Chapter 3

Grammars

Course “Compiler Construction”
Martin Steffen
Spring 2024

Chapter 3

Learning Targets of Chapter “Grammars”.

A, WO =

(context-free) grammars + BNF

ambiguity and other properties

terminology: tokens, lexemes

different trees connected to grammars/parsing
derivations, sentential forms

The chapter corresponds to [1, Section 3.1-3.2] (or [3,
Chapter 3]).

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

3-2

A5 O

@
e

Chapter 3

Outline of Chapter “Grammars”.

Nivy
Qd‘
STnAS

9

Introduction

Context-free grammars and BNF notation

Ambiguity

Chomsky hierarchy

Section

Introduction

Chapter 3 “Grammars”
Course “Compiler Construction”
Martin Steffen
Spring 2024

Bird’s eye view of a parser

INF5110 -

Compiler
Construction

Parser abstract syntax tree)
Targets & Outline

Introduction

Context-free

rammars and
SyntaX gBNF notation
® check that the token sequence correspond to a Gy

hierarchy

syntactically correct program

® if yes: yield tree as intermediate representation for
subsequent phases
® if not: give understandable error message(s)

3-5

Trees, trees, more trees

syntax trees

parse tree or concrete syntax tree vs. abstract syntax trees

® derivation trees (derivation in a (context-free) grammar)

® mentioned tree forms hang together, dividing line a bit
fuzzy

® output of a parser: AST

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

(Context-free) grammars

® specifies the syntactic structure of a language
® here: grammar means CFG

e (G derives word w

Parsing

Given a stream of “symbols” w and a grammar G, find a
derivation from G that produces w.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

Schematic syntax tree

INF5110 —

Compiler
Construction

program
/\
decs stmts .
/N | Targets & Outline
vardec = val stmt Introduction

) ‘ Context-free
assign-stmt grammars and

/\ BNF notation

var expr L.
‘ | Ambiguity
X + Chomsky
/\ hierarchy
var var
X y

3-8

Natural-language parse tree

S
NP VP
/\ /\
DT N \% NP
The dog bites DT N
| |
the man

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

3-9

“Interface” between scanner and parser

® remember: task of scanner = “chopping up” the input
char stream (throw away white space, etc.) and classify
the pieces (1 piece = lexeme)
¢ classified lexeme = token
® sometimes we use (integer, 742”)
® integer: “class” or “type" of the token, also called
token name
® 742”7 : value of the token attribute (or just value).
Here: directly the lexeme (a string or sequence of chars)
* a note on (sloppyness/ease of) terminology: often: the
token name is simply just called the token

the token (symbol) corrresponds there to terminal symbols
(or terminals, for short)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

Section

Context-free grammars and BNF no-
tation

Chapter 3 “Grammars”

Course “Compiler Construction”
Martin Steffen

Spring 2024

Grammars

® in this chapter(s): focus on context-free grammars
® thus here: grammar = CFG

® as in the context of regular expressions/languages:
language = (typically infinite) set of words

® grammar = formalism to unambiguously specify a
language
® intended language: all syntactically correct programs of
a given progamming language
Slogan

A CFG describes the syntax of a programming language. !

!And some say, regular expressions describe its microsyntax.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

3-12

Context-free grammar

Definition (CFG)

A context-free grammar G is a 4-tuple G = (X7, XN, S, P):

2 2N E

[}

two disjoint finite alphabets of terminals ¥ and
non-terminals >,
one start-symbol S € ¥ (a non-terminal), and

productions P = finite subset of ¥ x (X + X7)*.

terminal symbols: corresponds to tokens in parser =
basic building blocks of syntax

non-terminals: (e.g. “expression”, “while-loop”,
“method-definition” .. .)

grammar: generating (via “derivations”) languages
parsing: the inverse problem

CFG = specification

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Further notions

sentence and sentential form
productions (or rules)
derivation

language of a grammar L(G)

parse tree

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

3-14

BNF notation

® popular & common format to write CFGs, i.e., describe
context-free languages

® named after pioneering (seriously) work on Algol 60

® notation to write productions/rules 4+ some extra
meta-symbols for convenience and grouping

Slogan: Backus-Naur form

What regular expressions are for regular languages is BNF
for context-free languages.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

https://en.wikipedia.org/wiki/ALGOL_60

“Expressions” in BNF

INF5110 —
Compiler
exqp — exp op exp | (erp) | number (1) Construction
op — + | — | %
Targets & Outline
Introduction
® “—" indicating productions and " | " indicating i
- grammars E|I1(I
alternatlves BNF notation
® convention: terminals written boldface, non-terminals Ambiguity
ita/ic Chomsky
hierarchy

* also simple math symbols like “+" and “(” are meant
above as terminals
® start symbol here: exp

® remember: terminals like number correspond to
tokens, resp. token classes. The attributes/token values
are not relevant here. 216

Different notations

* BNF: notationally not 100% “standardized” across L=
ompiler
bOOkS/tOOlS Construction
e “classic” way (Algol 60):
Targets & Outline
<exp> 1= <exp> <op> <exp> Introduction
I (<exp>) Context-free
| NUMBER grammars and
<op> = + | — ‘ * BNF notation
Ambiguity
Chomsky
* Extended BNF (EBNF) and yet another style o
eIp _> exp (2 + 2 ‘ » _» | ” * ”) exp (2)
| 77(77 e$p 77)77 | 77number77
® note: parentheses as terminals vs. as metasymbols

3-17

Different ways of writing the same grammar

e directly written as 6 pairs (6 rules, 6 productions) from
Yy X (Exy UXp)*, with “—" as nice looking

w ” INF5110 —
Sepa rator : Compiler

Construction

exp — €exp op erp (3) Targets & Outline
etp — (exp) et
erp — number Context-free
op — + BN notation
op — — Ambiguity
op — * Chomsky
hierarchy
* choice of non-terminals: irrelevant (except for human
readability):
E — FEOE | (E) | number (4)
0 = 4| |«

® still: we count 6 productions

Grammars as language generators

Deriving a word:

INF5110 —
Start from start symbol. Pick a “matching” rule to rewrite S
the current word to a new one; repeat until terminal
symbols, only. Targets & Outline
Introduction
® non-deterministic process Context-free
grammars and
® rewrite relation for derivations: BNF notation
® one step rewriting: w; = ws Ambiguity
® one step using rule n: wi =, wy ﬁl':::r‘;'g

® many steps: =%, etc.

Language of grammar G

L(G)={s| start =" s and s € X7}

Example derivation for
(number—number)*number

exp

® underline the “place” where a rule is used, i.e., an
occurrence of the non-terminal symbol is being
rewritten /expanded

N A

(

(

(n op

(n—exp) op exp
(n—n)op exp

(

(

® here: leftmost derivation?

2We'll come back to that later, it will be important.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Right-most derivation

k
3

R

exp op exp
ezpopn
expﬂ;

(exp op exp)*n
(exp op n)*n
(ezp—n)*n
(n—n)#n

¢ other (“mixed") derivations for the same word possible

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

3-21

Some easy requirements for reasonable
grammars

INF5110 —
Compiler
Construction

¢ all symbols (terminals and non-terminals): should occur

in a some word derivable from the start symbol
Targets & Outline

® words containing only non-terminals should be derivable

Introduction

® an example of a silly grammar G (start-symbol A) Context-free
grammars and
BNF notation
A — Bx Ambiguity
B — Ay Chomsky
hierarchy
C — z
o £(G) =0

® those “sanitary conditions”: minimal “common sense”
requirements

3-22

Parse tree

® derivation: if viewed as sequence of steps = linear
“structure”

® order of individual steps: irrelevant

® = order not needed for subsequent phases

® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

Lexp

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Parse tree
® derivation: if viewed as sequence of steps = linear
“structure”
® order of individual steps: irrelevant
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

Lexp

. —

exp

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Parse tree
® derivation: if viewed as sequence of steps = linear
“structure”
® order of individual steps: irrelevant
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

Lexp
o —
2 exp
|
n

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Parse tree

® derivation: if viewed as sequence of steps = linear
“structure”

® order of individual steps: irrelevant

® = order not needed for subsequent phases

® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

1

exp
1
2 exp 3op

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Parse tree

® derivation: if viewed as sequence of steps = linear
“structure”

® order of individual steps: irrelevant

® = order not needed for subsequent phases

® parse tree: structure for the essence of derivation

® also called concrete syntax tree.

1

exp
1
2 exp 3op
| I
n +

® numbers in the tree

® not part of the parse tree, indicate order of derivation,

only
® here: leftmost derivation

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Parse tree

® derivation: if viewed as sequence of steps = linear

“structure”
INF5110 —
® order of individual steps: irrelevant e
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation e & @il
Introduction
® also called concrete syntax tree. .)
ontext-free
grammars and
1 BNF notation
exp
Ambiguity
-
Chomsky
2 equ 3 Op 4 equ hierarchy
| I
n +
® numbers in the tree
® not part of the parse tree, indicate order of derivation,
only 2

® here: leftmost derivation

Parse tree

® derivation: if viewed as sequence of steps = linear

“structure”
INF5110 —
® order of individual steps: irrelevant e
® = order not needed for subsequent phases
® parse tree: structure for the essence of derivation e & @il
Introduction
® also called concrete syntax tree. .)
ontext-free
grammars and
1 BNF notation
exp
Ambiguity
-
Chomsky
2 equ 3 Op 4 equ hierarchy
| | |
n —+ n
® numbers in the tree
® not part of the parse tree, indicate order of derivation,
only 2

® here: leftmost derivation

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

erp Targets & Outline

Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

3-24

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
erp Targets & Outline
\)
Introduction
2
el’p Context-free

grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
erp Targets & Outline
\)
Introduction
2
el’p Context-free

grammars and
| BNF notation

n Ambiguity

Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
erp Targets & Outline
rF .
Introduction
3 2
op exrp Context-free

grammars and
| BNF notation

n Ambiguity

Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
(25
D Targets & Outline
e Introduction
3 2
op exrp Context-free
grammars and
| | BNF notation
3 n Ambiguity
Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
erp Targets & Outline
- Introduction
4 3 2
exp op exrp Context-free
grammars and
| | BNF notation
3 n Ambiguity
Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
erp Targets & Outline
- Introduction
4 3 2
exp op exrp Context-free
grammars and
\ | | BNF notation
) 3 n Ambiguity
Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- T .
Introduction
4 3 2
exp op exrp Context-free
grammars and
,\ | | BNF notation
5 exrp) 3 n Ambiguity
Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- T .
Introduction
4 2
exp 3 op exrp Context-free
grammars and
,\ | | BNF notation
5 exrp) 3 n Ambiguity
\ C_homsky
6 hierarchy
exrp

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- T .
Introduction
4 2
exp 3 op exrp Context-free
grammars and
,\ | | BNF notation
5 exrp) 3 n Ambiguity
\ C_homsky
6 hierarchy
exrp
n

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline

- Introduction

4 exp 3 op 2 exrp Context-free
grammars and

,\ | | BNF notation
5 exrp) 3 n Ambiguity

l\ C_homsky
7 6 hierarchy

op °exp

n

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- Introduction
4 exp 3 op 2 exrp Context-free
grammars and
,\ | | BNF notation
5 ex) * n Ambigui
D mbiguity
|\ C_homsky
7 6 hierarchy
op °exp
| |
— n

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- T .
Introduction
4 3 2
exp op exrp Context-free
grammars and
—— | | BNF notation
5 exrp) 3 n Ambiguity
/'\ Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- T .
Introduction
4 3 2
exp op exrp Context-free
grammars and
—— | | BNF notation
5 exrp) 3 n Ambiguity
/'\ Chomsky
hierarchy

324

Another parse tree (numbers for right-most
derivation)

INF5110 —
Compiler
Construction

1
exrp Targets & Outline
- T .
Introduction
4 2
exp 3 op exrp Context-free
grammars and
T | | BNF notation
(5 ETp) * n Ambiguity
P Chomsky
hierarchy

324

Abstract syntax tree

® parse tree: contains still unnecessary details
® specifically: parentheses or similar, used for grouping

® tree-structure: can express the intended grouping
already

® remember: tokens may contain also attribute values
(e.g.: full token for token class n contains values like

’7427’)
Lexp
T
2 exp 3op 4 exp N
n + n 3 4

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

AST vs. CST

® parse tree

important conceptual structure, to talk about grammars
and derivations
most likely not explicitly implemented in a parser

e AST is a concrete data structure

important IR of the syntax (for the language being
implemented)

® written in the meta-language
® therefore: nodes like + and 3 are no longer tokens or

lexemes

concrete data stuctures in the meta-language
(C-structs, instances of Java classes, or what suits best)
the figure is meant schematic, only

produced by the parser, used by later phases

note also: we use 3 in the AST, where lexeme was "3"
at some point, the lexeme string (for numbers) is
translated to a number in the meta-language (typically
already by the lexer)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Plausible schematic AST (for the other
parse tree)

T

- 42

/N

34 3

® this AST: rather “simplified” version of the CST
® an AST closer to the CST (just dropping the

parentheses): in principle nothing “wrong” with it either

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

Conditionals

Conditionals G,

stmt — if-stmt | other
if-stmt — if (exp) stmt
| if (exp) stmtelse stmt
ezp — 0 | 1

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

Parse tree

|NF511_0 =
if (0) other else other .
stmt Targets & Outline
Introduction
Context-free
if-stmt i
Ambiguity
%\ Chomsky
hierarchy
if (exp) stmt else stmt
0 other other

Another grammar for conditionals

Conditionals G5

stmt
if-stmt
else—part
erp

€ = empty word

b

if-stmt | other
if (‘exp) stmt else—part

else stmt | €
0|1

(6)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

A further parse tree + an AST

stmt
INF5110 -
Compiler
Construction
if-stmt
%N Targets & Outline
Introduction
if (exp) stmt 615€—Pa7”t Context-free
grammars and
BNF notation
Ambiguity
0 other else stmt
Chomsky
‘ hierarchy
other
COND
0 other other

Section
Ambiguity

Chapter 3 “Grammars”
Course “Compiler Construction”
Martin Steffen
Spring 2024

Tempus fugit ...

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

picture source: wikipedia

Ambiguous grammar

Definition (Ambiguous grammar)

A grammar is ambiguous if there exists a word with two
different parse trees.

Remember grammar from equation (1):

exp — exp op exp | (exp) | number
op = + | — | *

Consider:

n—msxn

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

eap

number

eap

op

eap

number

exp

op

exp

number

eap

number

exp

op

exp

T

exp

number

op

exp

number

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

2 resulting ASTs

INF5110 —
% _ Compiler
/\ /\ Construction
— 42 34 *
/\ /\ Targets & Outline
34 3 3 42 Introduction
Context-free
. . H grammars and
different parse trees = different ASTs = different oo
meanlng Ambiguity
. . . Ch k
Side remark: different meaning hiorarchy

The issue of “different meaning” may in practice be subtle:
is (z +y) — 2 the same as z + (y — 2)?

2 resulting ASTs

INF5110 —
* - Compiler
/\ /\ Construction
— 42 34 *
/\ /\ Targets & Outline
34 3 3 42 Introduction
. . . Context-free
different parse trees = different ASTs = different grammars and
. BNF notation
meaning
Ambiguity
Side remark: different meaning Chomsky
hierarchy

The issue of “different meaning” may in practice be subtle:
is (x +y) — z the same as = + (y — 2)? In principle yes, but
what about MAXINT ?

Precendence & associativity

® one way to make a grammar unambiguous (or less

ambiguous
g) INF5110 —
° for instance: Compile_r
Construction
binary op's precedence associativity Targets & Outline
+. - |OW |eft Introduction
X, / hlgher Ieft Context-free
. . grammars 2.md
) highest right BNF notation
Ambiguity
Chomsky
® ¢ 1 b written in standard math as ab: hierarchy

54+3/5x2+41213
543/5 x 2442’
(54 ((3/5 % 2)) + (4@))

® mostly fine for binary ops, but usually also for unary
ones (postfix or prefix) 33

Unambiguity without imposing explicit
associativity and precedence

® removing ambiguity by reformulating the grammar
® precedence for op's: precedence cascade

® some bind stronger than others (* more than +)
® introduce separate non-terminal for each precedence
level (here: terms and factors)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

Expressions, revisited

® associativity
® Jleft-assoc: write the corresponding rules in left-recursive
manner, e.g.:

INF5110 —
Compiler
Construction

exp — exp addop term | term

. . . Targets & Outline
® right-assoc: analogous, but right-recursive

® non-assoc:

Introduction

Context-free
grammars and

exp — term addop term | term BNF notation
Ambiguity
factors and terms o
exp — exp addop term | term (7)

addop — + | —

term — term mulop factor | factor

mulop — *

factor — (exp) | number

34 — 3 %42

exp
erp addop term
| | /]\
term - term mulop factor
| | | |
factor factor * number
| |
number number

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

34 —3—42

exp
erp addop term
— T | |
exrp addop term - factor
| | | |
term factor number
| |
factor number

|

number

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

341

Real life example

————— left associative
Operator Precedence

Java performs operati ing the following ing (or precedence)
rules if parentheses are not used to determine the order of evaluation (op-
erators on the same line are evaluated in left-to-right order subject to the
conditional evaluation rule for && and |[). The operations are listed be-
low from highest to lowest preced; (we use {exp) to denote an atomic
or parenthesized expression):

postfix ops 0. ((exp) (exp) ++ (exp) ——

prefix ops ++{exp) ——(exp) —(exp) “(exp) !(exp)
creation/cast new ((type})(exp) .
mult./div. x /%

add./subt. + =

shift << 5> 55>

comparison < <= > >= instanceof

equality == I=

bitwise-and &

birwise-xor 5

birwise-or |

and &&

or

conditional {bool.exp)? (trueval): (false_val)
assignment =

opassignment += —= x= /= %=

bitwise assign. >>= <<= >>>=

boolean assign. & = = |=

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

342

Another example

cppreference.com Crome et e a

Coe Cor anguage | Exprassons

C++ Operator Precedence

ot ope v
dsicend g procsdrce.

Precedence|operator Assoctatiity
0 [Sufipesti ncramant and dacrement
0 typetsFncions cast
2 runcionca
acr
- Marmber sccess
e Prefc ncrement snd decrement Aght oot
e s (Unany plos and minus
a [
. birccion
7T e Btwiss It <hit and right st
<= For rlstiona operatrs < and = respactively
° Forrlsions operators > and = respactivsly
0 For rlstiona operators = and = respactivsly
no | evies 0 (axchsna or)
PRI vize 03 lnduave o)
B e Logical
FERI] Logical o8
stbic oy condionalo Rght oot
thraw ehrow o
it assignment (orovided by dafaut
15 (Compound asignmart by sum and 0
(Compound assignmert by product, quotat, and ramainder
(Compound asignment by bitwse lft shit and right shi.
(Compound assignment by bise AND, XOR. nd OR
w L comma Lofezoight
1t G «
Incarreted se (si3a0f Gt * p.but rat sizaot (4701,
21 Pand
pricasenca ralsthe o 7. 1 aneres
. st on som cowlbe

o pricadinc, o ool the agressons S:-E0CT <2 6 b ond o e ared s
¢ Pl

Ficont <) 5 b) and ot s 554 200t < Ta €51 or

2 (5= . and not s (a =) = ¢ becauss o ightto el

b -) becauen of -t ght

exampl, the expresson
associstiny o sssgnmer b
emaciatvtyofsddion nd sbiracion

e por
©ieparead (24 5) - ¢ andnot 5

e S 019l 147 a1) s ey ot spwrsrs sy s
s A e
e hauGh ey are recped v s o speriors a.ber. A peeed (a1 andret o (bees

operator pracedance s unafected by speracor everladng.For example, 31:teout << 8 7 b ¢ e parses a5

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

3-43

Non-essential ambiguity

left-assoc
INF5110 -
Compiler
Construction
stmts — stmts; stmt
| stmt e
Targets utline
stmt — S .
Introduction
Context-free
grammars and
BNF notation
stmt—seq Ambiguity
/l_\ Chomsky
hierarchy
stmi-seq ; stmit
stmt-seq ; stmt S
stmt S
S

3-44

Non-essential ambiguity (2)

right-assoc representation instead

INF5110 —
Compiler
Construction

stmts — stmt; stmis
| stmt

Targets & Outline
stmt — S

Introduction

Context-free
grammars and
BNF notation

stmt-seq Ambiguity
//‘I\ Chomsky
hierarchy
stmt 5 stmt-seq
S stmt ; stmt-seq
S stmt
S

Possible AST representations

Seq

S—=+S—S

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

Dangling else

INF5110 -

Compiler

Nested if’s Construction

. . Targets & Outline
if (0)if (1) other else other .
Introduction
Context-free
Remember grammar from equation (5): S S

Ambiguity
stmt — if-stmt | other Chomsky

Y:f-stmt — if (exp) stmt hierarchy
| if (exp) stmt else stmt
ezp — 0 | 1

3-47

Should it be like this ...

stmt
if —sltmt
e e
if (erp) stmt else stmt
(l) if—sltmt otlller
/I\

... or like this

stmt

if-stmt
if (exp) stmt
| I
0 if -stmt

if (e) stmt else stmt

1 other other

® common convention: connect else to closest “free” (=
dangling) occurrence

Unambiguous grammar

Grammar
INF5110 —
Compilc_r
stmt — matched_stmt | unmatch_stmt Construction
matched_stmt — if ((exp) matched_stmt else matched_stmt
| other Targets & Outline
unmatch_stmt — if (exp) stmt mtohcton
| if (exp) matched_stmt else unmatch_stmt — Contextfree
grammars and
erp — 0 | 1 BNF notation
Ambiguity
C.homsky
® never an unmatched statement inside a matched one A
® complex grammar, seldomly used
® instead: ambiguous one, with extra “rule”: connect
each else to closest free if
® alternative: different syntax, e.g.,
® mandatory else,
3-50

® or require endif

CST

INF5110 —
Compiler
Construction
stmt
if-stmt Targets & Outline
//‘\ Introduction
if (exrp) stmt Context-free
grammars and
| | BNF notation
0 if-stmt Ambiguity

/’\ Chomsky

hierarch
if (e) stmt else stmt T

1 other other

Adding sugar: extended BNF
* make CFG-notation more “convenient” (but without
more theoretical expressiveness)

® syntactic sugar

EBNF

Main additional notational freedom: use regular expressions
on the rhs of productions. They can contain terminals and
non-terminals.

* EBNF: officially standardized, but often: all “sugared”
BNFs are called EBNF

® in the standard:
® o* written as {a}
® o7 written as [o]

* supported (in the standardized form or other) by some
parser tools, but not in all

* remember equation (2)

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

EBNF examples

INF5110 —
Compiler
Construction

b or Aoda | p T
A = {Oé}ﬁ for A — oA | ﬁ Context-free

grammars and
BNF notation

stmts stmt {3 stmt} Ambiguity
stmts {stmt;} stmt Chomsky
if-stmt — if (exp) stmit[else stmt] hierarchy

U

greek letters: for non-terminals or terminals.

Some yacc style grammar

/* Infix notation calculator—calc %/
%{

#define YYSTYPE double

#include <math.h>

%}

/* BISON Declarations x/
%token NUM

%left '—' 4!
%left 'x' /!
%left NEG /* negation—unary minus x/
%right ' /* exponentiation */

/* Grammar follows x/

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and

%% N
input: /* empty string x/ BRictation
| input line Ambiguity
Chomsky
line: "\n' hierarchy
| exp "\n' { printf ("\t%.10g\n", $1); }
exp: NUM { $$ = $1; }
| exp '+' exp { $% = $1 + $3; }
| exp '—' exp { $$ = $1 — $3; }
| exp 'x' exp { $% = $1 * $3; }
| exp '/' exp { $% = %1 / $3; }
| '—' exp %prec NEG { $$ = —$2; }
| exp '7' exp { $% = pow (%1, $3); }
LT exp 1) { s = 52, }
%% 3-54

Section
Chomsky hierarchy

Chapter 3 “Grammars”

Course “Compiler Construction”
Martin Steffen

Spring 2024

The Chomsky hierarchy

INF5110 -

Compiler
Construction
* linguist Noam Chomsky [?]
. . . Targets & Outline
® important classification of (formal) languages Introduction
(sometimes Chomsky-Schiitzenberger) Context.free
grammars and
® 4 levels: type 0 languages — type 3 languages BNF notation
* levels related to machine models that Rty
. Chomsky
generate/recognize them hiorarchy

® so far: regular languages and CF languages

rule format languages machines closed
A—aA,A—a | regular NFA, DFA all
A — a1fas CF pushdown U, *, o
automata
a1 Aas — a1 fas context- (linearly re- | all
sensitive stricted au-
tomata)
a— 0, aFe recursively Turing ma- | all, except
enumerable | chines complement

Conventions

terminals a,b, ... € X7,
non-terminals A, B,... € Xy

general words a, B... € (Xp UXN)*

Phases of a compiler & hierarchy
“Simplified” design?

1 big grammar for the whole compiler? Or at least a CSG for
the front-end, or a CFG combining parsing and scanning?

possible, but a bad idea:
e efficiency
® bad design
® especially combining scanner + parser in one BNF:
® grammar would be needlessly large

® separation of concerns: much clearer/ more efficient

design
* for scanner/parsers: regular expressions + (E)BNF:
simply the formalisms of choice!

® front-end needs to do more than checking syntax, CFGs
not expressive enough

® for level-2 and higher: situation gets less clear-cut, plain
CSG not too useful for compilers

INF5110 —
Compiler
Construction

Targets & Outline
Introduction
Context-free
grammars and
BNF notation
Ambiguity

Chomsky
hierarchy

References |

Bibliography
[1] Cooper, K. D. and Torczon, L. (2004). Engineering a Compiler. Elsevier.

[2] Hopcroft, J. E. (1971). An nlogn algorithm for minimizing the states in a finite automaton. In
Kohavi, Z., editor, The Theory of Machines and Computations, pages 189-196. Academic Press,
New York.

[3] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

[4] Rabin, M. and Scott, D. (1959). Finite automata and their decision problems. IBM Journal of
Research Developments, 3:114-125.

[5] Thompson, K. (1968). Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419.

INF5110 —
Compiler
Construction

Targets & Outline
Introduction

Context-free
grammars and
BNF notation

Ambiguity

Chomsky
hierarchy

	Grammars
	Targets & Outline
	Introduction
	Context-free grammars and BNF notation
	Ambiguity
	Chomsky hierarchy

