
Chapter 1
Introduction

Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-2

‘

Chapter 1
Learning Targets of Chapter “Introduction”.

The chapter gives an overview over different phases of a
compiler and their tasks. It also mentions organizational
things related to the course.

Chapter 1
Outline of Chapter “Introduction”.

Introduction

Compiler architecture & phases

Bootstrapping and cross-compilation

Section
Introduction

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-5

Course info

Course’s web-page
http://www.uio.no/studier/emner/matnat/
ifi/INF5110

• overview over the course, pensum (watch for updates)
• various announcements, beskjeder, etc.

• astro-discourse (some discussion platform)
• (mattermost)

http://www.uio.no/studier/emner/matnat/ifi/INF5110
http://www.uio.no/studier/emner/matnat/ifi/INF5110

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-6

Course material and plan

• see script
• screencasts from 2021 (a corona-semester)
• based roughly on [2] and [3], but also other sources will

play a role. A classic is “the dragon book” [1], we
might use part of code generation from there

• see also errata list at
http://www.cs.sjsu.edu/~louden/cmptext/

• approx. 3 hours teaching per week (+ exercises)
• slides: see updates on the net

http://www.cs.sjsu.edu/~louden/cmptext/

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-7

Obligs and exam

Obligs

• mandatory assignments (= “obligs”)
• O1 published mid-February, deadline mid-March
• O2 published beginning of April, deadline beginning of

May
• group work 2 (evtl. 3) people recommended. Please

inform us about such planned group collaboration

Exam
We will go for an oral exam.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-8

Motivation: What is CC good for?

Good news (?)

Full employment (theorem) for compiler writers.

• not everyone builds a full-blown compiler, but
• fundamental concepts and techniques
• most, if not basically all, software reads,

processes/transforms and outputs “data”
⇒ often techniques central to CC
• understanding compilers ⇒ deeper understanding of

programming language(s)
• new languages (domain specific, graphical, new

language paradigms and constructs. . .)
⇒ CC & principles never out-of-fashion

Section
Compiler architecture & phases

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-10

Architecture of a typical compiler

Scanner

Parser

Semantic analyzer

intermediate code generator

Intermediate code optimizer

Code generator

Target code optimizer

Front end

back end

token stream

syntax tree

annotated tree

intermediate code

opt. intermediate code

target code

opt. target code

literal
table

symbol
table

error
handler

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-11

Pre-processor

• either separate program or integrated into compiler
• nowadays: C-style preprocessing sometimes seen as

“hack” grafted on top of a compiler.
• examples (see next slide):

• file inclusion
• macro definition and expansion
• conditional code/compilation: Note: #if is not the

same as the if-programming-language construct.
• problem: often messes up the line numbers (among

other things)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-12

C-style preprocessor examples

#i n c l u d e <f i l e name>

Listing: file inclusion

#v a r d e f #a = 5 ; #c = #a+1
. . .

#i f (#a < #b)
. .

#e l s e
. . .

#e n d i f

Listing: Conditional compilation

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-13

C-style preprocessor: macros

#macrodef hentdata (#1,#2)
−−− #1−−−−
#2−−−(#1)−−−

#endde f

. . .
#hentdata (k a r i , pe r)

−−− ka r i −−−−
per−−−(k a r i)−−−

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-14

Scanner (lexer . . .)

• input: “the program text” (= string, char stream, or
similar)

• task
• divide and classify into tokens, and
• remove blanks, newlines, comments . . .

• theory: finite state automata, regular languages

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-15

Scanner: illustration

␣␣a [i nd e x] ␣=␣4␣+␣2

lexeme token class value
a identifier "a"
[left bracket
index identifier "index"
] right bracket
= assignment
4 number "4"
+ plus sign
2 number "2"

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-15

Scanner: illustration

␣␣a [i nd e x] ␣=␣4␣+␣2

lexeme token class value
a identifier 2
[left bracket
index identifier 21
] right bracket
= assignment
4 number 4
+ plus sign
2 number 2

0
1
2 "a"

...

21 "index"
22

...

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-16

a[index] = 4 + 2: parse tree/syntax
tree

expr

assign-expr

expr

subscript expr

expr

identifier
a

[expr

identifier
index

]

= expr

additive expr

expr

number
4

+ expr

number
2

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-17

a[index] = 4 + 2: abstract syntax tree

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

(One typical) Result of semantic analysis
• one standard, general outcome of semantic analysis:

“annotated” or “decorated” AST
• additional info (non context-free):

• bindings for declarations
• (static) type information

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

xs
• here: identifiers looked up wrt. declaration
• 4, 2: due to their form, basic types.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-19

Optimization at source-code level

assign-expr

subscript expr

identifier
a

identifier
index

number
6

t = 4+2;
a[index] = t;

t = 6;
a[index] = t;

a[index] = 6;

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-20

Code generation & optimization

MOV R0 , i ndex ; ; v a l u e o f i nd ex −> R0
MUL R0 , 2 ; ; doub l e v a l u e o f R0
MOV R1 , &a ; ; a dd r e s s o f a −> R1
ADD R1 , R0 ; ; add R0 to R1
MOV ∗R1 , 6 ; ; c on s t 6 −> add r e s s i n R1

MOV R0 , i ndex ; ; v a l u e o f i nd ex −> R0
SHL R0 ; ; doub l e v a l u e i n R0
MOV &a [R0] , 6 ; ; c on s t 6 −> add r e s s a+R0

• many optimizations possible
• potentially difficult to automatize1, based on a formal

description of language and machine
• platform dependent

1Not that one has much of a choice. Difficult or not, no one wants
to optimize generated machine code by hand

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-21

Anatomy of a compiler (2)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-22

Misc. notions

• front-end vs. back-end, analysis vs. synthesis
• separate compilation
• how to handle errors?
• “data” handling and management at run-time (static,

stack, heap), garbage collection?
• language can be compiled in one pass?

• E.g. C and Pascal: declarations must precede use
• no longer too crucial, enough memory available

• compiler assisting tools and infrastructure, e.g.
• debuggers
• profiling
• project management, editors
• build support
• . . .

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-23

Compiler vs. interpeter
compilation

• classical: source ⇒ machine code for given machine
• different “forms” of machine code (for 1 machine):

• executable ⇔ relocatable ⇔ textual assembler code

full interpretation

• directly executed from program code/syntax tree
• often for command languages, interacting with the OS.
• speed typically 10–100 slower than compilation

compilation to intermediate code which is interpreted

• used in e.g. Java, Smalltalk,
• intermediate code: designed for efficient execution (byte

code in Java)
• executed on a simple interpreter (JVM in Java)
• typically 3–30 times slower than direct compilation
• in Java: byte-code ⇒ machine code in a just-in time

manner (JIT)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-24

More recent compiler technologies

• Memory has become cheap (thus comparatively large)
• keep whole program in main memory, while compiling

• OO has become rather popular
• special challenges & optimizations

• Java
• “compiler” generates byte code
• part of the program can be dynamically loaded during

run-time
• concurrency, multi-core
• virtualization
• graphical languages (UML, etc), “meta-models” besides

grammars

Section
Bootstrapping and cross-
compilation

Chapter 1 “Introduction”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-26

Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). . . .

compilation
• from source language H

• to target language T

• on host “H” (executed on H or written in H)

E.g.: compiler written for (new) language A written in B

S T

H

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-27

Two ways to compose “T-diagrams”

“transitive”

A B

H

B C

H

A C

H

compiling a compiler
A B

H H K

M

A B

K

the second one perhaps: compiler written in C (H)
translated to a K-executable compiler with the help of an
M -executable C-compiler

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-28

For example

Java byte code

C C Intel m. code

C compiler exec.

Java byte code

Intel m. code

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-29

Using an “old” language and its compiler
for write a compiler for a “new” one

A H

B B H

H

A H

H

compiler for new language A written in B.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-30

Pulling oneself up on one’s own bootstraps

bootstrap (verb, trans.)
to promote or develop . . . with little or no assistance
— Merriam-Webster

step 1
A H

A A H

H

A H

H

step 2
A H

A A H

H

A H

H

http://www.merriam-webster.com/dictionary/bootstrap

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-31

Porting & cross compilation

step 1
A H2

A A H1

H1

A H2

H1

step 2
A H2

A A H2

H1

A H2

H2

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Compiler
architecture &
phases

Bootstrapping and
cross-compilation

1-32

References I

Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and Tools.
Addison-Wesley.

[2] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

	Introduction
	Targets & Outline
	Introduction
	Compiler architecture & phases
	Bootstrapping and cross-compilation

