
Chapter 5
Semantic analysis (attribute gram-
mars)

Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-2

‘

Chapter 5
Learning Targets of Chapter “Semantic analysis
(attribute grammars)”.

1. “attributes”
2. attribute grammars
3. synthesized and inherited attributes
4. various applications of attribute grammars

Chapter 5
Outline of Chapter “Semantic analysis (attribute
grammars)”.

Intro

Attribute grammars
Synthesized and inherited attributes

Section
Intro

Chapter 5 “Semantic analysis (attribute grammars)”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-5

Semantic (static) analysis

• syntactic vs. semantic “analysis”
• broad field
• semantics analysis in this lecture: more than this

chapter
• types
• symbol tables
• (later: live variable analysis)
• . . .

Spec. of the lan-
guage’s static semantic

“semantical yacc”

static semantical checker

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-6

Approximation is the key

Semantic (static) analysis is nessessarily approxima-
tive. It’s an abstraction of what will happen at run-
time.

(does not apply to code generation)

Types: “prominent” example of (user-visible) semantical
information

if x then 1 else ”abc” (1)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-7

Attributes

Merriam webster
An attribute is a a “property” or characteristic feature of
something.

• property, “adjective”, attribute
• in this chapter

• attributes of (syntax) trees ⇒ attribute grammar
• of course: analysis can also figure out properties (=

attributes) of other structures in a compiler (graphs
etc).

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-8

Attribution

(semantic) analysis

Figuring out (semantic) properties of language aspects or
data structures “=” associating attribute(s) to those
structures

• see later: symbol table: data structure for attaching
info to “symbols” (names, like variable etc. names)

associating information with “constructs” AKA

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-8

Attribution

(semantic) analysis

Figuring out (semantic) properties of language aspects or
data structures “=” associating attribute(s) to those
structures

• see later: symbol table: data structure for attaching
info to “symbols” (names, like variable etc. names)

associating information with “constructs” AKA

binding

dynamic vs. static binding

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-9

Examples in our context

• data type of a variable : static/dynamic
• value of an expression: dynamic (but in seldom cases

static as well)
• location of a variable in memory: typically dynamic (but

in old FORTRAN: static)
• object-code: static (but also: dynamic loading possible)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-10

Attaching type info to a syntax tree (again)

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-10

Attaching type info to a syntax tree (again)

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

Section
Attribute grammars

Synthesized and inherited attributes

Chapter 5 “Semantic analysis (attribute grammars)”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-12

Attribute grammar

An attribute grammar is a CFG + attributes on
grammar symbols + rules specifying for each produc-
tion, how to determine attributes.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-13

Attribute grammar in a nutshell
• AG: general formalism to bind “attributes to trees”

(where trees are given by a CFG)1

• two potential ways to calculate “properties” of nodes in
a tree:

“Synthesize” properties
define/calculate prop’s
bottom-up

“Inherit” properties
define/calculate prop’s
top-down

• allows both at the same time

Attribute grammar
CFG + attributes one grammar symbols + rules specifying
for each production, how to determine attributes

• evaluation of attributes: requires some thought, more
complex if mixing bottom-up + top-down dependencies

1Attributes in AG’s: static, obviously.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-14

Example: evaluation of numerical
expressions
Expression grammar (similar as seen before)

exp → exp + term | exp − term | term
term → term ∗ factor | factor

factor → (exp) | number

• goal now: evaluate a given expression, i.e., the syntax
tree of an expression, resp:

more concrete goal
Specify, in terms of the grammar, how expressions are
evaluated

• grammar: describes the “format” or “shape” of (syntax)
trees

• syntax-directedness
• value of (sub-)expressions: attribute here

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-15

How to evaluation expression

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-15

How to evaluation expression

eva l_exp (e) =
case
: : e matches PLUSnode −>

r e t u r n eva l_exp (e . l e f t) + eva l_term (e . r i g h t)
: : e matches MINUSnode −>

r e t u r n eva l_exp (e . l e f t) − eva l_term (e . r i g h t)
. . .
end case

bottom-up flow of information

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-16

This expression evaluation is almost a
first-semester’s task

• simple problem, easily solvable without having heard of
AGs

• given an expression, in the form of a syntax tree
• evaluation:

• simple bottom-up calculation of values
• the value of a compound expression (parent node)

determined by the value of its subnodes
• realizable, for example, by a simple recursive procedure

Connection to AG’s
• AGs: basically a formalism to specify things like that
• however: general AGs will allow more complex

calculations:
• not just bottom up calculations like here but also
• top-down, including both at the same time

AG for expression evaluation

productions/grammar rules semantic rules
1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2 − term exp1 .val = exp2 .val − term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → (exp) factor .val = exp .val
7 factor → number factor .val = number.val

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-18

AG for expression evaluation: remarks

• specific for this example is:
• only one attribute (for all nodes), in general: different

ones possible
• (related to that): only one semantic rule per production
• as mentioned: rules here define values of attributes

“bottom-up” only
• note: subscripts on the symbols for disambiguation

(where needed)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-19

Attributed parse tree

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-20

Semantic rules and attribute dependencies:
anything goes?

Each semantic rule is formulated in connection with a
grammar production ⇒

Dependencies are only between attributes of parents
and children or the other way around, or between sib-
lings.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-21

But beyond that, still anything goes?

Attribute dependence graph
dependencies between the attributes in the nodes of (syntax)
tree (not dependencies in the grammar)

• attribute evaluation

Must-have
The value of all attributes must be uniquely determined

• none left undefined
• not “defined” more than once
• no cyclic dependencies!!

more concrete (non-)restrictions later

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-22

Possible dependencies

Possible dependencies (> 1 rule per production
possible)

• parent attribute on childen attributes
• attribute in a node dependent on other attribute of the

same node
• child attribute on parent attribute
• sibling attribute on sibling attribute
• mixture of all of the above at the same time
• but: no immediate dependence across generations

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-23

Attribute dependence graph

• dependencies ultimately between attributes in a syntax
tree (instances) not between grammar symbols as such

⇒ attribute dependence graph (per syntax tree)
• complex dependencies possible:

• evaluation complex
• invalid dependencies possible, if not careful (especially

cyclic)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-24

Sample dependence graph (for later
example)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-25

Possible evaluation order

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-26

Restricting dependencies

• the general format of GAs allows bascially any kind of
dependencies2

• complex/impossible to meaningfully evaluate
• typically: restrictions, disallowing “mixtures” of

dependencies
• fine-grained: per attribute
• or coarse-grained: for the whole attribute grammar

Synthesized attributes
bottom-up dependencies only
(same-node dependency
allowed).

Inherited attributes
top-down dependencies only
(same-node and sibling
dependencies allowed)

2Apart from immediate cross-generation dependencies.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-27

synthesized and inherited attributes

CFG rule
attributes of left-hand side symbol: synthesized, on the
right-hand side symbols: inherited. each attribute (per
symbol): either-or

Informally, synthesized attributes are those that have
bottom-up dependencies, only, (with same-node de-
pendency allowed). Inherited attributes have top-
down dependencies only (with same-node and sibling
dependencies allowed).

what about terminals?

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-27

synthesized and inherited attributes

CFG rule
attributes of left-hand side symbol: synthesized, on the
right-hand side symbols: inherited. each attribute (per
symbol): either-or

Informally, synthesized attributes are those that have
bottom-up dependencies, only, (with same-node de-
pendency allowed). Inherited attributes have top-
down dependencies only (with same-node and sibling
dependencies allowed).

what about terminals? People argue either way

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-28

Semantic rules

• rules or constraints between attribute occurrences

a = f (⃗a)

“attribute a depends, via f , on the mentioned ai”
• 1 grammar production: potentially multiple associated

semantics rules
• intention: each attribute uniquely defined

Restiction/condition on target attribute a

• a synthesized ⇔ a is left-hand side (non-terminal)
symbol attribute occurrence

• a inherited ⇔ a is a right-hand side symbol attribute
occurrence

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-29

Pictorial convention: synth. vs. inherited

X

tree nodeinherited synthesized

target restriction
A

X1 X2 X3

A

X1 X2 X3

also formulaic in the script

General rule format

A → X1 . . . , X, . . . Xn

synthesized

A.s = f(A.b, X1.b1, . . . Xn.bk)

inherited

X.i = f(A.a, X1.b1, . . . , X.b, . . . Xn.bn)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-31

Further common “restriction” (Bochmann)

• additional “restriction” on source variables
• but not a real restriction
• common representation of AGs (Bochman normal form)

Restriction on sources ai

• ai synthesized ⇔ ai is a right-hand side symbol
attribute occurrence

• ai inherited ⇔ ai is a left-hand side (non-terminal)
symbol attribute occurrence

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-32

Additional source restrictions (Bochmann)

X2

A

X1 X3

A

X1 X2 X3

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-33

More specific rule format (Bochmann)

A → X1 . . . , X, . . . Xn

synthesized

A.s = f(A.i1, . . . , A.im, X1.s1, . . . Xn.sk)

inherited

X.i = f(A.i′, X1.s1, . . . , X.s, . . . Xn.sn)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-34

What about terminals?

• terminals can have attributes
• terminals only mentioned on the right-hand side of

productions
• for practical considerations: interface lexer and parser:

modern convention
attributes of terminals are synthesized (sort of)

• ̸= Knuth’s classic definition

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-35

Still too much anarchy

• remember the must-have:

no cyclic dependencies

• the previous source restriction is not a real restriction,
more a presentational device (Brochmann normal form)

• it rules out immediate cycles, but not indirect ones
• checking if a AG is acyclic is complex!

⇒ work with specific restricted forms of AGs (real
restrictions.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-36

S-attributed and L-attributed

under Bochmann’s NF
S-attributed
only synthesized attributes

L-attributed

A

X1 X2 X3 Xn

. . .

formal definition in the script

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-37

S-attributed grammar

• restriction on the grammar, not just 1 attribute of one
non-terminal

• simple form of grammar
• remember the expression evaluation example

S-attributed grammar:
all attributes are synthesized

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-38

Simplistic example (normally done by the
scanner)

CFG
number → numberdigit | digit

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Attributes (just synthesized)

number val
digit val
terminals [none]

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-39

Numbers: Attribute grammar and
attributed tree

A-grammar

attributed tree

Attribute evaluation: works on trees

i.e.: works equally well for
• abstract syntax trees
• ambiguous grammars

Seriously ambiguous expression grammar
exp → exp + exp | exp − exp | exp ∗ exp | (exp) | number

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-41

Evaluation: Attribute grammar and
attributed tree

A-grammar
Attributed tree

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-42

Expressions: generating ASTs

Expression grammar with precedences & assoc.
exp → exp + term | exp − term | term

term → term ∗ factor | factor
factor → (exp) | number

Attributes (just synthesized)

exp, term, factor tree
number lexval

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-43

Expressions: Attribute grammar and
attributed tree

A-grammar

A-tree

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-44

Example: type declarations for variable lists

CFG
decl → type var-list
type → int
type → float

var-list1 → id, var-list2
var-list → id

• Goal: attribute type information to the syntax tree
• attribute: dtype (with values integer and real)
• complication: “top-down” information flow: type

declared for a list of vars ⇒ inherited to the elements of
the list

Types and variable lists: inherited attributes
grammar productions semantic rules
decl → type var-list var-list .dtype = type .dtype
type → int type .dtype = integer
type → float type .dtype = real

var-list1 → id, var-list2 id.dtype = var-list1 .dtype
var-list2 .dtype = var-list1 .dtype

var-list → id id.dtype = var-list .dtype

Types involve inherited situations (in many cases, not
all)

• inherited: attribute for id and var-list
• but also synthesized use of attribute dtype: for

type .dtype3
3Actually, it’s conceptually better not to think of it as “the attribute

dtype”, it’s better as “the attribute dtype of non-terminal type”
(written type .dtype) etc. Note further: type .dtype is not yet what we
called instance of an attribute.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-46

Types & var lists: after evaluating the
semantic rules

float id(x),id(y)

Attributed parse tree Dependence graph

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-47

Example: Based numbers (octal & decimal)
• remember: grammar for numbers (in decimal notation)
• evaluation: synthesized attributes
• now: generalization to numbers with decimal and octal

notation

Context-free grammar
based-num → num base-char
base-char → o
base-char → d

num → num digit
num → digit
digit → 0
digit → 1

. . .
digit → 7
digit → 8
digit → 9

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-48

Based numbers: attributes

Attributes
• based-num .val: synthesized
• base-char .base: synthesized
• for num:

• num .val: synthesized
• num .base: inherited

• digit .val: synthesized

• 9 is not an octal character
⇒ attribute val may get value “error”!

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-49

Based numbers: a-grammar

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-50

Based numbers: after eval of the semantic
rules
Attributed syntax tree

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-51

Based nums: Dependence graph & possible
evaluation order

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-52

Dependence graph & evaluation

• evaluation order must respect the edges in the
dependence graph

• cycles must be avoided!
• directed acyclic graph (DAG)
• dependence graph ∼ partial order
• topological sorting: turning a partial order to a

total/linear order (which is consistent with the PO)
• roots in the dependence graph (not the root of the

syntax tree): their values must come “from outside” (or
constant)

• often (and sometimes required): terminals in the syntax
tree:

• terminals synthesized / not inherited
⇒ get their value from the parser (token value)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-53

Evaluation: parse tree method

For acyclic dependence graphs: possible “naive” approach

Parse tree method
Linearize the given partial order into a total order
(topological sorting), and then simply evaluate the equations
following that.

• works only if all dependence graphs of the AG are
acyclic

• acyclicity of the dependence graphs?
• decidable for given AG, but computationally expensive4

• don’t use general AGs but: restrict yourself to subclasses

• disadvantage of parse tree method: also not very
efficient check per parse tree

4On the other hand: the check needs to be done only once.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-54

Observation on the example: Is evalution
(uniquely) possible?

• all attributes: either inherited or synthesized5

• all attributes: must actually be defined (by some rule)
• guaranteed in that for every production:

• all synthesized attributes (on the left) are defined
• all inherited attributes (on the right) are defined
• local loops forbidden

• since all attributes are either inherited or synthesized:
each attribute in any parse tree: defined, and defined
only one time (i.e., uniquely defined)

5base-char .base (synthesized) considered different from num .base
(inherited)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-55

Loops

• loops intolerable for evaluation
• difficult to check (exponential complexity).

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-56

Variable lists (repeated)

Attributed parse tree Dependence graph

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-57

L-attributed grammars
• goal: AG suitable for “on-the-fly” attribution
• all parsing works left-to-right.

Definition (L-attributed grammar)

An attribute grammar for attributes a1, . . . , ak is
L-attributed, if for each inherited attribute aj and each
grammar rule

X0 → X1X2 . . . Xn ,

the associated equations for aj are all of the form

Xi.aj = fij(X0 .⃗a, X1 .⃗a . . . Xi−1 .⃗a) .

where additionally for X0 .⃗a, only inherited attributes are
allowed.

• X.⃗a: short-hand for X.a1 . . . X.ak

• Note: S-attributed grammar ⇒ L-attributed grammar

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-58

L-attributed grammars

A

X1 X2 X3 Xn

. . .

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Attribute
grammars
Synthesized and inherited
attributes

5-59

References I

Bibliography

[1] Appel, A. W. (1998). Modern Compiler Implementation in ML/Java/C. Cambridge University Press.

[2] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

	Semantic analysis (attribute grammars)
	Targets & Outline
	Intro
	Attribute grammars

