Chapter 5

Semantic analysis (attribute gram-
mars)

Course “Compiler Construction”
Martin Steffen
Spring 2024

Chapter 5

INF5110 —
Compiler
Construction

Learning Targets of Chapter “Semantic analysisuges & outine

(attribute grammars)”.

“attributes”
attribute grammars
synthesized and inherited attributes

b=

various applications of attribute grammars

Intro

Attribute
grammars

Synthesized and inherited
attributes

5-2

Chapter 5

Outline of Chapter “Semantic analysis (attribute
grammars)".

Intro

Attribute grammars
Synthesized and inherited attributes

Section

Intro

Chapter 5 “Semantic analysis (attribute grammars)”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Semantic (static) analysis

INF5110 —
. T s Compiler
® syntactic vs. semantic “analysis G
® broad field
® semantics analysis in this lecture: more than this arersle]Outling
Chapter Intro
° Attribute
types grammars
L Symbo| tables Synthesized and inherited
attributes
® (later: live variable analysis)
[J

Spec. of the lan-
guage’s static semantic

Approximation is the key

Semantic (static) analysis is nessessarily approxima-
tive. It's an abstraction of what will happen at run-
time.

(does not apply to code generation)

Types: “prominent” example of (user-visible) semantical
information

if x then 1 else "abc”

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

Attributes

Merriam webster

An attribute is a a “property” or characteristic feature of
something.

® property, “adjective”, attribute
® in this chapter
® attributes of (syntax) trees = attribute grammar
® of course: analysis can also figure out properties (=
attributes) of other structures in a compiler (graphs
etc).

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

Attribution

(semantic) analysis

Figuring out (semantic) properties of language aspects or
data structures “=" associating attribute(s) to those
structures

® see later: symbol table: data structure for attaching
info to “symbols” (names, like variable etc. names)

associating information with “constructs” AKA

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

Attribution

(semantic) analysis

Figuring out (semantic) properties of language aspects or
data structures “=" associating attribute(s) to those
structures

® see later: symbol table: data structure for attaching
info to “symbols” (names, like variable etc. names)

associating information with “constructs” AKA

binding

dynamic vs. static binding

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-8

Examples in our context

¢ data type of a variable : static/dynamic

¢ value of an expression: dynamic (but in seldom cases
static as well)

® |ocation of a variable in memory: typically dynamic (but
in old FORTRAN: static)

® object-code: static (but also: dynamic loading possible)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-9

Attaching type info to a syntax tree (again)

assign-expr

/\

subscript expr additive expr
identifier identifier number number
a index 2 4

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-10

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

[y o]

5-10

Section

Attribute grammars
Synthesized and inherited attributes

Chapter 5 “Semantic analysis (attribute grammars)”
Course “Compiler Construction”

Martin Steffen

Spring 2024

Attribute grammar

An attribute grammar is a CFG + attributes on
grammar symbols + rules specifying for each produc-
tion, how to determine attributes.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-12

Attribute grammar in a nutshell

® AG: general formalism to bind “attributes to trees”
(where trees are given by a CFG)!

® two potential ways to calculate “properties” of nodes in

a tree:
“Synthesize” properties “Inherit” properties
define/calculate prop’s define/calculate prop’s
bottom-up top-down

® allows both at the same time
Attribute grammar

CFG + attributes one grammar symbols + rules specifying
for each production, how to determine attributes

® evaluation of attributes: requires some thought, more
complex if mixing bottom-up + top-down dependencies

! Attributes in AG's: static, obviously.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-13

Example: evaluation of numerical
expressions

Expression grammar (similar as seen before) INF5110 -
© il
ColgltT:'l)llctciron

etp — exp+term | exp—term | term
term — term* factor | factor

fCLCtOT — (exp) ’ number Targets & Outline

Intro

. . . Attribute
® goal now: evaluate a given expression, i.e., the syntax grammars
tree of an expression, resp: A
more concrete goal
Specify, in terms of the grammar, how expressions are
evaluated
e grammar: describes the “format” or “shape” of (syntax)
trees
® syntax-directedness
5-14

® value of (sub-)expressions: attribute here

How to evaluation expression

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-15

How to evaluation expression

eval_exp(e) =
case
e matches PLUSnode —>
return eval_exp(e.left) + eval_term(e.right)
e matches MINUSnode —>
return eval_exp(e.left) — eval_term(e.right)

end case

bottom-up flow of information

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-15

This expression evaluation is almost a
first-semester’s task

® simple problem, easily solvable without having heard of rsiio -
ompiler
AGS Construction

® given an expression, in the form of a syntax tree
. Targets & Outline
® evaluation:

Intro

® simple bottom-up calculation of values R

® the value of a compound expression (parent node) grammars
Synthesized and inherited

determined by the value of its subnodes atributes
® realizable, for example, by a simple recursive procedure

Connection to AG's

® AGs: basically a formalism to specify things like that
® however. general AGs will allow more complex
calculations:

® not just bottom up calculations like here but also

® top-down, including both at the same time
516

AG for expression evaluation

N O U W N

productions/grammar rules

exp,
expy
erp
termq
term
factor
factor

A

expy + term
expy — term
term

termo * factor
factor

(exp)
number

semantic rules

expy .val = exrp,y .val + term .val
expy .val = expy .val — term .val
exp.val = term .val

termy .val = termo .val x factor .val
term .val = factor .val

factor .val = exp.val

factor .val = number.val

AG for expression evaluation: remarks

® specific for this example is:
® only one attribute (for all nodes), in general: different
ones possible
® (related to that): only one semantic rule per production
® as mentioned: rules here define values of attributes
“bottom-up” only

® note: subscripts on the symbols for disambiguation
(where needed)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-18

Attributed parse tree

1 rykk (val =130
— I

able

—_-—_—_\'4/

ler

«val»

/“' terin
(val = 31 42 =1302)
| T

*

~—> termn Jactor
(val = 31) (vel = 42)
Ny | |
Jfactor numbez
(val = 31) (val = 42)
(exp)

(val = 34 =3 =131

sl

exp
(val = 34)
\

terimn
(val = 34)

\
Sfactor
{val = 34)
I
number
{val = 34)

term
(val=3)
\
Jactor
(val = 3)

number
(val = 3)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-19

Semantic rules and attribute dependencies:

anything goes?

Each semantic rule is formulated in connection with a
grammar production =

Dependencies are only between attributes of parents
and children or the other way around, or between sib-
lings.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-20

But beyond that, still anything goes?

Attribute dependence graph

dependencies between the attributes in the nodes of (syntax)
tree (not dependencies in the grammar)

® attribute evaluation

Must-have

The value of all attributes must be uniquely determined
® none left undefined
® not “defined” more than once

® no cyclic dependencies!!

more concrete (non-)restrictions later

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-21

Possible dependencies

INF5110 -

" . . Compiler
Possible dependencies (> 1 rule per production Construction
possible)

Targets & Outline
® parent attribute on childen attributes Intro
® attribute in a node dependent on other attribute of the Dl
same node Sy i
([]

child attribute on parent attribute
sibling attribute on sibling attribute
mixture of all of the above at the same time

but: no immediate dependence across generations

5-22

Attribute dependence graph

® dependencies ultimately between attributes in a syntax
tree (instances) not between grammar symbols as such

= attribute dependence graph (per syntax tree)

® complex dependencies possible:

® evaluation complex
® invalid dependencies possible, if not careful (especially
cyclic)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-23

Sample dependence graph (for later
example)

INF5110 —
Compiler
Construction

base-num ral .
ST S - Targets & Outline

base num val basechar base Intro
SIS]
> ~ | .
/ y’\ :\ : Attribute
: i rammars
base num val base digit val © d
T S T Synthesized and inherited
/ y 5 attributes
- ~
- &
- ~ 1
rise Aum val base eligit val 5
1

3\

base

-

|
|
l 1
ase digit val 4
|
|
|
3

/

5-24

Possible evaluation order

val

@ baxe_-_—’_@ val @ base
@ bese @ val @ base @ val

S W
@ b @ /] base val
asi:;‘___/(val ® ase @
@ hase @ val

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-25

Restricting dependencies

® the general format of GAs allows bascially any kind of
dependencies®
® complex/impossible to meaningfully evaluate

e typically: restrictions, disallowing “mixtures” of
dependencies
® fine-grained: per attribute
® or coarse-grained: for the whole attribute grammar

Synthesized attributes Inherited attributes
bottom-up dependencies only top-down dependencies only
(same-node dependency (same-node and sibling
allowed). dependencies allowed)

2Apart from immediate cross-generation dependencies.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-26

synthesized and inherited attributes

CFG rule

attributes of left-hand side symbol: synthesized, on the
right-hand side symbols: inherited. each attribute (per
symbol): either-or

Informally, synthesized attributes are those that have
bottom-up dependencies, only, (with same-node de-
pendency allowed). Inherited attributes have top-
down dependencies only (with same-node and sibling
dependencies allowed).

what about terminals?

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-27

synthesized and inherited attributes

CFG rule

attributes of left-hand side symbol: synthesized, on the
right-hand side symbols: inherited. each attribute (per
symbol): either-or

~

Informally, synthesized attributes are those that have
bottom-up dependencies, only, (with same-node de-
pendency allowed). Inherited attributes have top-
down dependencies only (with same-node and sibling
dependencies allowed).

what about terminals? People argue either way

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-27

Semantic rules

® rules or constraints between attribute occurrences

a = f(a)
“attribute a depends, via f, on the mentioned a;"

® 1 grammar production: potentially multiple associated
semantics rules

® intention: each attribute uniquely defined
Restiction/condition on target attribute a

® a synthesized < a is left-hand side (non-terminal)
symbol attribute occurrence

® @ inherited < a is a right-hand side symbol attribute
occurrence

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-28

Pictorial convention: synth. vs. inherited

inherited tree node synthesized

target restriction

also formulaic in the script

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-29

General rule format

A= Xy X, X,

synthesized inherited

As=f(Ab,X1.by,... X,.b) X.i= f(Aa X1.bg,...

. Xb,. ..

Further common “restriction” (Bochmann)

® additional “restriction” on source variables
® but not a real restriction

® common representation of AGs (Bochman normal form)

Restriction on sources q;

® a; synthesized < a; is a right-hand side symbol
attribute occurrence

® a; inherited < a; is a left-hand side (non-terminal)
symbol attribute occurrence

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-31

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-32

More specific rule format (Bochmann)

INF5110 —
Compiler
Construction

A= X1, X, . Xn

Targets & Outline

SyntheSized Intro
Attribute
grammars
As = f(A.il, o Ay, Xq.81, . Xn-sk) ST)
inherited

Xi=f(Ai' X1.81,...,X.5,... Xp.8p)

5-33

What about terminals?

® terminals can have attributes

® terminals only mentioned on the right-hand side of
productions

e for practical considerations: interface lexer and parser:

modern convention

attributes of terminals are synthesized (sort of)

e # Knuth's classic definition

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

Still too much anarchy

INF5110 -

Compiler
® remember the must-have: ST
q o Targets & Outline
no cyclic dependencies
Intro

i . i i A i Attribute

® the previous source restriction is not a real restriction, grammars
. . Synthesized and inherited

more a presentational device (Brochmann normal form) il

® it rules out immediate cycles, but not indirect ones
® checking if a AG is acyclic is complex!

= work with specific restricted forms of AGs (real
restrictions.

S-attributed and L-attributed

under Bochmann's NF

S-attributed
only synthesized attributes

L-attributed

formal definition in the script

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-36

S-attributed grammar

® restriction on the grammar, not just 1 attribute of one
non-terminal

® simple form of grammar

® remember the expression evaluation example

S-attributed grammar:

all attributes are synthesized

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

Simplistic example (normally done by the
scanner)

INF5110 —
Compiler
Construction
CFG
number — numberdigit | digit Targets & Outline
ngZt—>O|1|2|3|4|5|6|7|8|9|Intro
Attribute
grammars
Attributes (just synthesized) Sihesized and inhrited

number | val
digit val
terminals | [none]

5-38

Numbers: Attribute grammar and
attributed tree

A-grammar

Grammar Rule

Semantic Rules

number, —
number, digit

number — digit
digit — 0
digit— 1
digit— 2
digit— 3
digit— 4

digit — 5
digit— 6

digit =7
digit— 8
digit— 9

number, .val =
numbers .val * 10 + digitval

number.val = digitval

digitval = 0

digitval = 1

digit.val =2

d

digitval = 5
digit.val = 6
digitval =

digitval = 8
digitval =9

attributed tree

number

(val = 34 % 10 + 5 = 345)

nmumber digir
(val = 3% 10 + 4 = 34) (val = 5)
mimber 5
(val = 3)

digit
(val = 3)

|

3

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-39

Attribute evaluation: works on trees

i.e.: works equally well for
® abstract syntax trees
® ambiguous grammars
Seriously ambiguous expression grammar

exp — exp+texp | exp—exp | expxexp | (exp) | number

Evaluation: Attribute grammar and

attributed tree

A-grammar

Grammar Rule

Semantic Rules

expy = expy + exps
exp) — exps = exps
exp) — exps * exps
expy— (expsy)
exp — number

expy .val = exps val + exps val
expy val = exp, val — expy vl
expy val = exp, .val * exps val
expy val = expa .val

exp.val = number .val

INF5110 —
Compiler
Construction

Targets & Outline

Attributed tree

Intro
” Attribute
(val = 31 %42 = 1302) grammars
Synthesized and inherited
attributes
_ 42
(val = 34 =3 =31) (val =42)

34 3
(val = 34) (val = 3)

541

Expressions: generating ASTs

Expression grammar with precedences & assoc.

exp — exp—+term | exp—term | term
term — term = factor | factor
factor — (exp) | number

Attributes (just synthesized)

exp, term, factor | tree
number lexval

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-42

Expressions: Attribute grammar and
attributed tree

A-grammar

Grammar Rule

Semantic Rules

expy — expy + term

exp, .tree =

mkOpNode (+, exp, .tree, term.tree)

expy — exp, - term

exp, .tree =

mkOpNode(-, exp, .tree, term.tree)

exp — term

exp.tree = term.iree

termy — termy * factor

term .tree =

mkOpNode(*, terms .tree, factor.tree)

term — factor

term.tree = factor.tree

Jacior = (exp)

Jactor.tree = exp.tree

factor — number

factor.iree =
mkNumNode(number:lexval)

A-tree

1 laye.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-43

Example: type declarations for variable lists

INF5110 —
CFG Compiler
Construction
decl — typewvar-list
type — int Targets & Outline
type — float Intro
var-listy — id, var-listy Attribute
. . grammars
var-list — id A —

attributes

® Goal: attribute type information to the syntax tree
e attribute: dtype (with values integer and real)

e complication: “top-down"” information flow: type
declared for a list of vars = inherited to the elements of
the list

5-44

Types and variable lists:

grammar productions

inherited attributes

semantic rules

decl
type
type
var-list;

var-list

L1l

—

type var-list var-list .dtype
int type .dtype
float type .dtype
id, var-lists id.dtype

var-listy .dtype
id id.dtype

type .dtype
integer

real

var-list; .dtype
var-listy .dtype
var-list .dtype

Types involve inherited situations (in many cases, not

all)

® inherited: attribute for id and var-list
® but also synthesized use of attribute dtype: for
type .dtype>

3Actually, it's conceptually better not to think of it as “the attribute

dtype", it's better as “the attribute dtype of non-terminal type”

(written type.dtype) etc. Note further: type.dtype is not yet what we
called instance of an attribute.

Types & var lists: after evaluating the
semantic rules

float id(x),id(y)

Attributed parse tree Dependence graph

decl decl
o~ i) |7 el

e var-list e s e e i
(zlnm”: real) (drype = real) e e b ‘/“\I\
| | \ | / //\,\‘.\\\\\
float id ' var-list | -7 !
(x) (dtype-= real) float dnpe id v diype
(diype = real) | @
id Avhengighets-graf

() diype
(drype = real)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

var-list
h
I
I
I
id
¥y

5-46

Example: Based numbers (octal & decimal)

® remember: grammar for numbers (in decimal notation)

® evaluation: synthesized attributes

INF5110 —
Compiler
Construction

® now: generalization to numbers with decimal and octal
notation

Context-free grammar UEIEE B R0

Intro

based-num — num base-char Attribute

base-char — o gsrya:'lnmaTSI inhericed
base-char — d o

num — num digit

num — digit

digit — 0

digit — 1

digit — 7

digit — 8

digit — 9 5-47

Based numbers: attributes

INF5110 -

Compiler

Attl’ibutes Construction

® based-num .val: synthesized Targets & Outline

® base-char .base: synthesized Intro
e for num: Attribute
. grammars
® num .val: synthesized Synthesized and inherited

attributes

® num .base: inherited

® digit .val: synthesized

® 9 is not an octal character

= attribute val may get value “error"!

5-48

Based numbers: a-grammar

Grammar Rule Semantic Rules
INF5110 —
based-num — based-num.val = num.val Compiler
num basechar num.base = basechar.base Construction
basechar — © basechar.base = 8
basechar — d basechar.base = 10
numy, — ny digit numy val = Targets & Outline
if digii.val = error or nums .val = error Intro
then error
else num, .val * num, .base + digit.val aLribuLe
grammars
numty base = num, .base
-, Synthesized and inherited
digit.base = num, .base attributes
num — digit num.val = digit.val
digit.base = num.base
digit — 0 digitval = 0
digit — 1 digitval = |
digit — 7 digitval =7
digit — 8 digit.val =
if digit.base = 8 then error else 8
digit — 9 digit.val =

if digit.hase = 8 then error else 9

3122015

5-49

Based numbers: after eval of the semantic
rules
Attributed syntax tree

based-num

(val = 229)
//
num basechar
(val =288 + 5 = 229) (base = 8)

(base = 8) l

/ ‘__\ o

num digit
(val =3 %8 + 4 = 28) (val = 5)
(base = 8) (base = 8)
num digit 5
(val = 3) (val = 4)
(base = B) (base = 8)
digir 4
(val = 3)
(base = 8)
3

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-50

Based nums: Dependence graph & possible
evaluation order

base-num val
base_ nmum _val basechar buse
Se <%
Pl S s !
/ S~ !
base aum _val base digir val ©
AN T
- T |
-7 S~ |
Yase nem val base digit val 5
S~ 1
| !
' \
ase digit val 4
1
—
! @) base
3 / ~x

@base\v@ val” (01 base @) vt

@ b @ ! base val
(l."ﬂ\\—/f va @ ! ®
@ base @ val

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-51

Dependence graph & evaluation

® evaluation order must respect the edges in the
dependence graph

® cycles must be avoided!

e directed acyclic graph (DAG)

® dependence graph ~ partial order

® topological sorting: turning a partial order to a
total/linear order (which is consistent with the PO)

® roots in the dependence graph (not the root of the
syntax tree): their values must come “from outside” (or
constant)

* often (and sometimes required): terminals in the syntax
tree:

® terminals synthesized / not inherited
> get their value from the parser (token value)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-52

Evaluation: parse tree method

For acyclic dependence graphs: possible “naive” approach

Parse tree method

Linearize the given partial order into a total order
(topological sorting), and then simply evaluate the equations
following that.

® works only if all dependence graphs of the AG are
acyclic
e acyclicity of the dependence graphs?

® decidable for given AG, but computationally expensive?
® don't use general AGs but: restrict yourself to subclasses

¢ disadvantage of parse tree method: also not very
efficient check per parse tree

*On the other hand: the check needs to be done only once.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-53

Observation on the example: Is evalution
(uniquely) possible?

e all attributes: either inherited or synthesized®

e all attributes: must actually be defined (by some rule)
® guaranteed in that for every production:
® all synthesized attributes (on the left) are defined
® all inherited attributes (on the right) are defined
® |ocal loops forbidden
® since all attributes are either inherited or synthesized:
each attribute in any parse tree: defined, and defined
only one time (i.e., uniquely defined)

®base-char .base (synthesized) considered different from num base
(inherited)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-54

Loops

® loops intolerable for evaluation

e difficult to check (exponential complexity).

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

Variable lists (repeated)

Attributed parse tree

decl
type var-list
(dtype = real) (dnype = real)
\ T~
float id ! var-list
(%) (dtype = real)
(drype = real)
id
(¥)
(drype = real)

Dependence graph

type diype
i

|
1

float

decl

— drype var-list

diype id
()

Avhengighets-graf

|
'

diype

drype

var-list
)
|
1
|
id
(¥}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-56

L-attributed grammars
¢ goal: AG suitable for “on-the-fly” attribution
® all parsing works left-to-right.
Definition (L-attributed grammar)

An attribute grammar for attributes ay,...,ag is
L-attributed, if for each inherited attribute a; and each

grammar rule
Xo —)XlXQXn 5

the associated equations for a; are all of the form

Xi.aj = fij(Xo.g, X..a.. .Xi_l.g) 5

where additionally for X.&, only inherited attributes are
allowed.

® X.3: short-hand for X.a; ... X.ag
® Note: S-attributed grammar = L-attributed grammar

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

5-57

L-attributed grammars

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute

grammars
(X3 oo
Synthesized and inherited

attributes

5-58

References |

Bibliography

[1] Appel, A. W. (1998). Modern Compiler Implementation in ML/Java/C. Cambridge University Press.

(2]

Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

Attribute
grammars

Synthesized and inherited
attributes

5-59

	Semantic analysis (attribute grammars)
	Targets & Outline
	Intro
	Attribute grammars

