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Chapter 3

Learning Targets of Chapter “Grammars”.

A, WO =

(context-free) grammars + BNF

ambiguity and other properties

terminology: tokens, lexemes

different trees connected to grammars/parsing
derivations, sentential forms

The chapter corresponds to [1, Section 3.1-3.2] (or [3,
Chapter 3]).
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Bird’s eye view of a parser

INF5110 -

Compiler
Construction

Parser abstract syntax tree )
Targets & Outline

Introduction

Context-free

rammars and
SyntaX gBNF notation
® check that the token sequence correspond to a Gy

hierarchy

syntactically correct program

® if yes: yield tree as intermediate representation for
subsequent phases
® if not: give understandable error message(s)
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Trees, trees, more trees

syntax trees

parse tree or concrete syntax tree vs. abstract syntax trees

® derivation trees (derivation in a (context-free) grammar)

® mentioned tree forms hang together, dividing line a bit
fuzzy

® output of a parser: AST
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(Context-free) grammars

® specifies the syntactic structure of a language
® here: grammar means CFG

e (G derives word w

Parsing

Given a stream of “symbols” w and a grammar G, find a
derivation from G that produces w.
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Schematic syntax tree
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program
/\
decs stmts .
/N | Targets & Outline
vardec = val stmt Introduction

) ‘ Context-free
assign-stmt grammars and

/\ BNF notation

var expr L.
‘ | Ambiguity
X + Chomsky
/\ hierarchy
var var
X y

3-8



Natural-language parse tree

S
NP VP
/\ /\
DT N \% NP
The dog bites DT N
| |
the man
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“Interface” between scanner and parser

® remember: task of scanner = “chopping up” the input
char stream (throw away white space, etc.) and classify
the pieces (1 piece = lexeme)
¢ classified lexeme = token
® sometimes we use (integer, 742”)
® integer: “class” or “type" of the token, also called
token name
® 742”7 : value of the token attribute (or just value).
Here: directly the lexeme (a string or sequence of chars)
* a note on (sloppyness/ease of) terminology: often: the
token name is simply just called the token

the token (symbol) corrresponds there to terminal symbols
(or terminals, for short)
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Grammars

® in this chapter(s): focus on context-free grammars
® thus here: grammar = CFG

® as in the context of regular expressions/languages:
language = (typically infinite) set of words

® grammar = formalism to unambiguously specify a
language
® intended language: all syntactically correct programs of
a given progamming language
Slogan

A CFG describes the syntax of a programming language. !

!And some say, regular expressions describe its microsyntax.
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Context-free grammar

Definition (CFG)

A context-free grammar G is a 4-tuple G = (X7, XN, S, P):

2 2N E

[}

two disjoint finite alphabets of terminals ¥ and
non-terminals >,
one start-symbol S € ¥ (a non-terminal), and

productions P = finite subset of ¥ x (X + X7)*.

terminal symbols: corresponds to tokens in parser =
basic building blocks of syntax

non-terminals: (e.g. “expression”, “while-loop”,
“method-definition” .. .)

grammar: generating (via “derivations”) languages
parsing: the inverse problem

CFG = specification
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Further notions

sentence and sentential form
productions (or rules)
derivation

language of a grammar L(G)

parse tree
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BNF notation

® popular & common format to write CFGs, i.e., describe
context-free languages

® named after pioneering (seriously) work on Algol 60

® notation to write productions/rules 4+ some extra
meta-symbols for convenience and grouping

Slogan: Backus-Naur form

What regular expressions are for regular languages is BNF
for context-free languages.
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https://en.wikipedia.org/wiki/ALGOL_60

“Expressions” in BNF

INF5110 —
Compiler
exqp — exp op exp | (erp) | number (1) Construction
op — + | — | %
Targets & Outline
Introduction
® “—" indicating productions and " | " indicating i
- grammars E|I1(I
alternatlves BNF notation
® convention: terminals written boldface, non-terminals Ambiguity
ita/ic Chomsky
hierarchy

* also simple math symbols like “+" and “(” are meant
above as terminals
® start symbol here: exp

® remember: terminals like number correspond to
tokens, resp. token classes. The attributes/token values
are not relevant here. 216



Different notations

* BNF: notationally not 100% “standardized” across L=
ompiler
bOOkS/tOOlS Construction
e “classic” way (Algol 60):
Targets & Outline
<exp> 1= <exp> <op> <exp> Introduction
I ( <exp> ) Context-free
| NUMBER grammars and
<op> = + | — ‘ * BNF notation
Ambiguity
Chomsky
* Extended BNF (EBNF) and yet another style o
eIp _> exp ( 2 + 2 ‘ » _» | ” * ” ) exp (2)
| 77(77 e$p 77)77 | 77number77
® note: parentheses as terminals vs. as metasymbols
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Different ways of writing the same grammar

e directly written as 6 pairs (6 rules, 6 productions) from
Yy X (Exy UXp)*, with “—" as nice looking

w ” INF5110 —
Sepa rator : Compiler

Construction

exp — €exp op erp (3) Targets & Outline
etp — (exp) et
erp — number Context-free
op — + BN notation
op — — Ambiguity
op — * Chomsky
hierarchy
* choice of non-terminals: irrelevant (except for human
readability):
E — FEOE | (E) | number (4)
0 = 4| |«

® still: we count 6 productions



Grammars as language generators

Deriving a word:

INF5110 —
Start from start symbol. Pick a “matching” rule to rewrite S
the current word to a new one; repeat until terminal
symbols, only. Targets & Outline
Introduction
® non-deterministic process Context-free
grammars and
® rewrite relation for derivations: BNF notation
® one step rewriting: w; = ws Ambiguity
® one step using rule n: wi =, wy ﬁl':::r‘;'g

® many steps: =%, etc.

Language of grammar G

L(G)={s| start =" s and s € X7}



Example derivation for
(number—number)*number

exp

® underline the “place” where a rule is used, i.e., an
occurrence of the non-terminal symbol is being
rewritten /expanded

N A

(

(

(n op

(n—exp) op exp
(n—n)op exp

(

(

® here: leftmost derivation?

2We'll come back to that later, it will be important.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy



Right-most derivation

k
3

R

exp op exp
ezpopn
expﬂ;

(exp op exp)*n
(exp op n)*n
(ezp—n)*n
(n—n)#n

¢ other (“mixed") derivations for the same word possible
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Some easy requirements for reasonable
grammars

INF5110 —
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Construction

¢ all symbols (terminals and non-terminals): should occur

in a some word derivable from the start symbol
Targets & Outline

® words containing only non-terminals should be derivable

Introduction

® an example of a silly grammar G (start-symbol A) Context-free
grammars and
BNF notation
A — Bx Ambiguity
B — Ay Chomsky
hierarchy
C — z
o £(G) =0

® those “sanitary conditions”: minimal “common sense”
requirements
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Parse tree

® derivation: if viewed as sequence of steps = linear
“structure”

® order of individual steps: irrelevant

® = order not needed for subsequent phases

® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

Lexp

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation
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Parse tree
® derivation: if viewed as sequence of steps = linear
“structure”
® order of individual steps: irrelevant
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

Lexp

. —

exp

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation
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Parse tree
® derivation: if viewed as sequence of steps = linear
“structure”
® order of individual steps: irrelevant
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

Lexp
o —
2 exp
|
n

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation
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Parse tree

® derivation: if viewed as sequence of steps = linear
“structure”

® order of individual steps: irrelevant

® = order not needed for subsequent phases

® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

1

exp
1
2 exp 3op

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation
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Parse tree

® derivation: if viewed as sequence of steps = linear
“structure”

® order of individual steps: irrelevant

® = order not needed for subsequent phases

® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

1

exp
1
2 exp 3op
| I
n +

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation
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Parse tree

® derivation: if viewed as sequence of steps = linear

“structure”
INF5110 —
® order of individual steps: irrelevant e
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation e & @il
Introduction
® also called concrete syntax tree. . )
ontext-free
grammars and
1 BNF notation
exp
Ambiguity
-
Chomsky
2 equ 3 Op 4 equ hierarchy
| I
n +
® numbers in the tree
® not part of the parse tree, indicate order of derivation,
only 2

® here: leftmost derivation



Parse tree

® derivation: if viewed as sequence of steps = linear

“structure”
INF5110 —
® order of individual steps: irrelevant e
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation e & @il
Introduction
® also called concrete syntax tree. . )
ontext-free
grammars and
1 BNF notation
exp
Ambiguity
-
Chomsky
2 equ 3 Op 4 equ hierarchy
| | |
n —+ n
® numbers in the tree
® not part of the parse tree, indicate order of derivation,
only 2

® here: leftmost derivation



Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

erp Targets & Outline

Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

3-24



Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- Introduction
4 exp 3 op 2 exrp Context-free
grammars and
,\ | | BNF notation
5 ex ) * n Ambigui
D mbiguity
|\ C_homsky
7 6 hierarchy
op °exp
| |
— n

324



Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Another parse tree (numbers for right-most
derivation)
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Abstract syntax tree

® parse tree: contains still unnecessary details
® specifically: parentheses or similar, used for grouping

® tree-structure: can express the intended grouping
already

® remember: tokens may contain also attribute values
(e.g.: full token for token class n contains values like

’7427’ )
Lexp
T
2 exp 3op 4 exp N
n + n 3 4
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AST vs. CST

® parse tree

important conceptual structure, to talk about grammars
and derivations
most likely not explicitly implemented in a parser

e AST is a concrete data structure

important IR of the syntax (for the language being
implemented)

® written in the meta-language
® therefore: nodes like + and 3 are no longer tokens or

lexemes

concrete data stuctures in the meta-language
(C-structs, instances of Java classes, or what suits best)
the figure is meant schematic, only

produced by the parser, used by later phases

note also: we use 3 in the AST, where lexeme was "3"
at some point, the lexeme string (for numbers) is
translated to a number in the meta-language (typically
already by the lexer)
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Plausible schematic AST (for the other
parse tree)

T

- 42

/N

34 3

® this AST: rather “simplified” version of the CST
® an AST closer to the CST (just dropping the

parentheses): in principle nothing “wrong” with it either
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Conditionals

Conditionals G,

stmt — if-stmt | other
if-stmt — if (exp) stmt
| if (exp) stmtelse stmt
ezp — 0 | 1
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Parse tree

|NF511_0 =
if ( 0 ) other else other .
stmt Targets & Outline
Introduction
Context-free
if-stmt i
Ambiguity
%\ Chomsky
hierarchy
if ( exp ) stmt else stmt
0 other other



Another grammar for conditionals

Conditionals G5

stmt
if-stmt
else—part
erp

€ = empty word

b

if-stmt | other
if (‘exp) stmt else—part

else stmt | €
0|1

(6)
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A further parse tree + an AST

stmt
INF5110 -
Compiler
Construction
if-stmt
%N Targets & Outline
Introduction
if ( exp ) stmt 615€—Pa7”t Context-free
grammars and
BNF notation
Ambiguity
0 other else stmt
Chomsky
‘ hierarchy
other
COND
0 other other
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Tempus fugit ...
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Ambiguous grammar

Definition (Ambiguous grammar)

A grammar is ambiguous if there exists a word with two
different parse trees.

Remember grammar from equation (1):

exp — exp op exp | (exp) | number
op = + | — | *

Consider:

n—msxn
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eap

number

eap

op

eap

number

exp

op

exp

number

eap

number

exp

op

exp

T

exp

number

op

exp

number
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2 resulting ASTs

INF5110 —
% _ Compiler
/\ /\ Construction
— 42 34 *
/\ /\ Targets & Outline
34 3 3 42 Introduction
Context-free
. . H grammars and
different parse trees =  different ASTs = different oo
meanlng Ambiguity
. . . Ch k
Side remark: different meaning hiorarchy

The issue of “different meaning” may in practice be subtle:
is (z +y) — 2 the same as z + (y — 2)?



2 resulting ASTs

INF5110 —
* - Compiler
/\ /\ Construction
— 42 34 *
/\ /\ Targets & Outline
34 3 3 42 Introduction
. . . Context-free
different parse trees =  different ASTs = different grammars and
. BNF notation
meaning
Ambiguity
Side remark: different meaning Chomsky
hierarchy

The issue of “different meaning” may in practice be subtle:
is (x +y) — z the same as = + (y — 2)? In principle yes, but
what about MAXINT ?



Precendence & associativity

® one way to make a grammar unambiguous (or less

ambiguous
g ) INF5110 —
° for instance: Compile_r
Construction
binary op's precedence associativity Targets & Outline
+. - |OW |eft Introduction
X, / hlgher Ieft Context-free
. . grammars 2.md
) highest right BNF notation
Ambiguity
Chomsky
® ¢ 1 b written in standard math as ab: hierarchy

54+3/5x2+41213
543/5 x 2442’
(54 ((3/5 % 2)) + (4@))

® mostly fine for binary ops, but usually also for unary
ones (postfix or prefix) 33



Unambiguity without imposing explicit
associativity and precedence

® removing ambiguity by reformulating the grammar
® precedence for op's: precedence cascade

® some bind stronger than others (* more than +)
® introduce separate non-terminal for each precedence
level (here: terms and factors)
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Expressions, revisited

® associativity
® Jleft-assoc: write the corresponding rules in left-recursive
manner, e.g.:

INF5110 —
Compiler
Construction

exp — exp addop term | term

. . . Targets & Outline
® right-assoc: analogous, but right-recursive

® non-assoc:

Introduction

Context-free
grammars and

exp — term addop term | term BNF notation
Ambiguity
factors and terms o
exp — exp addop term | term (7)

addop — + | —

term — term mulop factor | factor

mulop — *

factor — (exp) | number



34 — 3 %42

exp
erp addop term
| | /]\
term - term mulop factor
| | | |
factor factor * number
| |
number number
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34 —3—42

exp
erp addop term
— T | |
exrp addop term - factor
| | | |
term factor number
| |
factor number

|

number
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Real life example

————— left associative
Operator Precedence

Java performs operati ing the following ing (or precedence)
rules if parentheses are not used to determine the order of evaluation (op-
erators on the same line are evaluated in left-to-right order subject to the
conditional evaluation rule for && and |[). The operations are listed be-
low from highest to lowest preced; (we use {exp) to denote an atomic
or parenthesized expression):

postfix ops 0. ((exp) (exp) ++ (exp) ——

prefix ops ++{exp) ——(exp) —(exp) “(exp) !(exp)
creation/cast new ((type})(exp) .
mult./div. x /%

add./subt. + =

shift << 5> 55>

comparison < <= > >= instanceof

equality == I=

bitwise-and &

birwise-xor 5

birwise-or |

and &&

or

conditional {bool.exp)? (trueval): (false_val)
assignment =

opassignment  += —= x= /= %=

bitwise assign.  >>= <<= >>>=

boolean assign. & = = |=
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Another example

cppreference.com Crome et e a

Coe Cor anguage | Exprassons

C++ Operator Precedence

ot ope v
dsicend g procsdrce.

Precedence|operator Assoctatiity
0 [Sufipesti ncramant and dacrement
0 typetsFncions cast
2 runcionca
acr
- Marmber sccess
e Prefc ncrement snd decrement Aght oot
e s (Unany plos and minus
a [
. birccion
7T e Btwiss It <hit and right st
<= For rlstiona operatrs < and = respactively
° Forrlsions operators > and = respactivsly
0 For rlstiona operators = and = respactivsly
no | evies 0 (axchsna or)
PRI vize 03 lnduave o)
B e Logical
FERI] Logical o8
stbic oy condionalo Rght oot
thraw ehrow o
it assignment (orovided by dafaut
15 (Compound asignmart by sum and 0
(Compound assignmert by product, quotat, and ramainder
(Compound asignment by bitwse lft shit and right shi.
(Compound assignment by bise AND, XOR. nd OR
w L comma Lofezoight
1t G «
Incarreted se (si3a0f Gt * p.but rat sizaot (4701,
21 Pand
pricasenca ralsthe o 7. 1 aneres
. st on som cowlbe

o pricadinc, o ool the agressons S:-E0CT <2 6 b ond o e ared s
¢ Pl

Ficont <) 5 b ) and ot s 554 200t < Ta €51 or

2 (5= . and not s (a = ) = ¢ becauss o ightto el

b - ) becauen of -t ght

exampl, the expresson
associstiny o sssgnmer b
emaciatvtyofsddion nd sbiracion

e por
©ieparead (24 5) - ¢ andnot 5

e S 019l 147 a1 ) s ey ot spwrsrs sy s
s A e
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Non-essential ambiguity

left-assoc
INF5110 -
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stmts — stmts; stmt
| stmt e
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stmt — S .
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stmt—seq Ambiguity
/l_\ Chomsky
hierarchy
stmi-seq ; stmit
stmt-seq ; stmt S
stmt S
S
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Non-essential ambiguity (2)

right-assoc representation instead
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S stmt ; stmt-seq
S stmt
S



Possible AST representations

Seq

S—=+S—S
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Dangling else

INF5110 -

Compiler

Nested if’s Construction

. . Targets & Outline
if (0)if (1) other else other .
Introduction
Context-free
Remember grammar from equation (5): S S

Ambiguity
stmt — if-stmt | other Chomsky

Y:f-stmt — if ( exp) stmt hierarchy
| if (exp) stmt else stmt
ezp — 0 | 1
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Should it be like this ...

stmt
if —sltmt
e e
if ( erp ) stmt else stmt
(l) if—sltmt otlller
/I\



... or like this

stmt

if-stmt
if ( exp ) stmt
| I
0 if -stmt

if (e ) stmt else stmt

1 other other

® common convention: connect else to closest “free” (=
dangling) occurrence



Unambiguous grammar

Grammar
INF5110 —
Compilc_r
stmt — matched_stmt | unmatch_stmt Construction
matched_stmt — if ((exp) matched_stmt else matched_stmt
| other Targets & Outline
unmatch_stmt — if (exp) stmt mtohcton
| if (exp) matched_stmt else unmatch_stmt — Contextfree
grammars and
erp — 0 | 1 BNF notation
Ambiguity
C.homsky
® never an unmatched statement inside a matched one A
® complex grammar, seldomly used
® instead: ambiguous one, with extra “rule”: connect
each else to closest free if
® alternative: different syntax, e.g.,
® mandatory else,
3-50

® or require endif



CST
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Adding sugar: extended BNF
* make CFG-notation more “convenient” (but without
more theoretical expressiveness)

® syntactic sugar

EBNF

Main additional notational freedom: use regular expressions
on the rhs of productions. They can contain terminals and
non-terminals.

* EBNF: officially standardized, but often: all “sugared”
BNFs are called EBNF

® in the standard:
® o* written as {a}
® o7 written as [o]

* supported (in the standardized form or other) by some
parser tools, but not in all

* remember equation (2)
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EBNF examples

INF5110 —
Compiler
Construction

b or Aoda | p T
A = {Oé}ﬁ for A — oA | ﬁ Context-free

grammars and
BNF notation

stmts stmt {3 stmt} Ambiguity
stmts {stmt;} stmt Chomsky
if-stmt  — if (exp) stmit[else stmt] hierarchy

U

greek letters: for non-terminals or terminals.



Some yacc style grammar

/* Infix notation calculator—calc %/
%{

#define YYSTYPE double

#include <math.h>

%}

/* BISON Declarations x/
%token NUM

%left '—' 4!
%left 'x' /!
%left NEG /* negation—unary minus x/
%right ' /* exponentiation */

/* Grammar follows x/

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and

%% N
input: /* empty string x/ BRictation
| input line Ambiguity
Chomsky
line: "\n' hierarchy
| exp "\n' { printf ("\t%.10g\n", $1); }
exp: NUM { $$ = $1; }
| exp '+' exp { $% = $1 + $3; }
| exp '—' exp { $$ = $1 — $3; }
| exp 'x' exp { $% = $1 * $3; }
| exp '/' exp { $% = %1 / $3; }
| '—' exp %prec NEG { $$ = —$2; }
| exp '7' exp { $% = pow (%1, $3); }
LT exp 1) { s = 52, }
%% 3-54
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The Chomsky hierarchy

INF5110 -

Compiler
Construction
* linguist Noam Chomsky [? ]
. . . Targets & Outline
® important classification of (formal) languages Introduction
(sometimes Chomsky-Schiitzenberger) Context.free
grammars and
® 4 levels: type 0 languages — type 3 languages BNF notation
* levels related to machine models that Rty
. Chomsky
generate/recognize them hiorarchy

® so far: regular languages and CF languages



rule format languages machines closed
A—aA,A—a | regular NFA, DFA all
A — a1fas CF pushdown U, *, o
automata
a1 Aas — a1 fas context- (linearly re- | all
sensitive stricted au-
tomata)
a— 0, aFe recursively Turing ma- | all, except
enumerable | chines complement

Conventions

terminals a,b, ... € X7,
non-terminals A, B,... € Xy

general words a, B... € (Xp UXN)*



Phases of a compiler & hierarchy
“Simplified” design?

1 big grammar for the whole compiler? Or at least a CSG for
the front-end, or a CFG combining parsing and scanning?

possible, but a bad idea:
e efficiency
® bad design
® especially combining scanner + parser in one BNF:
® grammar would be needlessly large

® separation of concerns: much clearer/ more efficient

design
* for scanner/parsers: regular expressions + (E)BNF:
simply the formalisms of choice!

® front-end needs to do more than checking syntax, CFGs
not expressive enough

® for level-2 and higher: situation gets less clear-cut, plain
CSG not too useful for compilers
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