
Chapter 2
Scanning

Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-2

‘

Chapter 2
Learning Targets of Chapter “Scanning”.

1. alphabets, languages
2. regular expressions
3. finite state automata / recognizers
4. connection between the two concepts
5. minimization

The material corresponds roughly to [2, Section 2.1–2.5]
or a large part of [3, Chapter 2]. The material is pretty
canonical, anyway.

Chapter 2
Outline of Chapter “Scanning”.
Introduction

Regular expressions

FSAs (DFAs and NFAs)

Implementation of DFAs
From regular expressions to NFAs (Thompson’s construc-
tion)

Determinization

Minimization

Scanner implementations and scanner generation tools

Section
Introduction

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-5

Scanner section overview

What’s a scanner?
• Input: source code.
• Output: sequential stream of tokens

• regular expressions to describe various token classes
• (deterministic/non-determinstic) finite-state automata

(FSA, DFA, NFA)
• implementation of FSA
• regular expressions → NFA
• NFA ↔ DFA

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-6

What’s a scanner?

• other names: lexical scanner, lexer, tokenizer

A scanner’s functionality
Part of a compiler that takes the source code as input and
translates this stream of characters into a stream of tokens.

• char’s typically language independent.
• tokens already language-specific.
• works always “left-to-right”, producing one single token

after the other, as it scans the input
• it “segments” char stream into “chunks” while at the

same time “classifying” those pieces ⇒ tokens

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-7

Typical responsibilities of a scanner

segment & classify char stream into tokens

• reserved words or key words
• comments
• white space
• Further standard token classes:

• format of identifiers, representing variables,
methods, . . .

• format of different numerical representations

• to segment: “jumps over” white spaces and afterwards
starts to determine a new token

• not only “blank” character, also TAB, NEWLINE, etc.
• lexical rules: often (explicit or implicit) priorities

• identifier or keyword? ⇒ keyword
• take the longest possible scan that yields a valid token.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-8

“Scanner = regular expressions (+
priorities)”

Rule of thumb
Everything about the source code which is so simple that it
can be captured by reg. expressions belongs into the scanner.

How does scanning roughly work?

. . . a [i n d e x] = 4 + 2 . . .

q0q1

q2

q3 . . .

qn

Finite control

q2
Reading “head”

(moves left-to-right)

a[index] = 4 + 2

How does scanning roughly work?

. . . a [i n d e x] = 4 + 2 . . .

q0q1

q2

q3 . . .

qn

Finite control

q0
Reading “head”

(moves left-to-right)

a[index] = 4 + 2

How does scanning roughly work?

. . . a [i n d e x] = 4 + 2 . . .

q0q1

q2

q3 . . .

qn

Finite control

q1
Reading “head”

(moves left-to-right)

a[index] = 4 + 2

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-10

How does scanning roughly work?

• usual invariant in such pictures (by convention): arrow
or head points to the first character to be read next
(and thus after the last character having been
scanned/read last)

• in the scanner program or procedure:
• analogous invariant, the arrow corresponds to a specific

variable
• contains/points to the next character to be read
• name of the variable depends on the scanner/scanner

tool
• the head in the pic: for illustration, the scanner does

not really have a “reading head”

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-11

The bad(?) old times: Fortran
• in the days of the pioneers
• main memory was smaaaaaaaaaall
• compiler technology was not well-developed (or not at

all)
• programming was for very few “experts”.1
• Fortran was considered high-level (wow, a language so

complex that you had to compile it . . .)

1There was no computer science as profession or university
curriculum.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-12

(Slightly weird) lexical ascpects of Fortran

Lexical aspects = those dealt with by a scanner
• whitespace without “meaning”:

I F(X 2. EQ. 0) TH E N vs. IF (X2.
EQ.0) THEN

• no reserved words!
IF (IF.EQ.0) THEN THEN=1.0

• general obscurity tolerated:
DO99I=1,10 vs. DO99I=1.10

DO 99 I =1 ,10
−
−
99 CONTINUE

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-13

Fortran scanning: remarks
• Fortran (of course) has evolved from the pioneer days

. . .
• no keywords: nowadays mostly seen as bad idea
• treatment of white-space as in Fortran: not done

anymore: THEN and TH EN are different things in all
languages

• however: both considered “the same”:

i f ␣b␣ then ␣ . .

i f ␣␣␣b␣␣␣␣ then ␣ . .

• since concepts/tools (and much memory) were missing,
Fortran scanner and parser (and compiler) were

• quite simplistic
• syntax: designed to “help” the lexer (and other phases)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-14

A scanner classifies
• “good” classification: depends also on later phases, may

not be clear till later

Rule of thumb
Things being treated equal in the syntactic analysis (=
parser, i.e., subsequent phase) should be put into the same
category.

• terminology not 100% uniform, but most would agree:

Lexemes and tokens
Lexemes are the “chunks” (pieces) the scanner produces
from segmenting the input source code (and typically
dropping whitespace). Tokens are the result of classifying
those lexemes.

• token = token name × token value

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-15

A scanner classifies & does a bit more

• token data structure in OO settings
• token themselves defined by classes (i.e., as instance of

a class representing a specific token)
• token values: as attribute (instance variable) in its

values
• often: scanner does slightly more than just classification

• store names in some table and store a corresponding
index as attribute

• store text constants in some table, and store
corresponding index as attribute

• even: calculate numeric constants and store value as
attribute

One possible classification

name/identifier abc123
integer constant 42
real number constant 3.14E3
string literal "this is a text constant"
arithmetic op’s + - * /
boolean/logical op’s and or not (alternatively /\ \/)
relational symbols <= < >= > = == !=

all other tokens: { } () [] , ; := . etc.
every one in its
own group

• this classification: not the only possible (and not
necessarily complete)

• note: overlap:
• "." is here a token, but also part of real number

constant
• "<" is part of "<="

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-17

One way to represent tokens in C

typede f s t r u c t {
TokenType t o k en v a l ;
char ∗ s t r i n g v a l ;
i n t numval ;

} TokenRecord ;

If one only wants to store one attribute:
typede f s t r u c t {

Tokentype t o k en v a l ;
union
{ char ∗ s t r i n g v a l ;

i n t numval
} a t t r i b u t e ;

} TokenRecord ;

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-18

How to define lexical analysis and
implement a scanner?

• even for complex languages: lexical analysis (in
principle) not hard to do

• “manual” implementation straightforwardly possible
• specification (e.g., of different token classes) may be

given in “prose”
• however: there are straightforward formalisms and

efficient, rock-solid tools available:
• easier to specify unambigously
• easier to communicate the lexical definitions to others
• easier to change and maintain

• often called parser generators typically not just generate
a scanner, but code for the next phase (parser), as well.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-19

Sample prose spec

Section
Regular expressions

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-21

General concept: How to generate a
scanner?

1. regular expressions to describe language’s lexical aspects

• like whitespaces, comments, keywords, format of
identifiers etc.

• often: more “user friendly” variants of reg-exprs are
supported to specify that phase

2. classify the lexemes to tokens
3. translate the reg-expressions ⇒ NFA.
4. turn the NFA into a deterministic FSA (= DFA)
5. the DFA can straightforwardly be implementated
• step done automatically by a “lexer generator”
• lexer generators help also in other user-friendly ways of

specifying the lexer: defining priorities, assuring that the
longest possible lexeme is tokenized

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-22

Use of regular expressions
• regular languages: fundamental class of “languages”
• regular expressions: standard way to describe regular

languages
• not just used in compilers
• often used for flexible “ searching ”: simple form of

pattern matching
• e.g. input to search engine interfaces
• also supported by many editors and text processing or

scripting languages (starting from classical ones like
awk or sed)

• but also tools like grep or find (or general
“globbing” in shells)

find . -name "*.tex"

• often extended regular expressions, for user-friendliness,
not theoretical expressiveness

https://en.wikipedia.org/wiki/Glob_(programming)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-23

Alphabets and languages

Definition (Alphabet Σ)

Finite set of elements called “letters” or “symbols” or
“characters”.

Definition (Words and languages over Σ)

Given alphabet Σ, a word over Σ is a finite sequence of
letters from Σ. A language over alphabet Σ is a set of finite
words over Σ.

• practical examples of alphabets: ASCII, Norwegian
letters (capitals and non-capitals) etc.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-24

Languages

• note: Σ is finite, and words are of finite length
• languages: in general infinite sets of words
• simple examples: Assume Σ = {a, b}
• words as finite “sequences” of letters

• ϵ: the empty word (= empty sequence)
• ab means “ first a then b ”

• sample languages over Σ are
1. {} (also written as ∅) the empty set
2. {a, b, ab}: language with 3 finite words
3. {ϵ} (̸= ∅)
4. {ϵ, a, aa, aaa, . . .}: infinite languages, all words using

only a ’s.
5. {ϵ, a, ab, aba, abab, . . .}: alternating a’s and b’s
6. {ab, bbab, aaaaa, bbabbabab, aabb, . . .}: ?????

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-25

How to describe languages
• language mostly here in the abstract sense just defined.
• the “dot-dot-dot” (. . .) is not a good way to describe to

a computer (and to many humans) what is meant
• enumerating explicitly all allowed words for an infinite

language does not work either

Needed
A finite way of describing infinite languages (which is
hopefully efficiently implementable & easily readable)

Beware
Is it apriori to be expected that all infinite languages can
even be captured in a finite manner?

• small metaphor

2.727272727 . . . 3.1415926 . . . (1)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-26

Regular expressions

Definition (Regular expressions)

A regular expression is one of the following
1. a basic regular expression of the form a (with a ∈ Σ),

or ϵ, or ∅
2. an expression of the form r | s, where r and s are

regular expressions.
3. an expression of the form r s, where r and s are regular

expressions.
4. an expression of the form r∗, where r is a regular

expression.

Precedence (from high to low): ∗, concatenation, |

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-27

A “grammatical” definition

Later introduced as (notation for) context-free grammars:

r → a
r → ϵ
r → ∅
r → r | r
r → r r
r → r∗

(2)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-28

Same again

Notational conventions
Later, for CF grammars, we use often capital letters to
denote “variables” of the grammars (then called
non-terminals). If we like to be consistent with that
convention in the parsing chapters and use capitals for
non-terminals, the grammar for regular expression looks as
follows:

R → a
R → ϵ
R → ∅
R → R | R
R → R R
R → R∗

(3)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-29

Symbols, meta-symbols,
meta-meta-symbols . . .

• regexps: notation or “language” to describe “languages”
over a given alphabet Σ (i.e. subsets of Σ∗)

• language being described ⇔ language used to describe
the language

⇒ language ⇔ meta-language
• here:

• regular expressions: notation to describe regular
languages

• English resp. context-free notation: notation to describe
regular expressions (a notation itself)

• for now: carefully use notational or typographic
conventions for precision

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-30

Notational conventions

• notational conventions by typographic means (i.e.,
different fonts etc.)

• you need good eyes, but: difference between
• a and a
• ϵ and ϵ
• ∅ and ∅
• | and | (especially hard to see :-))
• . . .

• later (when gotten used to it) we may take a more
“relaxed” attitude towards it, assuming things are clear
enough by then, as do many textbooks.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-31

Same again once more

R → a | ϵ | ∅ basic reg. expr.
| R | R | R R | R∗ compound reg. expr.

(4)

Note:
• symbol | : (bold) as symbol of regular expressions
• symbol | : (normal, non-bold) meta-symbol of the

CF grammar notation
• the meta-notation used here for CF grammars will be

the subject of later chapters
• this time: parentheses “added” to the syntax.

Semantics (meaning) of regular expressions
Definition (Regular expression)

Given an alphabet Σ. The meaning of a regexp r (written
L(r)) over Σ is given by equation (5).

L(∅) = {} empty language
L(ϵ) = {ϵ} empty word
L(a) = {a} single “letter” from Σ

L(rs) = {w1w2 | w1 ∈ L(r), w2 ∈ L(s)} concatenation
L(r | s) = L(r) ∪ L(s) alternative

L(r∗) = L(r)∗ iteration
(5)

• conventional precedences: ∗, concatenation, |.
• Note: left of “=”: reg-expr syntax, right of “=”:

semantics/meaning/math 2

2Sometimes confusingly “the same” notation.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-33

Examples

In the following:
• Σ = {a, b, c}.
• we don’t bother to “boldface” the syntax

words with exactly one b (a | c)∗b(a | c)∗

words with max. one b ((a | c)∗) | ((a | c)∗b(a | c)∗)
(a | c)∗ (b | ϵ) (a | c)∗

words of the form anban,
i.e., equal number of a’s
before and after 1 b

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-34

Another regexpr example

words that do not contain two b’s in a row.

(b (a | c))∗ not quite there yet
((a | c)∗ | (b (a | c))∗)∗ better, but still not there

= (simplify)
((a | c) | (b (a | c)))∗ = (simplifiy even more)
(a | c | ba | bc)∗

(a | c | ba | bc)∗ (b | ϵ) potential b at the end
(notb | b notb)∗(b | ϵ) where notb ≜ a | c

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-35

Additional “user-friendly” notations

r+ = rr∗

r? = r | ϵ

Special notations for sets of letters:

[0 − 9] range (for ordered alphabets)
~a not a (everything except a)

. all of Σ

naming regular expressions (“regular definitions”)

digit = [0 − 9]
nat = digit+

signedNat = (+|−)nat
number = signedNat(”.”nat)?(E signedNat)?

Section
FSAs (DFAs and NFAs)

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-37

Finite-state automata

• simple “computational” machine
• (variations of) FSA’s exist in many flavors and under

different names
• other well-known names include finite-state machines,

finite labelled transition systems, . . .
• “state-and-transition” representations of programs or

behaviors (finite state or else) are wide-spread as well
• state diagrams
• Kripke-structures
• I/O automata
• Moore & Mealy machines

• the logical behavior of certain classes of electronic
circuitry with internal memory (“flip-flops”) is described
by finite-state automata.

https://en.wikipedia.org/wiki/Saul_Kripke

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-38

FSA
Definition (FSA)

A finite-state automaton (FSA), where A over an alphabet
Σ is a tuple (Σ, Q, I, F, δ)

• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ ⊆ Q × Σ × Q transition relation

• final states: also called accepting states
• transition relation: can equivalently be seen as function

δ : Q × Σ → 2Q: for each state and for each letter, give
back the set of sucessor states (which may be empty)

• more suggestive notation: q1
a−→ q2 for (q1, a, q2) ∈ δ

• we also use freely —self-evident, we hope— things like

q1
a−→ q2

b−→ q3

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-39

FSA as scanning machine?
• FSA have slightly unpleasant properties when

considering them as decribing an actual program (i.e., a
scanner procedure/lexer)

• given the “theoretical definition” of acceptance:

Mental picture of a scanning automaton
The automaton eats one character after the other, and,
when reading a letter, it moves to a successor state, if any,
of the current state, depending on the character at hand.

• 2 problematic aspects of FSA
• non-determinism: what if there is more than one

possible successor state?
• undefinedness: what happens if there’s no next state for

a given input
• the 2nd one is easily repaired, the 1st one requires more

thought
• [2]: recogniser corresponds to DFA

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-40

DFA: deterministic and total automata

Definition (DFA)

A deterministic, finite automaton A (DFA for short) over an
alphabet Σ is a tuple (Σ, Q, I, F, δ)

• Q: finite set of states
• I = {i} ⊆ Q, F ⊆ Q: initial and final states.
• δ : Q × Σ → Q transition function.

• transition function: special case of transition relation:
• deterministic
• left-total (“complete”)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-41

Meaning of an FSA

Semantics
The intended meaning of an FSA over an alphabet Σ is the
set of all the finite words, the automaton accepts.

Definition (Accepted words and language of an
automaton)

A word c1c2 . . . cn with ci ∈ Σ is accepted by automaton A
over Σ, if there exists states q0, q2, . . . , qn from Q such that

q0
c1−→ q1

c2−→ q2
c3−→ . . . qn−1

cn−→ qn ,

and were q0 ∈ I and qn ∈ F . The language of an FSA A,
written L(A), is the set of all words that A accepts.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-42

FSA example

q0 q1 q2

a

b

a

b

c

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-43

Example: identifiers

Regular expression

identifier = letter(letter | digit)∗ (6)

• transition function/relation δ not completely defined (=
partial function)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-43

Example: identifiers
Regular expression

identifier = letter(letter | digit)∗ (6)

• transition function/relation δ not completely defined (=
partial function)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-44

Automata for numbers: natural numbers

digit = [0 − 9]
nat = digit+

(7)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-45

Signed natural numbers

signednat = (+ | −)nat | nat

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-46

Signed natural numbers: non-deterministic

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-47

Fractional numbers

frac = signednat(”.”nat)?

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-48

Floats

digit = [0 − 9]
nat = digit+

signednat = (+ | −)nat | nat
frac = signednat(”.”nat)?
float = frac(E signednat)?

• Note: no (explicit) recursion in the definitions
• note also the treatment of digit in the automata.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-49

DFA for floats

DFAs for comments

Pascal-style

C, C++, Java

/ ∗

other

∗

∗

other

/

Section
Implementation of DFAs

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-52

Example: identifiers (repeated)

Regular expression

identifier = letter(letter | digit)∗

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-52

Example: identifiers (repeated)

Regular expression

identifier = letter(letter | digit)∗

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-53

Implementation of DFA (1)

DFA implementation: explicit state
representation

s t a t e := 1 { s t a r t }
whi le s t a t e = 1 or 2
do

case s t a t e of
1 : case input c h a r a c t e r of

l e t t e r : advance the input ;
s t a t e := 2

e l s e s t a t e := { e r r o r o r o t h e r } ;
end case ;

2 : case input c h a r a c t e r of
l e t t e r , d i g i t : advance the input ;

s t a t e := 2 ; { a c t u a l l y u n e s s e s s a r y }
e l s e s t a t e := 3 ;
end case ;

end case ;
end whi le ;
i f s t a t e = 3 then accep t e l s e e r r o r ;

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-55

Table rep. of the DFA

aaaaaaa
state

input
char letter digit other accepting

1 2 no
2 2 2 [3] no
3 yes

added info for
• accepting or not
• “ non-advancing ” transitions

• here: 3 can be reached from 2 via such a transition

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-56

Table-based implementation

s t a t e := 1 { s t a r t }
ch := next i n pu t c h a r a c t e r ;
w h i l e not Accept [s t a t e] and not e r r o r (s t a t e)
do

w h i l e s t a t e = 1 or 2
do

newsta te := T [s t a t e , ch] ;
{ i f Advance [s t a t e , ch]

then ch := next i n pu t c h a r a c t e r } ;
s t a t e := newsta te

end w h i l e ;
i f Accept [s t a t e] then accep t ;

Section
From regular expressions to NFAs
(Thompson’s construction)

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-58

Non-deterministic FSA
Definition (NFA (with ϵ transitions))

A non-deterministic finite-state automaton (NFA for short)
A over an alphabet Σ is a tuple (Σ, Q, I, F, δ), where

• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ : Q × Σ → 2Q transition function

In case, one uses the alphabet Σ + {ϵ}, one speaks about an
NFA with ϵ-transitions.

• in the following: NFA mostly means, allowing ϵ
transitions

• ϵ: treated different from the “normal” letters from Σ.
• δ can equivalently be interpreted as relation:

δ ⊆ Q × Σ × Q (transition relation labelled by elements
from Σ).

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-59

Language of such NFA
• remember L(A) (Definition 7 on page 44)
• applying definition directly to Σ + {ϵ}: accepting words

“containing” letters ϵ
• as said: special treatment for ϵ-transitions/ϵ-“letters”. ϵ

rather represents absence of input character/letter.

Definition (Acceptance with ϵ-transitions)

A word w over alphabet Σ is accepted by an NFA with
ϵ-transitions, if there exists a word w′ which is accepted by
the NFA with alphabet Σ + {ϵ} according to Definition 7
and where w is w′ with all occurrences of ϵ removed.

Alternative (but equivalent) intuition

A reads one character after the other (following its
transition relation). If in a state with an outgoing
ϵ-transition, A can move to a corresponding successor state
without reading an input symbol.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-60

NFA vs. DFA

• NFA: often easier (and smaller) to write down, esp.
starting from a regular expression

• non-determinism: not immediately transferable to an
algo

a

ϵ

a

ϵ

ϵ

b

a

a b

b

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-61

Why non-deterministic FSA?

Task: recognize :=, <=, and = as three different tokens:

return ASSIGN

return LE

return EQ

: =

< =

=

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-62

return ASSIGN

return LE

return EQ

:

=

< =

=

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-63

What about the following 3 tokens?

return LE

return NE

return LT

< =

< >

<

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-64

return LE

return NE

return LT

<

=

< >

<

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-65

return LE

return NE

return LT

<

=

>

[other]

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-66

Regular expressions → NFA

• needed: a systematic translation (= algo, best an
efficient one)

• conceptually easiest: translate to NFA (with
ϵ-transitions)

• postpone determinization for a second step
• (postpone minimization for later, as well)

Compositional construction [?]

Design goal: The NFA of a compound regular expression is
given by taking the NFAa of the immediate subexpressions
and connecting them appropriately.

• construction slightly3 simpler, if one uses automata with
one start and one accepting state

⇒ ample use of ϵ-transitions

3It does not matter much, though.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-67

Illustration for ϵ-transitions

return ASSIGN

return LE

return EQ

: =

< =

=

ϵ

ϵ

ϵ

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-68

Thompson’s construction: basic expressions

basic regular expressions
basic (= non-composed) regular expressions: ϵ, ∅, a
(for all a ∈ Σ)

ϵ

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-69

Thompson’s construction: compound
expressions

. . .r . . .sϵ

. . .r

. . .s

ϵ

ϵ

ϵ

ϵ

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-70

Thompson’s construction: compound
expressions: iteration

. . .r

ϵ

ϵ

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-71

Example: ab | a

Intro
Here is a small example illustrating the construction. In the
exercises, there will be more.

a

a ϵ b

1

2 3 4 5

8

6 7

ab | a

ϵ

a ϵ b

ϵ

ϵ

a

ϵ

Section
Determinization

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-73

Determinization: the subset construction

Main idea
• Given a non-det. automaton A. To construct a DFA A:

instead of backtracking: explore all successors “at the
same time” ⇒

• each state q′ in A: represents a subset of states from A
• Given a word w: “feeding” that to A leads to the state

representing all states of A reachable via w

• powerset construction
• origin of the construction: ? [?]

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-74

Some notation/definitions

Definition (ϵ-closure, a-successors)

Given a state q, the ϵ-closure of q, written closeϵ(q), is the
set of states reachable via zero, one, or more ϵ-transitions.
We write qa for the set of states, reachable from q with one
a-transition. Both definitions are used analogously for sets of
states.

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-75

Transformation process: sketch of the algo

Input: NFA A over a given Σ
Output: DFA A

1. the initial state: closeϵ(I), where I are the initial states
of A

2. for a state Q in A: the a-successor of Q is given by
closeϵ(Qa), i.e.,

Q
a−→ closeϵ(Qa) (8)

3. repeat step 2 for all states in A and all a ∈ Σ, until no
more states are being added

4. the accepting states in A: those containing at least one
accepting state of A

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-76

Example ab | a

1

2 3 4 5

8

6 7

ab | a

ϵ

a ϵ b

ϵ

ϵ

a

ϵ

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-76

Example ab | a

1

2 3 4 5

8

6 7

ab | a

ϵ

a ϵ b

ϵ

ϵ

a

ϵ

{1, 2, 6} {3, 4, 7, 8} {5, 8}a b

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-77

Example: identifiers

Remember: regexpr for identifies from equation (6)

1 2 3 4

5 6

9

7 8

10letter ϵ ϵ

ϵ

ϵ

letter
ϵ

ϵ

ϵ
digit

ϵ

ϵ

Identifiers: DFA

{1} {2, 3, 4, 5, 7, 10}

{4, 5, 6, 7, 9, 10}

{4, 5, 7, 8, 9, 10}

letter

letter

digit

digitletter

letter

digit

Section
Minimization

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-80

Minimization

• automatic construction of DFA (via e.g. Thompson):
often many superfluous states

• goal: “combine” states of a DFA without changing the
accepted language

Properties of the minimization algo

Canonicity: all DFA for the same language are transformed
to the same DFA

Minimality: resulting DFA has minimal number of states

• “side effects”: answers two equivalence problems
• given 2 DFA: do they accept the same language?
• given 2 regular expressions, do they describe the same

language?
• modern version: ?].

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-81

Hopcroft’s partition refinement algo for
minimization

• starting point: complete DFA (i.e., error-state possibly
needed)

• first idea: equivalent states in the given DFA may be
identified

• equivalent: when used as starting point, accepting the
same language

• partition refinement:
• works “the other way around”
• instead of collapsing equivalent states:

• start by “collapsing as much as possible” and then,
• iteratively, detect non-equivalent states, and then split

a “collapsed” state
• stop when no violations of “equivalence” are detected

• partitioning of a set (of states):
• worklist: data structure of to keep non-treated classes,

termination if worklist is empty

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-82

Partition refinement: a bit more concrete

• Initial partitioning: 2 partitions: set containing all
accepting states F , set containing all non-accepting
states Q\F

• Loop do the following: pick a current equivalence class
Qi and a symbol a

• if for all q ∈ Qi, δ(q, a) is member of the same class Qj

⇒ consider Qi as done (for now)
• else:

• split Qi into Q1
i , . . . Qk

i s.t. the above situation is
repaired for each Ql

i (but don’t split more than
necessary).

• be aware: a split may have a “cascading effect”: other
classes being fine before the split of Qi need to be
reconsidered ⇒ worklist algo

• stop if the situation stabilizes, i.e., no more split
happens (= worklist empty, at latest if back to the
original DFA)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-83

Split in partition refinement: basic step

q1

q2

q3

q4

q5

q6

a

b

c

d

e

a

a

a

a

a

a

q1

q2

q3

q4

q5

q6

a

b

c

d

e

a

a

a

a

a

a

• before the split {q1, q2, . . . , q6}
• after the split on a: {q1, q2}, {q3, q4, q5}, {q6}

Identifiers: DFA

{1} {2, 3, 4, 5, 7, 10}

{4, 5, 6, 7, 9, 10}

{4, 5, 7, 8, 9, 10}

letter

letter

digit

digitletter

letter

digit

Completed automaton

{1} {2, 3, 4, 5, 7, 10}

{4, 5, 6, 7, 9, 10}

{4, 5, 7, 8, 9, 10}error

letter

letter

digit

digitletter

letter

digit

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-86

Minimized automaton (error state omitted)

start in_idletter

letter

digit

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-87

Another example: partition refinement &
error state

(a | ϵ)b∗ (9)

1 2

3

a

b

b

b

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-88

Partition refinement

error state added

1 2

3 error

a

b

b

b

a

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-88

Partition refinement

initial partitioning

1 2

3 error

a

b

b

b

a

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-88

Partition refinement

split after a

1 2

3 error

a

b

b

b

a

a

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-89

End result (error state omitted again)

{1} {2, 3}

a

b

b

Section
Scanner implementations and scan-
ner generation tools

Chapter 2 “Scanning”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-91

Tools for generating scanners

• scanners: simple and well-understood part of compiler
• hand-coding possible
• mostly better off with: generated scanner
• standard tools lex / flex (also in combination with

parser generators, like yacc / bison
• variants exist for many implementing languages
• based on the results of this section

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-92

Main idea of (f)lex and similar

• output of lexer/scanner = input for parser
• programmer specifies regular expressions for each

token-class and corresponding actions (and whitespace,
comments etc.)

• the spec. language offers some conveniences (extended
regexpr with priorities, associativities etc) to ease the
task

• automatically translated to NFA (e.g. Thompson)
• then made into a deterministic DFA (“subset

construction”)
• minimized (with a little care to keep the token classes

separate)
• implement the DFA (usually with the help of a table

representation)

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-93

Sample flex file (excerpt)

1
2 DIGIT [0−9]
3 ID [a−z] [a−z0 −9]∗
4
5 %%
6
7 {DIGIT}+ {
8 p r i n t f ("An i n t e g e r : %s (%d)\n " , yy t ex t ,
9 a t o i (y y t e x t)) ;

10 }
11
12 {DIGIT}+"."{DIGIT}∗ {
13 p r i n t f ("A f l o a t : %s (%g)\n " , yy t ex t ,
14 a t o f (y y t e x t)) ;
15 }
16
17 i f | then | beg in | end | procedure | f u n c t i o n {
18 p r i n t f ("A keyword : %s \n " , y y t e x t) ;
19 }

INF5110 –
Compiler

Construction

Targets & Outline

Introduction

Regular
expressions

FSAs (DFAs and
NFAs)

Implementation of
DFAs

From regular
expressions to
NFAs
(Thompson’s
construction)

Determinization

Minimization

Scanner
implementations
and scanner
generation tools

2-94

References I

Bibliography

[2] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[] Hopcroft, J. E. (1971). An n log n algorithm for minimizing the states in a finite automaton. In
Kohavi, Z., editor, The Theory of Machines and Computations, pages 189–196. Academic Press,
New York.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

[] Rabin, M. and Scott, D. (1959). Finite automata and their decision problems. IBM Journal of
Research Developments, 3:114–125.

[] Thompson, K. (1968). Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419.

	Scanning
	Targets & Outline
	Introduction
	Regular expressions
	FSAs (DFAs and NFAs)
	Implementation of DFAs
	From regular expressions to NFAs (Thompson's construction)
	Determinization
	Minimization
	Scanner implementations and scanner generation tools

