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Course info

Course’s web-page

http://www.uio.no/studier/emner/matnat/
ifi/INF5110
® overview over the course, pensum (watch for updates)

® various announcements, beskjeder, etc.

® astro-discourse (some discussion platform)

* (mattermost)
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http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.uio.no/studier/emner/matnat/ifi/INF5110

Course material and plan

® see script
® screencasts from 2021 (a corona-semester)

® based roughly on [2] and [3], but also other sources will
play a role. A classic is “the dragon book" [1], we
might use part of code generation from there

® see also errata list at
http://www.cs.sjsu.edu/~louden/cmptext/

® approx. 3 hours teaching per week (+ exercises)

® slides: see updates on the net
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http://www.cs.sjsu.edu/~louden/cmptext/

Obligs and exam

Obligs

* mandatory assignments (= “obligs")

® O; published mid-February, deadline mid-March
® (O published beginning of April, deadline beginning of
May

* group work 2 (evtl. 3) people recommended. Please
inform us about such planned group collaboration

Exam

We will go for an oral exam.
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Motivation: What is CC good for?

INF5110 —
GOOd news (?) Compiler

Construction

Full employment (theorem) for compiler writers.

Targets & Outline

® not everyone builds a full-blown compiler, but Introduction
® fundamental concepts and techniques Compiler
i X architecture &
® most, if not basically all, software reads, phases
processes/transforms and outputs “data” Bootstrapping and
. peaninel
= often techniques central to CC e
[

understanding compilers = deeper understanding of
programming language(s)

new languages (domain specific, graphical, new
language paradigms and constructs. . .)

CC & principles never out-of-fashion
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Architecture of a typical compiler
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Target code optimizer

opt. target code
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Pre-processor

® either separate program or integrated into compiler

® nowadays: C-style preprocessing sometimes seen as
“hack” grafted on top of a compiler.
® examples (see next slide):
¢ file inclusion
® macro definition and expansion
¢ conditional code/compilation: Note: #1if is not the
same as the i f-programming-language construct.
* problem: often messes up the line numbers (among
other things)
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C-style preprocessor examples

#include <filename>

#vardef #a =
#if (#a < #b)
#else”

#endif

Listing: file inclusion

5; #c = #a+1

Listing: Conditional compilation
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C-style preprocessor: macros

#macrodef hentdata(#1,#2)

— #1

#2——(#1)——
#enddef

#hentdata(kari, per)
|

— kari
per——(kari)——
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Scanner (lexer ...)

® input: “the program text” ( = string, char stream, or
similar)
® task
® divide and classify into tokens, and
® remove blanks, newlines, comments ...

® theory: finite state automata, regular languages
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Scanner: illustration

uualindex]u=u4u+u2

lexeme ‘ token class value

a identifier g

[ left bracket

index | identifier "index"
] right bracket

= assignment

4 number maqn

+ plus sign

2 number nan
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Scanner: illustration

wualindex]=u4u+u2

lexeme \ token class value
a identifier 2

[ left bracket

index | identifier 21

] right bracket

= assignment

4 number 4

+ plus sign

2 number 2

0

1

2 "a"

21 | "index"
22
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al[index] = 4 + 2: parse tree/syntax
tree
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expr [ expr | expr +  expr
[ [ [ [
identifier  identifier number number
a index 4 2
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a[index] = 4 + 2: abstract syntax tree

assign-expr

/\

subscript expr additive expr
— —

identifier  identifier number number
a index 2 4
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(One typical) Result of semantic analysis

® one standard, general outcome of semantic analysis:
“annotated” or “decorated” AST
* additional info (non context-free):

® bindings for declarations
® (static) type information

assign—expr
subscript—expr additive—expr

identiﬁer identiﬁer number number
a indcx 4 2

XS
® here: identifiers looked up wrt. declaration

® 4, 2: due to their form, basic types.



Optimization at source-code level
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assign-expr
/\ Targets & Outline
. number i
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t o= 442; t = 6; ,
. ! o alindex] = 6;
alindex] = t; alindex] = t;
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Code generation & optimization

MOV RO, index ;; value of index —> RO
MUL RO, 2 ;. double value of RO
MOV R1, &a ;; address of a —> R1
ADD R1, RO ;o add RO to R1
MOV xR1, 6 ;; const 6 —> address in Rl
MOV RO, index ;; value of index —> RO
SHL RO ;. double value in RO
MOV &a[RO], 6 ;; const 6 —> address a+RO
® many optimizations possible
* potentially difficult to automatize!, based on a formal
description of language and machine
°

platform dependent

!Not that one has much of a choice. Difficult or not, no one wants
to optimize generated machine code by hand ....
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Anatomy of a compiler (2)

call p

goto start+30

AAVAVAN g
,

Y

2
‘Assamblar

Linker/ m
Loader }/ Preg-as.

|
/ 1 // ------ -
1 - -
1 /
s \ \ prog.rel callp

Just-In- .
/ Time start, ——» — goto start+30
. 4 — -
compiler \ calm | T T n
BYteCody Vo= -
|  |goto start+10 A
R call m
. Virtual ~. goto start+10
fortolkning |Machine ~_ I -
~—— — —-lm——— r
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Misc. notions

® front-end vs. back-end, analysis vs. synthesis
® separate compilation
® how to handle errors?

* “data” handling and management at run-time (static,
stack, heap), garbage collection?
® language can be compiled in one pass?
® E.g. C and Pascal: declarations must precede use
® no longer too crucial, enough memory available
® compiler assisting tools and infrastructure, e.g.
® debuggers
® profiling
® project management, editors
® build support
[ J
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compilation

classical: source = machine code for given machine
different “forms” of machine code (for 1 machine):

executable < relocatable < textual assembler code
Targets & Outline

full interpretation Introduction

directly executed from program code/syntax tree

often for command languages, interacting with the OS. Bootstrapping and

cross-compilation

speed typically 10-100 slower than compilation

compilation to intermediate code which is interpreted

used in e.g. Java, Smalltalk, ....

intermediate code: designed for efficient execution (byte

code in Java)

executed on a simple interpreter (JVM in Java) b



More recent compiler technologies

® Memory has become cheap (thus comparatively large)
® keep whole program in main memory, while compiling
® OO has become rather popular
® special challenges & optimizations
® Java

® “compiler” generates byte code
® part of the program can be dynamically loaded during
run-time

® concurrency, multi-core
® virtualization

e graphical languages (UML, etc), “meta-models” besides
grammars
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Compiling from source to target on host

“tombstone diagrams” (or T-diagrams)....

compilation
® from source language H
® to target language T
® on host “"H" (executed on H or written in H)

E.g.: compiler written for (new) language A written in B

S T
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Two ways to compose “T-diagrams”
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the second one perhaps: compiler written in C (H)
translated to a K-executable compiler with the help of an
M-executable C-compiler
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For example

Java

byte code

Intel m. code

Java

byte code

* compiler exec

Intel m. code
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Using an “old” language and its compiler
for write a compiler for a “new” one

compiler for new language A written in B.
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Pulling oneself up on one’s own bootstraps
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bootstrap (verb, trans.)

to promote or develop . .. with little or no assistance Targets & Outline
— Merriam— Webster Introduction
Compiler
architecture &
step 1 step 2 phases

A " Bootstrapping and
- A H - cross-compilation
A H AA H
H .


http://www.merriam-webster.com/dictionary/bootstrap

Porting & cross compilation

step 1 step 2

e T G »
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