Chapter 1

Introduction

Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 -

Compiler
Chapter 1 Construction
Learning Targets of Chapter “Introduction”. Targets & Outline

Introduction
Compiler
The chapter gives an overview over different phases of a :Lc:si::cmre&
compiler and their tasks. It also mentions organizational sootstrapping and

. cross-compilation
things related to the course.

KBS G
§9 «X‘(

@
e

Chapter 1
Outline of Chapter “Introduction”.

»

SNIVE
STnAS

Introduction

Compiler architecture & phases

Bootstrapping and cross-compilation

Section

Introduction

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2024

Course info

Course’s web-page

http://www.uio.no/studier/emner/matnat/
ifi/INF5110
® overview over the course, pensum (watch for updates)

® various announcements, beskjeder, etc.

® astro-discourse (some discussion platform)

* (mattermost)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.uio.no/studier/emner/matnat/ifi/INF5110

Course material and plan

® see script
® screencasts from 2021 (a corona-semester)

® based roughly on [2] and [3], but also other sources will
play a role. A classic is “the dragon book" [1], we
might use part of code generation from there

® see also errata list at
http://www.cs.sjsu.edu/~louden/cmptext/

® approx. 3 hours teaching per week (+ exercises)

® slides: see updates on the net

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-6

http://www.cs.sjsu.edu/~louden/cmptext/

Obligs and exam

Obligs

* mandatory assignments (= “obligs")

® O; published mid-February, deadline mid-March
® (O published beginning of April, deadline beginning of
May

* group work 2 (evtl. 3) people recommended. Please
inform us about such planned group collaboration

Exam

We will go for an oral exam.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-7

Motivation: What is CC good for?

INF5110 —
GOOd news (?) Compiler

Construction

Full employment (theorem) for compiler writers.

Targets & Outline

® not everyone builds a full-blown compiler, but Introduction
® fundamental concepts and techniques Compiler
i X architecture &
® most, if not basically all, software reads, phases
processes/transforms and outputs “data” Bootstrapping and
. peaninel
= often techniques central to CC e
[

understanding compilers = deeper understanding of
programming language(s)

new languages (domain specific, graphical, new
language paradigms and constructs. . .)

CC & principles never out-of-fashion

1-8

Section

Compiler architecture & phases

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Architecture of a typical compiler

INF5110 —
Construction

token stream

Parser

I«

syntax tree

Targets & Outline

v
re mbol -
annonaied tree Compiler
architecture &
phases

intermediate code

Intermediate code optimizer

opt. intermediate code

Bootstrapping and
cross-compila

I*

Code generator

I"

back end target code

I‘V

Target code optimizer

opt. target code

1-10

Pre-processor

® either separate program or integrated into compiler

® nowadays: C-style preprocessing sometimes seen as
“hack” grafted on top of a compiler.
® examples (see next slide):
¢ file inclusion
® macro definition and expansion
¢ conditional code/compilation: Note: #1if is not the
same as the i f-programming-language construct.
* problem: often messes up the line numbers (among
other things)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-11

C-style preprocessor examples

#include <filename>

#vardef #a =
#if (#a < #b)
#else”

#endif

Listing: file inclusion

5; #c = #a+1

Listing: Conditional compilation

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-12

C-style preprocessor: macros

#macrodef hentdata(#1,#2)

— #1

#2——(#1)——
#enddef

#hentdata(kari, per)
|

— kari
per——(kari)——

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-13

Scanner (lexer ...)

® input: “the program text” (= string, char stream, or
similar)
® task
® divide and classify into tokens, and
® remove blanks, newlines, comments ...

® theory: finite state automata, regular languages

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-14

Scanner: illustration

uualindex]u=u4u+u2

lexeme ‘ token class value

a identifier g

[left bracket

index | identifier "index"
] right bracket

= assignment

4 number maqn

+ plus sign

2 number nan

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-15

Scanner: illustration

wualindex]=u4u+u2

lexeme \ token class value
a identifier 2

[left bracket

index | identifier 21

] right bracket

= assignment

4 number 4

+ plus sign

2 number 2

0

1

2 "a"

21 | "index"
22

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-15

al[index] = 4 + 2: parse tree/syntax
tree

INF5110 —
Compiler

Construction
expr

Targets & Outline

assign-expr Tt
/I\ Compiler
expr = expr ZLZTEECM =
| | Bootstrapping and
subscript expr additive expr cross-compilation
P T
expr [expr | expr + expr
[[[[
identifier identifier number number
a index 4 2

1-16

a[index] = 4 + 2: abstract syntax tree

assign-expr

/\

subscript expr additive expr
— —

identifier identifier number number
a index 2 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-17

(One typical) Result of semantic analysis

® one standard, general outcome of semantic analysis:
“annotated” or “decorated” AST
* additional info (non context-free):

® bindings for declarations
® (static) type information

assign—expr
subscript—expr additive—expr

identiﬁer identiﬁer number number
a indcx 4 2

XS
® here: identifiers looked up wrt. declaration

® 4, 2: due to their form, basic types.

Optimization at source-code level

INF5110 —
Compiler
Construction

assign-expr
/\ Targets & Outline
. number i
su bscrlpt expr Introduction
—— 6 Compiler
. e . e architecture &
identifier identifier phases
a index Bootstrapping and
cross-compilation
t o= 442; t = 6; ,
. ! o alindex] = 6;
alindex] = t; alindex] = t;

1-19

Code generation & optimization

MOV RO, index ;; value of index —> RO
MUL RO, 2 ;. double value of RO
MOV R1, &a ;; address of a —> R1
ADD R1, RO ;o add RO to R1
MOV xR1, 6 ;; const 6 —> address in Rl
MOV RO, index ;; value of index —> RO
SHL RO ;. double value in RO
MOV &a[RO], 6 ;; const 6 —> address a+RO
® many optimizations possible
* potentially difficult to automatize!, based on a formal
description of language and machine
°

platform dependent

!Not that one has much of a choice. Difficult or not, no one wants
to optimize generated machine code by hand

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-20

Anatomy of a compiler (2)

call p

goto start+30

AAVAVAN g
,

Y

2
‘Assamblar

Linker/ m
Loader }/ Preg-as.

|
/ 1 // ------ -
1 - -
1 /
s \ \ prog.rel callp

Just-In- .
/ Time start, ——» — goto start+30
. 4 — -
compiler \ calm | T T n
BYteCody Vo= -
| |goto start+10 A
R call m
. Virtual ~. goto start+10
fortolkning |Machine ~_ I -
~—— — —-lm——— r

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-21

Misc. notions

® front-end vs. back-end, analysis vs. synthesis
® separate compilation
® how to handle errors?

* “data” handling and management at run-time (static,
stack, heap), garbage collection?
® language can be compiled in one pass?
® E.g. C and Pascal: declarations must precede use
® no longer too crucial, enough memory available
® compiler assisting tools and infrastructure, e.g.
® debuggers
® profiling
® project management, editors
® build support
[J

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-22

compilation

classical: source = machine code for given machine
different “forms” of machine code (for 1 machine):

executable < relocatable < textual assembler code
Targets & Outline

full interpretation Introduction

directly executed from program code/syntax tree

often for command languages, interacting with the OS. Bootstrapping and

cross-compilation

speed typically 10-100 slower than compilation

compilation to intermediate code which is interpreted

used in e.g. Java, Smalltalk,

intermediate code: designed for efficient execution (byte

code in Java)

executed on a simple interpreter (JVM in Java) b

More recent compiler technologies

® Memory has become cheap (thus comparatively large)
® keep whole program in main memory, while compiling
® OO has become rather popular
® special challenges & optimizations
® Java

® “compiler” generates byte code
® part of the program can be dynamically loaded during
run-time

® concurrency, multi-core
® virtualization

e graphical languages (UML, etc), “meta-models” besides
grammars

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &

phases

Bootstrapping and
cross-compilation

1-24

Section

Bootstrapping and
compilation

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Cross-

Compiling from source to target on host

“tombstone diagrams” (or T-diagrams)....

compilation
® from source language H
® to target language T
® on host “"H" (executed on H or written in H)

E.g.: compiler written for (new) language A written in B

S T

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-26

Two ways to compose “T-diagrams”

INF5110 —
Compiler
Construction

“transitive” compiling a compiler
T Targets & Outline
L‘ ’L‘L‘ ’(_‘ : L‘ ’(_‘ T II Introduction
H H H
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

the second one perhaps: compiler written in C (H)
translated to a K-executable compiler with the help of an
M-executable C-compiler

1-27

For example

Java

byte code

Intel m. code

Java

byte code

* compiler exec

Intel m. code

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-28

Using an “old” language and its compiler
for write a compiler for a “new” one

compiler for new language A written in B.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-29

Pulling oneself up on one’s own bootstraps

INF5110 —
Compiler
Construction

bootstrap (verb, trans.)

to promote or develop . .. with little or no assistance Targets & Outline
— Merriam— Webster Introduction
Compiler
architecture &
step 1 step 2 phases

A " Bootstrapping and
- A H - cross-compilation
A H AA H
H .

http://www.merriam-webster.com/dictionary/bootstrap

Porting & cross compilation

step 1 step 2

e T G »

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-31

References |

Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and Tools.

2
3]

Addison-Wesley.
Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.
Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-32

	Introduction
	Targets & Outline
	Introduction
	Compiler architecture & phases
	Bootstrapping and cross-compilation

