’s current value will no longer be used. If

6When saying variable, we also mean temporary variables.
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the next thing that happens in the code is that the variable is assigned to, and afterwards,
the new value is read, then in the span between now and the point of assignment, the
variable is dead, but after the assignment it becomes live again.

With this clarified: we see important points in the “life time” of a variable (resp. the
values stored in a variable) are points where the variables are read, resp. when they are
assigned to. Those are important points simply by the fact that those are the points where
the liveness status of the variable can change. When reading a variable, the status may
change from live to dead. That would happen when the reading is the last time the current
value is read. When writing to a variable, the status may change from dead to live. That
will in general be the case, because writing to a variable where afterwards the variable is
dead would mean, one has written a value to the variable that’s never used and the value
was not needed at all, which should happen not too often.

Writing to and reading from a variable is often referred to as places of definition resp.
use of the variable. The corresponding analysis is also known as def/use analysis. For
each definition of a variable, it shows the (potential) uses. In case there is no use, the
variable is dead. It should be clear that it can be seen as a variation or generalization on
the theme live-variable analysis: instead of just a boolean dead/live information, def/use-
analysis answers the following question: given a “use”, determine all possible corresponding
“definitions”.7

When doing block-local analysis, each each line has has exactly one place where a given
variable has been defined, i.e., assigned to last (or else the variable is not assigned to in
the block at all). In other words, for a use-def style of analysis, each use is connected to
at most definition. For def-use, in contrast, one definition can be connected to more than
one use. After all, a variable can be read multiple times.

Example 10.4.2 (Defs, uses, and liveness). Let’s have a look at the CFG of Figure 10.7.

0: x = v + w

. . .

2: a = x + c

3: x =u + v4: x = w

5: d = x + y

Figure 10.7: Defs and uses in a CFG

7There is also the converse analysis called use-def analysis: given a “use”: determine all possible “defi-
nitions”.
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• x is “defined” (= assigned to) in 0, 3, and 4.
• the definition of x in 0 is used in 2 and potentially in 5 (assuming that the “. . . ”

in the non-labeled node don’t mess with x . . . ). The picture does not contain a
graphical representation connecting the defs and the uses.

• u is live at the end of block 2, as it may be used in 3.

Note: In this simple illustration, we consider liveness across block-boundaries, i.e. global
liveness, but each block contains only one instruction here.

10.5 Local liveness: dead or alive

We have in general terms discussed different aspects concerning data-flow analysis, includ-
ing aspects of global analysis which comes later. Let’s turn back to the more focused task
of local liveness analysis. We start first with a plain version. The algorithm calculates, for
each point in a basic block and for each variable, a binary piece of information whether
the variable at a given point is variables is live or not, dead or alive, so to say.

That’s straightforward and should be reasonably clear already from the informal discussion
so far, in particular in connection with Figure 10.6b, motivating the backward-scan idea.
Later, we extend that version with information about next-use information about variables,
and introduce the concept of the so-called dependence graph in Section 10.6.

Inside one block, local liveness is mostly about optimizing the (register) use for tempo-
raries. Of course also for user variables, but user variables, unlike temporaries, have a life
span exceeding basic blocks, the local liveness analysis cannot really do them justice, or
at least only in a limited way.

Temporaries are symbolic representations to hold intermediate results, generated on re-
quest. Conceptually there is an unbounded reservoir reservoir of temporaries, but of course
only a restricted, fixed number of registers, the exact number is platform dependent.

In the liveness analysis, we rely on the following assumptions about temporaries and
variables. Temporaries don’t transfer data across blocks (unlike program variables).
As a consequence

Temporaries are dead at the end of a block. In contrast, variables are assumed
live at the end of a block.

The assumption that variables are to be assumed live is a consequence of doing a block-
local analysis. If it’s not know whether a variable will be used or not, one has to do
a conservative, safe abstraction, which means to consider them live. That temporaries
can be assumed dead must be guaranteed by the way the intermediate code generator
works. Indeed, our code generator always creates fresh temporaries. Another observation
concerning how temporaries are created is: the first occurrence of a temporary in a local
block is always on the left-hand side of an assignment. Inside a block, temporaries are
never used first, they are always “defined” first. As a consequence, temporaries are dead
at the beginning of a block.
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Example 10.5.1 (3AIC code). We use the 3AIC from Listing 10.6 to illustrate the backward
scan more conretely. The example will be reused also when extending later in Section 10.6
the current liveness algo.

1 t1 := a − b
2 t2 := t1 ∗ a
3 a := t1 ∗ t2
4 t1 := t1 − c
5 a := t1 ∗ a

Listing 10.6: 3AIC example

Side remark 10.5.2. In intermediate code generated the way disucssed in the previous
chapter: temporaries are always generated new for each intermediate result, so t1 in the
example is “unrealistic” for generated intermediate code. But also that is not important
for liveness analysis. It works for variables and temporaries alike, re-assigned or not.

Let’s call variables or temporaries on the right-hand side of an instruction operands.
Note: 3AIC also allows literal constants as operator arguments; they don’t play a role for
liveness analysis.

We said, liveness is about to determine for each variable, whether its current content it
will (or may) be used in the future at each given (control) point in the code. The control-
points correspond to lines in the code, but we have look more precisely, as mentioned:
It makes a difference whether the control is in front of a line or directly after. As far
as liveness analysis is concered, the liveness status of variables or temporaries can change
when executing one instruction in a block. Immediately in front of the line, the temporary
may be live, for instance because it is used right in that line as operand. But if that’s the
last use of the temporary in that block, it will be dead afterwards.

Consider the statement
x1 := x2 op x3 (10.3)

For that, the liveness situation for variables is characterized as follows:

A variable x is live at the beginning of x1 := x2 op x3, if
1. if x is x2 or x3, or
2. if x live at its end, if x and x1 are different variables

A variable x is live at the end of an instruction,
• if it’s live at beginning of the next instruction
• if no next instruction:

– all temporaries are dead
– user-level variables are (assumed) live.

The definition explains for each line, how the liveness status in front of the live depends on
the lifeness status at the end of the line. It does so for lines of the given form x1 := x2 op x3;
for other forms of lines, like x1 := op x2, the definition needs to be adapted in the obivous
manner. Of course, statemens like jump 3 need not to be considered for a block-local
analysis. Jumps transfer control between different basic blocks.
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Back to the 3 address assignment statement: as said, the definition explains the depen-
dence of the flow information before the statement on the status of the information at the
end of the statement. This dependence is a function from the exit of the statement to
the entry of it. This functional dependency is called the transfer function (of that line,
resp. the statement in a given line). Note that the liveness information of the entry point
of a line is expressed as function of the corresponding information at the exit, not the
other way around. This is of course characteristic for backwards analyses like liveness
analysis.

We the transforfunction for one line (in the form of equation (10.3), it’s easy to formulate
the local-liveness as a simple backward scan of a given basic block. See Listing 10.7.
// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for a l l e n t r i e s : T[ i , x ] := D
except : for a l l v a r i a b l e s a // but not temps

T[ n , a ] := L ,
//−−−−−−− backward pass −−−−−−−−−−−−−−−−−−−−−−−−−−−−
for i n s t r u c t i o n i = n−1 down to 0

let cur rent i n s t r u c t i o n at i +1: x := y op z ;
T[ i , o ] := T[ i +1,o ] ( for a l l other vars o )
T[ i , x ] := D // note order ; x can `` equal ' ' y or z
T[ i , y ] := L
T[ i , z ] := L

end

Listing 10.7: Local liveness (dead or alive)

The table is a two dimensional, there is one slot per variable and per line. Each line
can change the liveness information for one or more variables (that what conteptually the
transfer function is doing) so the liveness information at the end of each line is different
from that in front of a line. The entries in the table or two-dimensional array represent
the information at the end of the corresponding line. That’s of course the same as at the
beginning of the next line. It’s assumed that the line numbers go from 1 to n (not from 0
to n). The loop steps down to determine the effect of all lines numbered n to 1: note that
what is called “current instruction” in the loop refers to the line with i + 1 in the code.
Even of there is no instruction with line number 0, the corresponding entry representing
the “end of line 0” respresents the liveness information at the beginning of the first line,
i.e., at the beginning of the whole block.

Earlier we mentioned in passing the notion of transfer functions, without going into details.
The code of Listing 10.6, stepping backwards through the lines does not explicitly make
use of a separately defined transfer function. Implicitly, the transfer function is executed
in the body of the loop, updating the entries of the table.

Example 10.5.3 (Local liveness). Revisiting Example 10.5.1, the result of the run of the
liveness algorithms for the 3AIC code from Listing 10.6 is given in Table 10.2.

The analysis operaters with binary information and thus the table contains binary infor-
mation (dead or alive). Later in Section 10.6 we will extend that information and (mildly)
extend the algorithm. Revisiting the same example means that we get a (mildly) extended
version of this table. The extension is the following: for live variables, one does not report
the fact that the variable is live, but also point to the line where it is used next.
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line a b c t1 t2
[0] L L L D D
1 L L L L D
2 D L L L L
3 L L L L D
4 L L L L D
5 L L L D D

Table 10.2: Liveness analysis example: result of the analysis

10.6 Local liveness++: Next-use information and dependence
graph

In this section we revisit the dead-or-alive algorithm from Listing 10.7. The previous
version was binary in that it determined the liveness status for each variable. It needs
only a minor extension to obtain better information. Instead of determining whether a
variable is dead or alive inside the current block (resp. assumed live in case of a proper
variable at the end of the block), one can determine, where resp. when they are used in
the future, if not dead. This is done below in Listing 10.8, a mild extension indeed of the
one from Listing 10.7.

So, the extended algo keeps track of where the next use for each variable will be. That’s
done here by tracking the line number of the next use. That’s usually precise enough.
One might also track where a variable is used inside a line, as the first argument of a
operation or the second argument (or both). That’s normally seen as overkill, so we track
the line only. The analysis works not with the binary information L and D, but for liveness,
the information is L(n), where n is the line number where the variable or temporary in
question is used next. The number refers to a line inside the basic block. As explained,
proper variables are assumed live at the end of a block (unlike temporaries, which are
rated as dead). Of course, in such a situation, the analysis can’t determine the line of the
next use. We are currently doing a block-local analysis, so we have no information about
subsequent blocks; that’s why we just assume variables to be potentially live. Besides
that, on a more global level, it makes no real sense of talking about the next use of a
variable. Due to branching, there may be multiple next uses. If one wanted a next-use
information, in would be a set of next-use points in the general case.

Anyway, in the situation here, a variable assumed live is captured by the notation L(⊥).
// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for a l l e n t r i e s : T[ i , x ] := D
except : for a l l v a r i a b l e s a // but not temps

T[ n , a ] := L(⊥) ,
//−−−−−−− backward pass −−−−−−−−−−−−−−−−−−−−−−−−−−−−
for i n s t r u c t i o n i = n−1 down to 0

let cur rent i n s t r u c t i o n at i +1: x := y op z ;
T[ i , o ] := T[ i +1,o ] ( for a l l other vars o )
T[ i , x ] := D // note order ; x can `` equal ' ' y or z
T[ i , y ] := L(i + 1)
T[ i , z ] := L(i + 1)
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end

Listing 10.8: Local liveness (with next use information)

Example 10.6.1. Let’s revisit Example 10.5.3 and the 3AI code of Listing 10.6. The result
of applying the algorithm on the code is shown in Table 10.3. Since the algorithm is a
straightforward generalization of the previous binary version, the new table is a straight-
forward generalization of the previous Table 10.2 (on the same example).

line a b c t1 t2
[0] L(1) L(1) L(4) D D
1 L(2) L(⊥) L(4) L(2) D
2 D L(⊥) L(4) L(3) L(3)
3 L(5) L(⊥) L(4) L(4) D
4 L(5) L(⊥) L(⊥) L(5) D
5 L(⊥) L(⊥) L(⊥) D D

Table 10.3: Liveness analysis example: result of the analysis

So, we see the next-use extension is really straighforward. We mentioned already in the
discussions at the beginning of Section 10.4, in which way register allocation can profit
from the extra next-use information and we could leave it at that. However, the next-use
information that one can calculate by doing liveness analysis is closely related to another
important concept resp. another intermediate representation. So we take the opportunity
to discuss that shortly here as well.

All next usages and dependence graph

We extend the next-use information one step further, not just tracking the next-use, but
all next uses. That results in an intermediate representation is known as dependence
graph. We will (shortly) discuss it for basic blocks since we are currently doing local
liveness. One can also generalize it to whole control-flow graph analogous to the fact that
one can do liveness on a whole control-flow graph. But let’s stick to the local level.

Let’s assume we have a 3A code, like the 3AIC from example from Listing 10.6. 3A code
instead of intermediate code would work similarly; likewise one could do a dependence
analysis for forms of 2-address codes.

At any rate: a typical line in the 3-address code consists of a left-hand side and a right-
hand side, as in instructions x1 := x2 op x3. In such a line, x1 on the left-hand side
is “defined” and x2 and x3 are “used”. The next-use form of liveness analysis figures
out where inside a block for each point and for each variable, the next use will occur
(resp. assumed somewhere outside the block). As said, we now generalize that a bit more,
and track all next usages in the future (inside the block, resp. somewhere outside the
block). That’s not a big extension. A clever register allocator may also profit from this
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more detailed information about the use of variables; not ours though, it will look at the
binary dead-or-alive information only. But something else is more important.

If we track all future usages of a variable at different points in the basic block, we in
particular have information in a line of like x1 := x2 op x3 about the next usages of the
variable defined in that line, i.e. x1. This information thus connects the definition of x1
with all its future uses. Normally, one contents oneself to connect definitions and usages
per line (as we did with the next-use information). There is anyway only one variable on
the left-hand side of each line, and whether this variable “definition” is later used as first
operand or second operand in some line is not really important.

Keeping it on the per-line level, it means one connects a line like x1 := x2 op x3 with all
lines later that use x1 (without that x1 is being overwritten in the meantime, of course).
The later lines (resp. the uses in that later lines) then are said to (directly) depend on
said line (resp. depend on the definition of x1 on the right-hand side of that line ).

Direct dependence is a def-use situation, and an analysis that figures it out is a
def-use analysis.

We mentioned earlier, that def-use analysis is closely related to liveness analysis, and here
we see more clearly how.

If one tracks the dependencies of the described kind (i.e., def-use connections) that results
in a graph, the mentioned dependence graph. This is another well-known intermediate
representation (different from control-flow graphs, ASTs, 3AIC, etc.).

Inside a basic block, the dependence graph is acyclic. In other words, the correspond-
ing graph is a directed acyclic graph (DAG) with the lines as nodes and the (direct)
dependencies as edges. Instead of viewing the lines and dependencies as DAG, one can
equivalently view the lines as partially ordered (each DAG corresponds to a partial
order, and vice versa).

Why is def-use information, i.e. the dependence graph relevant? It expresses ordering
constraints, making clear which lines of the code (here 3AIC) needs to be executed before
others, since the latter depend on the former. This dependence is only a partial order on
the lines of a basic block, not a total or linear order and some lines are independent:
there is no dependence directly or indirectly in either direction. Being independent means,
the order or execution is irrelevant. In other words, the line-wise linearization in the 3AIC
(or later 3AC or 2AC etc.) is a particular linear arrangement, more strict than actually
necessary given the partial order of dependencies.

A dependence analysis could reveal the looser partial order and thus reveal whether 2
statements need necessarly be executed in the order as listed in the code, the latter one
depending or the earlier one, or whether the compiler could reorder then.

That is known as out-of-order execution. Figuring out a good order of execution,
for independent instructions is known as instruction scheduling.

Actually, also the processor can have facilities of out-of-order execution of machine code
instructions, but that’s outside the control of the compiler. However, knowing the rules
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Figure 10.8: Dependence graph for the 3AIC code block

and conditions under which a processor does out-of-order or overlapping execution could
be exploited by a code generator “scheduling” the instructions in a way that suits well
to the platform’s corresponding capabilities. For that, the compiler needs to figure out
dependencies of the data (and registers, etc.).

This explanation analyzes the linear IR of, say, 3AC or 3AIC to determine which orders in
the sequential arrangment of lines of instructions are real and which are spurious. With
that help, one can rearrange the linear code, if deemed profitable. An alternative view
is not to take the linear instruction sequence as primary intermediate representation, for
instance inside a basic block. One could use DAG-based representation instead, i.e., the
dependence graph and linearize the DAG in a subsequent stage. These alternatives are
comparable to the situation with control-flow graphs. One can use them as intermediate
representation to a lower level intermediate representation. Or, analyze a lower-level
representation like the machine code or intermediate code to “reconstruct” from the linear
representation the control-flow graph (as done by the simple partitioning algorithm in
Section 10.3.1.

So much about motivating dependence graphs and what they code be used for (our code
generator won’t make use of them).

Example 10.6.2 (Dependence graph). Let’s look at Listing 10.6 from Example 10.5.1 again.
The result of the next-use analysis from Table 10.3 can be generalized to the dependence
graph of Figure 10.8.

We see that the temporary defined in line 1 has three uses, namely in the lines 2, 3, and
4. In the linear code arrangement, the next use of the definition t1 in line 1 is by the
subsequent line 2. The DAG also makes clear that those lines 2, 3, and 4 are independent
and could be executed in any order (or in parallel). These three edges correspond to the
fact that in Table 10.3, the definition or assignment to t1 in line one is marked as L(2),
L(3), L(4) in lines 1, 2, and 3.

In line 4, t1 is “re-defined”, i.e., assigned to again. Therefore, the entry L(5) in the table
does not refer to the first assignment to t1 in line one, but the assignment in line 4.
Remember, in Table 10.3, the stored information corresponds to the next-use or liveness
information at the end of the corresponding code line.
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ASTs and DAGs

Let’s have a last look at dependence graphs and explore a connection with ASTs. In
principle, this is not new information, we have introduced both concepts, but perhaps it
worthwile to spell it out more explicitly, looking at a few more examples.

Example 10.6.3. Let’s start with the 3AIC for the source code assignment

x := (x + 2 ∗ z) − (a + b)

as shown in Listing 10.9.
t1 := 2 ∗ z
t2 := x + t1
t3 := a + b

x := t2 − t3

Listing 10.9: 3AIC for x := (x + 2 ∗ z) − (a + b)

The corresponding dependence graph is shown in Figure 10.9a. As inner nodes of the DAG,
we use the line numbers from 1 to 4. The inner nodes in the picture are also labelled with
the variable or temporary being “defined” in the node. The first three lines calculate the
side-effect free expression on the right-hand side of source code assignment, and the
“numbers” of the temporaries t1, . . . , t3 correspond to the line number; that’s the way the
intermediate codegenerator works (if we assume “numbered” temporaries starting from
say 1). The DAG shows also a node correspond to the constant 2. Normally one would
not bother to include the node and the corresponding edge into a DAG. The outcome or
value of t1, which is “defined” by the right-hand side 2 × z does not depend on 2 insofar
that it is a constant anyway.

x 2 z a b

1

2

3

4

t1

t2

t3

x

(a) DAG of the right-hand side

x 2 z a b

×

+

+

−

t1

t2
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x

(b) The AST of right-hand side

Figure 10.9

It might not come as a complete surprise that the dependence graph from Figure 10.9a is
basically nothing else than the abstract syntax tree of the right-hand side (x + 2 ∗ z) −
(a + b) upside down; Normally, ASTs are written, like trees often are, with the root node
on top. For the DAG, I choose to write it the other way around, so that the def-nodes
come before the use-node, i.e., higher-up, as in the code and the dependence edges go
down. An AST is shown in Figure 10.9b.
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So, determining the DAG from a piece of 3AIC reconstructs in some way the AST. At
least conceptually and in this example. Of course, the AST as concrete data structure
is most probably represented differently from the dependence graph inside the compiler,
and the two structures, if a compiler uses them both, serve different purposes. That the
AST and the DAG are basically the same in this example is also caused by the fact that
the code example is very simple: just an assignment to a variable with a pure, side-
effect free expression on the right-hand side. As seen in the corresponding chapter, the
intermediate code generator simply traverses the abstract syntax tree, generates a fresh
temporary for each intermediate result, i.e. or each inner node of the AST. So we obtain
three temporaries t1, t2, t3, which are defined i.e., assigned-to, in the corresponding lines
of the 3AIC in Listing 10.9. These lines or temporaries are the source nodes of the DAG,
the soucre node of an edge is always the “def”, the target node(s) are the “use(s)”. In
the simple example, each defined temporary has exactly one use, which correspond to
the parent node. That makes the DAG in the example a tree (the syntax tree of the
expression on the right-hand side of the assignment).

The connection between ASTs and dependence graphs is less close in more general situa-
tions, like the DAG example from earlier for a basic block and even less so for a complete
procedure; actually in the presence of loops in the code or cycles in the CFG, also the
def-use dependencies may no longer be acyclic, i.e., the dependence graph is no longer a
DAG.

In the simple situation of the DAG from Figure 10.9a, the tree structure illustrates a
fact which we knew all along: in a pure, side-effect free expression, it does not matter in
which order subexpressions are executed. The nodes or the different subtrees are
indepdendent in the DAG, i.e., unconnected by dependence edges.

In general, the DAG for the dependence graph may not not resemble the AST, of an
expression, not even in a simple, side-effect situation like here. Here, for expressions and
basic blocks, the connection between AST and code, here in 3AIC, is very direct and the
connection is so direct and close, that we can effectively revert the translation, so to say,
decompile the code from Listing 10.9 back into the AST of the expression.

The connection may not be so direct. The 3AIC may have undergone some optimization.
Same already for the AST from the source code. If we look not at 3AIC, but at machine
code (for which one could likewise do a dependence analysis), the distance to the source
code ast is even larger, and additional optimization may have done. The compiler resp.
compiler related tools could even make effort to make decompilation harder resp. harder
to understand the result of a decompilation. Often, that is done, however, at the source-
code level. In that case, it’s known as source-code obsfuscation or code hardening
or encryption.

To conclude, let’s have a look at another, slightly more complex example.

Example 10.6.4. Assume the following expression

(x := x + 3) + 4 .

. The corresponding code is given Listing 10.10. We have seen a quite similar example and
the code already in the chapter about intermediate code generation. It’s an “expression”
containing side effects.
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t1 = x + 3
x = t1
t2 = t1 + x

Listing 10.10: 3AIC for (x := x + 3) + x

The corresponding dependence graph is shown in Figure 10.10. This time, it’s not a tree,
but still a DAG. Note also, the order of evaluation in the expression now does matter,
unlike before. The generated code assumes that the arguments of a binary operator like
+ are to be evaluated from left to right and the generated 3AIC does exactly that. In the
top-level addition, the x on the right-hand side uses the incremented value of x. That’s
also visible in the dependence graph in the edge from 2 to 3. The lines of the code cannot
be reordered of course.

x 3

1

2

3

t1

x

t2

Figure 10.10: DAG of an expression with side effects

Connection to SSA

Starting from liveness analysis, we took the opportunity to introduce next-use information
resp. introduced def-use analysis and the notion of dependence graphs, here DAGs. We
take another opportunity and discuss to some extent another important concept used in
intermediate representations, the notion of static single assignment format. We can
stratch only the surface of it, in particular, as we focus on basic blocks. If generalizing
to whole control flow graphs, additional complications would enter the picture, which we
don’t cover here.

Nonetheless, the conceptual core of single-assignment format can be understood here.
Under this restriction, straight-line code it’s almost trivial, and is also connected to the
def-use analysis and thus live variable analysis. So here is a good place to introduce some
ideas behind the single assignment format.

The section header mentioned static single assignment or SSA. For straightline code, there
is no difference btween static single assignment and (general) single assignment.

Statically, a variable is “single-assignment” in a piece of code, if there is at most
one assginment to it mentioned in the code.
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In the terminology here, there is statically at most one definition of a variable. We can
exclude the degenerated case of variables that are defined but not used. Those are useless,
they are never live at all. If we exclude that, the requirement for static single assignment
is that all variables are defined exactly once i.e. assigned to exactly one. Of course there
are in general more than one use per definition.

In the presence of cycles and procedures, the fact that there is exactly one place in the
code where a variable is defined, that does not guarantee that at at-runtime, the variable
is assigned-to exactly once. A program that assigns every variable only once at run-time is
single-assignment, which is (much) more restrictive than to be in static single assignment
or SSA format. For blocks of straight-line code, like we are discussing here, there is no
difference in SSA and single-assignment. Being defined textually once in a basic block
means, it’s assigned-to exactly once per execution of that block (if no “exceptions” derail
the execution and prevent the assignment). Actually, the same could be said about acyclic
control-flow graphs; those could originate from a program using conditionals, but not loops.
See for instance the one from Figure 10.7. Also for code of that shape, assigning every
variable once implies single assignment. But let’s stick to basic blocks.

Looking at Listing 10.6, that one is not in single-assignment format. Both variable a and
temporary t1 are assigned to twice. As mentioned earlier, the code from that listing cannot
be the result of the intermediate code generator we discussed, at least not directly. Maybe
indirectly via some optimization or other, or manually given, but it does not matter: it’s
anyway a good idea that liveness analysis or dependence analysis works not just for some
particular way of generating (intermediate) code.

But, the code generator would indeed not reuse t1 in the second assignment but would use
t3 instead. Of course, the use in the last line of what is now t1 would then refer consistely
to t3 when using the definition of t3 in line 5. In other words, the intermediate code
generator already generates temporaries that follow the single-assignment pattern. If a
global counter is used for the temporaries, it’s even in single-assignment format globally;
in particular and additionally, temporaries don’t transfer data between blocks.

So far so good, but what about proper variables, not temporaries. In the code example
also the proper variable a is assigned to more than once. Such a “re-definition” would
come from situations, where at source code level, a variable is assigned to more than once
in one piece of straight-like code, and the code generator dutifully generates code that
does the anologous thing at (intermediate) code level.

But it is straightforward to obtain intermediate code that avoids that. Instead of reusing
a, one simply uses different variable as shown in Listing 10.11. Typically that’s done by
first generating code without not in single assignment format, which is then translated into
the format afterward. That is done by consistently renaming or “re-indexing” variables
like a in the example. In the code, we assume that a0, b0 and c0 refer to the versions resp.
the values of the three variables coming from at the beginning. It’s like the input values
to the basic block.
t1 := a0 − b0
t2 := t1 ∗ a0
a1 := t1 ∗ t2
t3 := t1 − c0
a2 := t3 ∗ a1
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Listing 10.11: 3AIC code example (single assignment)

For basic blocks, one can easily achieve that in one pass. The reason why it’s mostly
done in a 2-stage manner is, that, while for straight-line code, (static) single assignment is
trivial, the generalization to branching code (including code with loops) requires additional
insight and tricks. Only then one would even say “the compiler uses SSA as intermediate
format”.

Terminology aside, the appropriately renamed code leads to the dependence graph of
Figure 10.11.
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Figure 10.11: DAG for the 3AIC code block

One could get the impression, that’s all fine and good, and actually pretty straightforward
So, what’s the big deal with SSA as intermediate format?

In a way, it’s another angle or elaboration of the liveness-analysis, next-use analysis, and
dependence or def-use analysis. After transforming a block into single assignment format,
the uses of a variable being defined at some point are directly visible from the code: it’s all
places that mention the particular variable (which must be after the point of definition).
Analogously, the life span of a variable is directly visible in the code: from the point of
being defined until the last mentioning. Inside a basic block, as we assume variables to be
live at the end, the local live span of each variables starts at the point of their definition and
lasts till the end of the block. That should be plausible: if variables are never overwritten
because of single-assignment, they never become dead (if we assume them live at the end).
Basically, local liveness becomes pretty trivial: for variables “defined” in a local block,
they are dead before the (unique) defining line, and live afterwards. For variables defined
(or assumed defined) outside the block, like the a0, b0, and c0 in the last single-assignment
example, they are live throughout the block.

Also in a more global setting of control-flow graphs, the connection of defs and uses of
variables is clear from the names of the variables and temporaries: all other mentionings of
a variable defined in one line must be uses. So, the variables carry the def-use information
and most of the (global) liveness information in their name.

Of course, nice as it is, it’s not for free. As discussed, transforming code into SSA actually
requires to do basically something like liveness analysis, not in it’s binary form we started
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out with, but more refined, and additionally following a proper renaming scheme. And,
as said, for the global level, there are additional complications, beyond straightforwardly
generalizing the binary liveness information and some easy renaming, that’s where the
“real” SSA starts, but we don’t go there in this lecture.

To have SSA as a format that makes liveness analysis quite simple does not in itself
breathtakingly useful. After all, one could do liveness analysis straightforwardly without
doing that intermediate format (which, as said, gives additional challenges to overcome).
The importance and popularity of SSA comes from the following: the format does not
only help for live variable analysis. As hinted at, there are many data flow analyses one
might want to do, which serve different purposes and using similar techniques as liveness
analysis, and many of them similarly profit from that format. So the effort invested to
transform the code into SSA may pay off multiple times, in case the compiler
employs multiple analyses, not just liveness analysis, on the given level of abstraction.

10.7 Global analysis

We have discussed general ideas behind liveness analysis earlier and covered local liveness
in Sections 10.4 and 10.5. Additionally, in Section 10.6, we discussed closely related
concepts, like next-use analysis, def-use analysis and the concept of dependence graphs.
We focussed mostly on the local level, i.e., on basic blocks, only hinting at that some
things get more involved when doing analysis for a whole control-flow graphs. Here we fill
in a few more details on this, without also covering extensions like dependence analysis
again.

Going from block-local analysis to an analysis of a whole CFG, there are basically
2 complications: branching of the control flow and cycles. Both originate from
control-flow constructs in the source code, like conditionals and loops.

Branching is conceptually the simpler problem, though if one has loops in the source
language one invariably also has to face branching. On the 3A(I)C level, there are no
loops, there are just jumps and conditional jumps. Conditional jumps obviously lead to
branching, the true-case and the fall-through alternative, so a block with a conditional
jump at the end has two successor blocks or successor nodes in the control-flow graph- But
also unconditional jumps may involve branching: the block jumped to, which starts with
the corresponding jump label, may be entered also otherwise, for instance with by a fall-
through or being the jump target from different sites. though in a “backward” manner:
the node starting with a jump label may have more then one predecessor node in the
control-flow graph.

Let’s start with branching and discuss it for liveness of variables. Conceptually, with
branching, one does no longer try to find out exactly if a variable, at a point is live or
not. We mentioned earlier that approximation is characteristic and crucial for all kinds
of semantic analyses, and in particular for data-flow analyses, like live variable analysis.

Dynamically, i.e., at run-time, at one given point in a program execution, the liveness
information is still binary: a variable will be used in the future, or it will be not. At least
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it’s binary when we are dealing with deterministic programs or with a given run or trace
of a program. Whether or not a variable (or address) will be used in the future at a given
point in the executing is the question of dynamic liveness. That’s of course undecidable
in general and that’s not what data-flow analysis aims at.

It gives an approximative answer, using the control-flow graph as level of abstraction. As
far as branching is concered, data-flow does not try to find out which branch is taken.
Not knowing which branch is actually taken, the approximation explores both, combining
the information. Indeed, a running program will often explore both branches, though at
each given point in time, the program either turns left or else turns right. That’s the
common behavior for loops: for some number of iterations, the body is entered, and when
the termination criterion finally is satified, the exit-edge is followed (unless the loop runs
forever or when never entered).

For static liveness, we have to keep in mind what we need the information for. The
intention is to support register allocation. In particular the code generator will consider
a register containing a dead variable’s value as “free” and reusable for other values. That
means, if we mistake a live variable for being dead, that will lead to erroneous code;
the compiler is incorrect. The opposite mistake, rating an actually dead variable to be
live may lead to a missed oportunity of reusing a corresponding register, but that’s not
an error. The code may just been slower than it could have been without making that
misjudgment.

For live variable analysis it means, when in doubt count a variable as live. We did the
same at the local level, when judging variables live at the end of a block (since locally one
does not know what actually is the case). Same principle here: when facing a situation in
a graph with two alternatives, one where the variables is used in the future, further down
the graph, and another where it’s not used, the variable needs to be rated as live.

So, the approximation for liveness is about whether the variable may be used in the
future, not that it’s guaranteed that it will be used (must). There are different data
flow analyses that work with a must-kind of approximation instead of may-type. It’s the
difference between over-approximation and under-approximation. Which one is the right
choice depends on what the compiler does with this information, the intended usage. For
live variable analysis used for register allocation, it has to be over-approximative (may be
live). We don’t look at other data flow analyses for other purposes, so we don’t cover in
the lecture must analyses, though if one knows how to do a may analysis like liveness, it’s
straightforward to do a must analysis.

One may even flip the live-variable analysis around and formulate it as must-analysis. If
we consider that what we are after as a dead-variable analysis instead of a live-variable
analysis, and looking for situations where variables are dead, then, what we need are
situations when it’s guaranteed that the variable is dead. In that sense, it’s a matter of
perspective.

Now, approximation of relevant information, like “may the variable be used in the future”
is the way to deal with branching. As described earlier, for straight-line code, the way
the liveness algorithm propagates this information is backwards. That will also be done
for the global liveness analysis, i.e., the information flows in the reverse direction of the
edges of control-flow graph: from suceesor nodes to predecessors.
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Now, what about cycles in a graph? That is a different problem and makes the problem
harder. That refers the complexity of the problem, but also the required theoretical
background. We don’t go into the latter here, we just hint at why it’s harder and what to
do about it, without explainging why it actually works, resp. under which circumstances
it works. For us it’s enough to know that for live variable analysis the sketched approach
does indeed work.

As explained, the local liveness analysis “walks” through the code in a single pass, namely
in a backward manner. The same can be done if one had a branching structure without
loop, like for instance in the CFG from Figure 10.7. The only thing that is mildly more
complex compared to local analysis is that one has to treat the liveness information ap-
proximative. In the graph of that figure, that would concern the treatment of node 2,
where the three “flows” coming from below merge.

In the presences of cycles, one cannot expect to propagate the information one time along
each edge and through each node and be done. Information that propagates through the
graph, say, in tendency “upwards” in a picture, will in a loop also be propagaged back
down again to a place already explored.

In that way the information, for instance about liveness status of variables, circu-
lates through the graph, sometimes “going” through a cycle multiple times.

That directly makes that task computationally more complex than the single-pass ap-
proach that suffices to deal with acyclic structures. Also termination of the data-flow
analysis may be of concern, though actually for live variable analysis in our setting (and
similar data flow analysis) termination is guaranteed. It’s only not 100% immediate as for
acyclic structures, where the analysis stops after having treated evey line or node exactly
once.

The characteristics of the core data flow algorithm (for liveness and others) is captured
by fixing 3 aspects:

Initialization: firstly, with wich (liveness) information should the data
flow start? Loop: secondly, how to repeatedly propagate the (liveness)
information during the analysis? There will be a loop whose body “lets
the data flow”, by propagating it through the control-flow graph. Ter-
mination: Finally, when to terminate, i.e., exit the loop.

These three aspects shape the general skeleton of the data flow algorithm. There will be
an initialization phase, a loop, and the loop has an exit condition.

Actually, already the simpler liveness analysis for basic blocks from Listing 10.7 is of that
shape. One difference to the global setting is that now the termination condition is more
complex. The straight-line code version simply stops after having treated the first line
in its single backward pass through the code. The second difference is that the traversal
for the graph is not so rigid, like backwards. In the presence of loops, when following
the edges, there is no single possible plausible strategy, and one generally has to treat the
nodes of the cycle multiple times anyway.
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So far the general picture of how the algorithm is shaped. We won’t give pseudo-code for
it, we mainly explain by way of examples how it works. But still we fill in some details
of the skeleton, sketching what actually is done during initialization, what step(s) are
iterated, and when actually to stop.

We discuss it without making a difference between temporaries and variables, which are
treated analogously. That’s different than what we did in the local anlysis, hich assumed
temporaries dead at the end of the block. We don’t need to assume that here, like we don’t
need to assume that variables are live at the end of a block. With the control-flow graph
at hand, the global analysis (approximatively) figures out which variables are statically
live and which not, and for the temporaries it will figure out that indeed they are all
dead (for temporaries generated the way described). No need to “assume” anything. At
the very end of the whole program, all variables are dead for sure, proper variables and
temporaries alike.

initialisation: minimal information all variables are assumed dead.

increase repeatedly the body of the loop treats one element of the graph, like one
node or one edge and updates the current liveness information. The update
works in a monotone, increasing manner: a variable previously still consid-
ered dead is flipped to be rated live, but never in the other direction.

termination by stabilization when no more information can be added, so no more
live variables at some places are detected, the algorithm stops.

We can picture it as follow: the algorithms starts with no knowledge about liveness status,
and considers for a start all variables dead at all places. The same was done for the liveness
analysis for basic blocks from Listing 10.7 (except that for the last line, the proper variables
were assumed live). We can see that starting point as absolute minimal information and
discovering more variables at more places live during the analysis can be considered to
increase the information. It’s not so much that the sets (of live variables) grow larger
(though they do). It’s more that the amount of confirmed information about the liveness
status at different places increases. If, at some place, the current status in the algo of a
variable switches from dead to live means that the algo has explored parts of the graph
deep enough and confirmed that there is a potential path to a future use of the variables.
Once established, further exploration may find further statically live variables at other
places, but the liveness information established and added right now never has to be
reversed back by new information discovery later. In that sense, the liveness information
steadily grows and never shrinks, i.e., monotonously increases during the iteration of the
algo. This is crucial and characteristic for data flow analyses.

It also makes clear when to stop, namely when the information cannot be increased any
more. The algorithm reaches stabilization or it saturates or a “closure” or a fix-point.

Indeed, one finds this “monotonously adding information until stabilization” idea not
just for data flow analyses. For instance, the first- and follow-set calculations worked
similarly. Also there, one basically explored a graph, namely the way the non-terminals
of the grammars hang together. Since context-free grammars use recursive definitions,
the corresponding “graph” contains cycles (we never drew the grammars as graphs, we
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noted them in BNF. . . ) So, for instance, the set of terminals (or ϵ) confirmed to be in
the first-set of various non-terminals increases until no more such information is added, at
which point the first-set saturation procedure terminates.

10.7.1 Basic blocks and live-in and live-out

Before presenting the liveness mainly by way of examples, we explain a practical aspect,
namely the efficient treatment of basic blocks. We mentioned that in passing earlier. For
efficiency, it’s best to analyse basic blocks, the nodes of the control flow graph first and
“summarize” the corresponding information. That will allow the global analysis to treat
them effectively as if they were single lines.

This summarizing local analysis is not identical to the local liveness information we did,
but it works the same (like steping backwards through the lines). Here, it’s not (only)
about whether a variable is (assumed or factually) live of dead in the different lines of the
basic block. For some variables one cannot determine that locally (for some one can). It’s
about changes to the liveness status of all the variables.

It’s much like looking to one line as in the local analysis. Consider one single line of the
form x1 := x2 op x3 as they were treated in the local analysis and let’s assume all three
variables are all different). For that line, it’s clear that at the beginning of the line, x1
is dead and x2 and x3 are live. Considering that as a change of information from the
situation after the line to that before that line, it’s as following. The situation for x2 and
x3 will be set to live, and x1 to dead, independent from how it there status is (currently)
afterwards. For all other variables, the information from after the line is left unchanged.

Basically, one can do the same for basic blocks, only more than just 3 variables may change
their status. We will not show code how do calculate that, it’s easy enough.

At any rate, relevant for the global analysis is not what happens line by line in the
basic blocks, relevant is only the situation right in front of each basic block, resp. right
afterwards. This is also called inLive (in front) and outLive (afterward). What the global
analysis needs to know how the inLive and outLive information hang together. Doing a
backward analysis, in particular how, for a given block, the inLive information is calculated
for a given outLive information.

And therein lies the improvement: having precomputed the block-local effect on the
flow of liveness information per block, the global analysis can just use that, and avoid
stepping through the individual lines of the bloks over and over. When occuring as part
of a cycles in a graph, blocks will have to be evaluated more than once in general, and it’s
to be expected that the precomputation will make the analysis more efficient. Blocks not
occurring in a loop would not profit from a pre-computation.

Anyway, pre-computing the effect or not will not influence the result of the analysis, only
the running time.

In the examples later, we don’t precompute anything explicitly, the figures illustrated the
inLive and outLive information and whether this is the result of being smart and having
precomputed some bits or whether one does it over and over again, is not visible, and the
outcome, as said, is the same anyway.
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At the end of the algorithm, inLive and outLive contain (in an approximative manner)
sets of live variables8 at the beginning and end per basic block.

The basic step when calculating that is how the different inLive and outLive information
depend on each other.

inLive of a block depends on the outLive of that block and on the straight-line
code inside that block. That dependence corresponds to the transfer function of
the block. The outLive of a block depends on inLive of the successor blocks. It
about the dependence of the situation of the successors (not the other way around),
because liveness analysis is a backward analysis.

Calculating the information approximatively has the goal to err on the safe side. judg-
ing a variable (statically) live is always safe. Judging wrongly a variable dead which
actually will be used), that is unsafe.

The goal is to calculate the smallest (but still safe) possible sets for outLive (and
inLive)

Example 10.7.1 (Factorial CFG). Let’s revisit the control-flow graph from Example 10.3.1
resp. Figure 10.3, the factorial function. Figure 10.12 here shows the CFG again, but
with highlighting the inLive and outLive in the graph, at least the places whereinLive and
outLive.

Figure 10.12: CFG and inLive and outLive

The picture shows the arrows from nodes to successor node. Since we are doing a backward
analysis, the analysis need to follow those arrows in reverse. If we consider an implemen-
tation of graphs where edges between nodes are represented as pointer or references, the
graph should have pointers in that directions. Indeed, if one implements a CFG as in-
termediate representation for instance with pointers, a doubly linked structure would be
useful (with pointer “forward” as well as “backward”. This way one can efficiently perform
forward as well as backward style analysis on the representation.

8To stress “approximation”: inLive and outLive contain sets of statically live variables. If those are
dynamically live or not is undecidable.
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node/block predecessors
B1 ∅
B2 {B1}
B3 {B2, B3}
B4 {B3}
B5 {B1, B4}

Example 10.7.2. Let’s use the code from Listing 10.12 as example.
a := 5

L1 : x := 8
y := a + x
i f _ t r u e x=0 goto L4
z := a + x // B3
a := y + z
i f _ f a l s e a=0 goto L1
a := a + 1 // B2
y := 3 + x

L5 a := x + y
r e s u l t := a + z
return r e s u l t // B6

L4 : a := y + 8
y := 3
goto L5

Listing 10.12: Sample code for global liveness

The slides show the working of the algorithm more “dynamically” with overlays. Here, we
just show two particular situations: The one after initialization and the one at the end
(Figures 10.13a and 10.13b) but not intermediate stages.

(a) Initialization (b) liveness: Result of the run

Figure 10.13: Initialization
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At the beginning, inLive and outLive are initialized to ∅ everywere, i.e, we start with a
unsafe estimation.

The overlays show how the information “flows” through the graph. The shown traversal
strategy is (cleverly) backwards. The example contains a loop, but actually with chosen
strategy, it terminates quickly.

Example 10.7.3 (Another, more interesting, example). See the following graph

Again the slides will show in overlays, how the information flows through the graph. This
time the loop is treated multiple times, resp. that some of the information is increased
more than once before it stabilizes.

Example 10.7.4 (Precompuation: kill and genenerate).
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10.8 Code generation algorithm

Finally, we cover the code generation proper. We focus on generating code for straight-
line code and register allocation. Indeed, translating jumps and conditional jumps from
3AIC is not very complicated. The intermediate code is already a linear code form, and
one can expect that the (conditional) jumps have a direct correspondence in machine
code. Ultimately, one will have to get rid of the labels. They serve in the intermediate
code as symbolic addresses, and need to be replaced by real addresses, in a first stage say,
relocatable addresses. That involves calculating with the actual byte sizes of the commands
for the instruction set of the target platform. For instance like the size shown in Figure
10.1 earlier.

Properly accounting with the concrete instruction sizes to obtain concrete (relocatable)
addresses has nothing to do with register usage and is an indepedent problem. As said,
we focus on register allocation for basic blocks, making use of liveness information. This
focus does not mean that the code generator uses only local liveness information. Also
liveness analysis is an independent problem, and the code generator will be correct as long
as the liveness information is correct, i.e., a safe over-approximation of the actual future
use of variables.

The code generation will proceed line by line through the 3AIC, and it will forwardly. The
generator will make decisions concerning register usage on the fly, i.e., while generating
the code. To do so, it obviously needs to keep track of which registers are currently in use
and for which variables (resp. which registers will be in use at the different points in the
code once the program will be run, of course.) To do that kind of book-keeping, the code
generator will maintain specific data structures. They are called register descriptors
and address descriptors. This way the code generator has an overview which variable
is stored in which register(s) (if any) and at which address it resides in main memory.
That’s the address descriptors. The register descriptor information records at each point
for each register, which “variable(s)” it contains if any. More precisely, to which value of
which variable(s) the current register content corresponds, if any.

In principle, the address descriptor information would be enough: with that information
for all variables, the code generator could figure out the register usage by searching through
the corresponding table, in some form of reverse look-up. That is of course inefficiecent,
and the code generate is better off keeping track of the relevant information in two tables.

Aside: Graph coloring register allocation

As said, the code generator generates 2AC instructions on-the-fly including making deci-
sions on which registers to use. That’s not the only way one can do register allocation. A
well-known and widely used approach is known as register allocation by graph coloring.
We don’t cover that, but since it’s a standard approach, it’s well worth mentioning. The
idea is actually simple and elegant: first get an overview over the live-spans of variables.
Live spans are particular simple for code in SSA format, insofar a particular variable be-
comes live at some point, stays live for some while, and then becomes dead. For non-SSA
usage, a variable may switch from dead to live and back multiple times.
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Be it as it may, knowing the live spans is important insofar: two variables with an overlap-
ping live time cannot occupy the same register, they need to be in different ones. Of course
one could try to keep a variable in one register for some time, kick it out from the register
for a short while and store it back to main memory, to make room for another one for a
short while, perhaps there is only as short period of overlap, and then, later load it back
again into the same register (or a different one). But there is only so much sophistication
one can do, and juggling values back and forth between registers and memory is costly at
any rate.

So a clear and useful arrangement is the following: if it’s decided to place a particular
variable in a register, the association is fixed. The variable is put into the designated
register at the start of its live span, it’s keep there it there during the live span, and will
be saved back to main memory at the end of the live span, if the value in the register has
changed in the meantime. That is a particularly clear strategy for SSA-style code.

In the sketched strategy, having an overlap in live times has the mentioned consequence:
the register allocator has to select two different registers for the two variables.

Variables with an overlap in live spans are said to be in conflict. One can represent
then the conflict situation via an undirected graph. Variables are the nodes of the
graph, and conflicts are the edges.

The number of nodes in the graph corresponds to the number of variables we need to take
care of. The register allocation task is to color the nodes with registers in such a way
that two neighboring nodes don’t reside in the same register, i.e. have different colors.
Typically, the number of nodes in the graph exceeds the number of available registers,
otherwise the problem would be trivial.

This is a particular graph coloring problem, trying to color the graph with the given
colors so that no neighboring nodes (representing conflicting variables) carry the same
color.9 The registers correspond to “colors” Solving it is a problem of high computational
complexity, i.e., finding an answer to the question:

Can the given graph be colored with the given colors (and if so, how)?

Observing the analogy of register allocation and graph coloring is interesting and actually
straightforward, and so one could consider the problem solved: color the graph, and that
gives the required association from variables to registers. But there is more to it. For a
start, register allocation is more than just a binary graph coloring problem. It’s not the
question “can this program be compiled or not using the given registers”. It has to be
compiled given the registers, and more often than not, there are not enough registers for
the given variables, and the graph coloring problem has no solution. Still the compiler
cannot refuse to generate code, just because the graph-coloring fails. Furthermore, graph
coloring is a compuationally hard problem. Trying to find a graph coloring for a given
conflict graph may well not be worth the effort, especially given the fact that the attempt
will often fail anyway, as there are not enough registers.

9Graph theory has studied flavors of graph coloring problems, but that’s a very basic and common one.
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So graph coloring register allocation does not attempt to solve the exact graph-coloring;
that would cost too much time. Instead, it uses a heuristics that does a decent effort
without aiming at an exact solution to start with, choosing colors or registers for the
variables avoiding conflicts as long as possible. But when no non-conflicting choice is
possible for the next node, not attempt is made to try again with a different coloring
scheme to see if that turns out to be more successful. Instead, one simply resorts to use
the main memory (“spilling”) for the node that cannot be colored right now, and then
the allocator proceeds with coloring the rest.

Details of the register allocation may become involved for practical languages and plat-
forms, starting already with the fact that some platforms put restrictions on what registers
can or have to be used for what, and other complications and fine-tunings. However, the
basic idea is elegant and straightforward and hopefully understandable from the high-level
description.

Graph coloring register allocation is widely used. The original proposal is described in
a software patent (by IBM), one quite early software patent. Not everyone agreed and
agrees in which way or to which extent ideas like that can be patented. In this particular
case, the graph coloring idea directly employs a recursive strategy described over 100 years
ago, tackling in a heuristic manner a particular graph coloring problem.

10.8.1 A simple code generation algorithm

After taking a look at a general class of register allocation algorithms based on graph
coloring, we go back to our code generation algorithms, which will employ a rather simple
register allocation strategy in comparison.

Some make a distinction between register allocation: “should the data be held in register
(and how long)” vs. register assignment: “which of the available registers to use for
that”, but the distinction is not central for us.

Limitations

There are limitations of the code generation algorithm presented later. One is that we
discuss only local intra block code generation. It’s not so much that liveness analysis
is block-local only. In fact, as mentioned, code generation in general is independent from
liveness analysis: code generation is correct as long as liveness analysis is a convervative
approximation of liveness analysis, and investing in more precise live information, doing
a more global analysis, could result in better code. However, the code generation here
will do the following. At the end of the block, all variables kept in registers have to
be stored back to main memory (at least those, where the value in memory has become
out-of-sync with the register value. For temporaries, that’s not needed; it’s what makes
them temporary. Analogously, at the beginning of a block, all general-purpose registers
are treated as empty. That means, with this design, even if the code generate would use
a global liveness analysis, it would not profit from that and doing local liveness analysis
is matching the block local code generation approach.

https://patents.google.com/patent/US4571678A/en
https://en.wikipedia.org/wiki/Software_patent_debate
https://en.wikipedia.org/wiki/Software_patent_debate
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Also, we omit code generation for more complex data structures, like arrays, pointers,
etc.

The way the simple code generator happens to work for one block has consequences for
the treatment of read-only variables. It turns out that they are never put in registers, even
if variable is repeatedly read. This is not a “design-goal”: it’s a not so smart side-effect of
the way the algorithm works. Due to its simplicity, the treatment of read-only variables
leaves room for improvement.

Also the algorithm works only with the temporaries and variables given and does not come
up with new ones or does other fancy things like trying to rearrange the code. for instance
(dependency graphs could help). Finally, no attempt is made to take the semantics of
operations into account, for instance exploiting commitativity like the fact that a+b equals
b+a. Sometimes knowing that can be exploited for optmimizations and reuse of values.

We decompose the code generation into two (or three) parts, discussed separately:

The code generation itself and, afterwards a procedure called getreg, as auxil-
iary function where to store the result. One can see liveness information as third
ingredient.

The liveness information calculated separately in advance (and we have discussed that
part already). The code generation, though, goes through the straight-line 3AIC line-by-
line and in a forward manner, calling repeatedly getreg as helper function to determine
which register or memory address to use. We start by mentioning the general purpose of
the getreg function, but postpone the realization for afterwards.

As far as the code generation may is concerned: finally there’s no way around the fact
that we need to translate 3-address lines of code to 2-address instructions. Since the two-
address instructions have one source and the second source is, at the same time, also the
destination of the instruction, one operand is “lost”. So, in many cases, the code generation
need to save one of its 3 arguments in a first step somewhere, to avoid that one operand
is really overwritten. We have gotten a taste of that in the simple examples earlier used
to illustrate the cost model. The “saving place” for the otherwise lost argument is, at the
same time the place where the end result is supposed to be and it’s the place determined
by getreg.

Of course, there are situations, when the operand does not need to be moved to the “saving
place”. One is, obviously, when it’s already there. The register and address descriptors
help in determining a situation like that.

For presentational reasons, we proceed the explanation of the code generation algorithm
in stages at different levels of details, first without updating the book-keeping, afterwards
keeping the books in sync, and finally, also keeping liveness information into account.
Still, even the most detailed version hide some details, for instance, if there is more than
one location to choose from, which one is actually taken. The same will be the case for
the getreg function later: some choice-points are left unresolved. It’s not a big deal, it’s
not a question of correctness, it’s more a question of how efficient the code (on average)
is going to be.
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Purpose and “signature” of the getreg function

The procedure is one core of the code generator, repeatedly called during the code gen-
eration process. We present, as mentioned the getreg function after the code generation.
To understand the code generator, we need, however, an understanding what getreg is
supposed used to do, without detailing how it does that.

The code generator will step through the 3AIC line by line. Let’s focus on lines of the
form x := y op z). It needs to make decisions on the spot (that’s one of the limitations),
how to use registers for the calculation. Actually, the crucial decision it will do is

where to place the result x?

That’s what the getreg function calculates.

Input: TAIC-instruction x := y op z

Output: return location where x is to be stored

Additionally, it the function can consult the liveness information and the register resp.
address descriptors.

The location refers to the place where data is being found, where the result of the
operation, that is descibed in 3AIC by the right-hand variable z. The locatation will be
be a register, if possible, or a memory location.

In the 3AIC lines, x, y, and z can also stand for temporaries. Resp. there’s no difference
anyhow, so it does not matter. Temporaries and variables are different, concerning their
treatment for (local) liveness, but that information is available via the liveness information.
For locations (in the 2AC level), we sometimes use l representing registers or memory
addresses.

Register and address descriptors

Besides the auxiliary procedure getreg and access to liveness information, another ingredi-
ent for code generation are register and address descriptors, mentioned earlier. The code
generator has to keep track of register contents addresses for names.

Both are data structures (like look-up tables) playing inverse roles. register descriptors
keeps book for each register, which variable(s) it contains (if any). More precises, one
should say, it keeps track per register, whether the register is free, or it contains a value
that corresponds to one (or more) variables in 3AIC. Note we said that a register can
contain (the values of) more than one variable. That has nothing do with the sizes
of data types, like that it could be possible to squeeze to short pieces of data into the
register. But when executing a 3AIC instruction of the form x := y, and storing the result
in a register, that register contains, at least for now, the value for x and y. In that sense,
the register represents the two variables, and the register descriptor has to keep track of
that, too.
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As said: at block entry, assume all registers are unused and the code generator, when
steping though the 3AIC code emitting lines of 2AIC, updates the register descriptor (as
well as the address descriptor table). Indeed, also the getreg-function, that decides on the
location of the results consults and updates the tables.

Address descriptors contain the reverse information. It track per variable or temporary
the location(s), where its current value. That can be a register, and/or an address in main
memory (for instance the stack or some other part of the main memory). There is more
that one location possible, That’s not due to overapproximation: the code generator
needs to keept track exactly, it’s a question of correctness. But after for instance loading a
variable content from main memory to a register, the variable content exists both in main
memory and in one particular register (currently in sync).

By saying that the register descriptor is needed to track the content of a register, we don’t
mean to track the actual value (which will only be known at run-time). It’s rather keeping
track of the following information: the content of the register corresponds to the (current
content of the following) variable(s).

Code generation algo for x := y op z

We start with a “textual” version first (see Figure 10.14), followed by one using a little
more programming/math notation.

1. determine location (preferably register) for result
l = g e t r e g ( ``x := y op z ' ' )

2. make sure, that the value of y is in l :
• consult address descriptor for y ⇒ current locations ly for y
• choose the best location ly from those (preferably register)
• if value of y not in l, generate

MOV ly , l

3. generate
OP lz , l // lz : a cur rent l o c a t i o n o f z ( p r e f e r reg ' s )

• update address descriptor [x 7→∪ l]
• if l is a reg: update reg descriptor l 7→ x

4. exploit liveness/next use info: update register descriptors

Figure 10.14: Code generation for x := y op z

The core of the algo is sketched in pseudo-code notation in Listing 10.13. One can see the
general form of the generated code. One 3AIC line is translated into 2 lines of 2AC or,
if lucky, in 1 line of 2AC. The sketched code is non-deterministic, ignoring how to choose
the locations lz and ly. The let ly ∈ . . . notation is meant as pseudo-code notation for a
non-deterministic choice, in this case, for location ly from some set of possible candidates.
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Note the invariant we mentioned: it’s guaranteed, that y is stored somewhere (at least
when still live), so it’s guaranteed that there is at least one ly to pick.

Also details of getreg hidden as well as the issue of book-keeping ignored, i.e. we the code
don’t include the name and address descriptor tables. That in particular implies that step
4 from Figure 10.14 is likewise missing.
l = getreg ( ` `x:= y op z ' ' ) // t a r g e t l o c a t i o n f o r x
i f l /∈ Ta(y) then l e t ly ∈ Ta(y)) in emit ( "MOV ly , l " ) ;
l e t lz ∈ Ta(z) in emit ( "OP lz , l " ) ;

Listing 10.13: Skeleton code generation algo for x := y op z

Also note (again), the order of the argument in 2AC. We save y at some location, l. That
one is mentioned as second argument in the 2AC. But the second argument, which at the
same time is also the destination location may better be thought of as first input. For
addition, it may not matter much, but for example SUB b a corresponds to a - b (with
the result stored in a). Because of that and thhe way, the translation works also makes
clear that we save y and not z.

Let’s now add some missing details, including how to exploit liveness/next use info
to recycle registers. See Listing 10.14. Of course register descriptors don’t update
themselves during code generation, once set (e.g. as R0 7→ t), the info stays, unless reset.
Thus in step 4 from Figure 10.14, if y and/or z are currently not live and are in registers,
it’s necessary to “wipe” the info from the corresponding register descriptors. That’s done
in the last 2 lines of Listing 10.14.
l = getreg ( " i : x := y op z " ) // i f o r i n s t r u c t i o n s l i n e number/ l a b e l
i f l /∈ Ta(y)
then l e t ly = best (Ta(y))

in emit ( "MOV ly , l " )
else sk ip ;
l e t lz = best (Ta(z))
in emit ( "OP lz , l " ) ;
Ta := Ta\(_ 7→ l) ;
Ta := Ta [x 7→ l] ;
i f l i s a register
then Tr := Tr [l 7→ x] ;

i f ¬Tlive[i, y] and Ta(y) = r then Tr := Tr \(r 7→ y)
i f ¬Tlive[i, z] and Ta(z) = r then Tr := Tr \(r 7→ z)

Listing 10.14: Code generation algo for x := y op z, using liveness

Side remark 10.8.1 (Updating the address descriptor table for dead variables?). We
said, the code generator should consult the liveness information to update the register
descriptors. If variables kept in registers are dead, the corresponding register is afterwards
probably free (unless it contains also the value of at least one non-dead variable). We also
said, the register descriptor table and address descriptor table contain more or less same
information, but in “reverse” form. So one could ask: if one wipes the information about
dead variables from the register descriptors, why not also from the address descriptors?
One could do so, to keep both tables consistent, for instance satisfying

r ∈ Ta[x] ⇔ x ∈ Tr [r] .
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However, wiping the register information form the address table for dead variable has no
practical purpose, it won’t make a difference if y and/or z are not-live anyhow as their
address descriptor wont’ be consulted further in the block. Wiping the information from
the register descriptor tables does of course have a practical purpose: free registers can be
recycled, that’s the whole purpose of the liveness analysis.

In the pseudo-code we make use of some math-like notation. We write Ta and Tr for the
two tables. They may be implemented as arrays or look-up structures. For updating we
use notations like Ta[x 7→ l]. This is meant to say: after the update, x is stored in l, the
old information overwritten. Variables can be stored in different locations, but updating
x in such an assignment invalidates all other locations, they become out-of-date or stale
or out-of-sync. The only place where x resides in l. By Ta\(_ 7→ l) we mean, we remove
bindings, namely all that mention l.

Since there are situations, where one location can contain (the content of) more than
variable, one may also have to suppert operations like Tr [l 7→∪ x], meaning that old
information (here for l) is not overritten, but another “binding” is added: after the update,
location l contains also (the value) of x, without forgetting the old values. This is not
needed in the translation of our 3AIC instruction, but would occur when translating x := y
for instance, i.e., copying values.

We could also check whether x is live and do the corresponding wiping for x as well. In
which case, the whole assignment is meaningless, and (as a consequence, also the liveness
status of y and z could change in turn. . . ).

As an invariant, a variable never resides in more than one register.

Determining the result location (the auxiliary function getreg)

We have postponed filling in details how getreg works. The purpose, as discussed earlier
and as visible in the code generator is the following: given a 3AIC line x := y op z, return
a good location for the target variable x. Basically, starting from the cheapest possibilities,
preferring registers, to move to more costly ones, if necessary. More concretely, do the
following steps, in that order

1. in place: if x is in a register already (and if that’s fine otherwise), then return
the register

2. new register: if there’s an unsused register: return that

3. purge filled register: choose more or less cleverly a filled register and save its
content, if needed, and return that register

4. use main memory: if all else fails

Figure 10.15 shows the procedure in a but more detail.

Not all details are filled in. For instance, it’s not said which register should be purged.
One could use some heuristics. One possibility is is least-urgently used, i.e., one whose
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1. if
• y in register R, and
• R holds no alternative names
• y is not live and has no next use after the 3AIC instruction
⇒ return R

2. else: if there is an empty register R′: return R′

3. else: if
• x has a next use [or operator requires a register] ⇒

– find an occupied register R
– store R into M if needed (MOV R, M))
– don’t forget to update M ’s address descriptor, if needed
– return R

4. else: x not used in the block or no suituable occupied register can be found
• return x as location l

Figure 10.15: getreg algo: x := y op z in more details

next-use is furthest away in the future. For step 3 one must not forget (i.e., the code
generator must not forget): registers may contain values for > 1 variable. That means the
step may involve multiple lines with MOV’s.

We have not ingredients in place for code generation in basic block (with the limitations
as mentioned earlier). All ingredience, except details like which registers will be chosen
for purging, but one can for simplistity use a random strategy: if, for instance, one has no
heuristics or other strategy at hand, that makes a clever choice which register to purge,
one can assume it’s picked at random. That may not be the most clever strategy, but the
correctness of the code generation does not depend on it.

Example 10.8.2 (Code generation). Let’s consider the following assignment in source code

d := (a − b) + (a − c) + (a − c) (10.4)

The corresponding three-address intermediate code is shown in Listing 10.15.10 The table
on the right hand side collects the liveness information, resp. the next-use information for
the variables.

t := a − b
u := a − c
v := t + u
d := v + u

Listing 10.15: 3AIC

line a b c d t u v

[0] L(1) L(1) L(2) D D D D
1 L(2) L(⊥) L(2) D L(3) D D
2 L(⊥) L(⊥) L(⊥) D L(3) L(3) D
3 L(⊥) L(⊥) L(⊥) D D L(4) L(4)
4 L(⊥) L(⊥) L(⊥) L(⊥) D D D

Let’s assume we have 2 registers only. Then Table 10.16 shows two address code produced
by the code generator.
10The attentive reader will see that the code is a result of a compilation where the source-code addition is

treated left-associative by the parser, though that’s not really important for the example here concerned
with code generation.
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Figure 10.16: Code generation example

The code is given in the 3rd column. The table shows not all information in each slot
concerning the address descriptors and the register descriptors, only focusing on changes.
That means, empty slots represent the content is unchanged from the previous line. The
crossed-out slots means that he information is wiped out in the book-keeping. For instance,
after line 3: t is dead dead, currently m t resides in R0 (and nothing else in R0), which
means one can reuse reuse R0 (and the example does so). The fact that R0 is free at that
point is marked by ��R0. Some of the entries are marked in [brackets]. The way the code
generator works is that it has to move one of the arguments into the target location. In a
2-line 2AC translation of one 3AIC line, that done in the first of the two instructions. The
second one overwrites that immedeatly for the result. For instance in line 1, we write [a]
as content for R0 to mean, a is parked in R0 for just one instruction, but is immediately
overwritten in the next line.
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