
Chapter 8
Run-time environments

Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-2

‘

Chapter 8
Learning Targets of Chapter “Run-time environ-
ments”.

1. memory management
2. run-time environment
3. run-time stack
4. stack frames and their layout
5. heap

Chapter 8
Outline of Chapter “Run-time environments”.
Intro

Different layouts
Full static layout
Stack-based runtime environments
Stack-based RTE with nested procedures
Functions as parameters

Parameter passing

Virtual methods in OO

Garbage collection

Section
Intro

Chapter 8 “Run-time environments”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-5

Static & dynamic memory layout at runtime

code area

global/static area

stack

free space

heap

Memory

typical memory layout: for languages (as
nowadays basically all) with
• static memory
• dynamic memory:

• stack
• heap

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-6

Translated program code

code for procedure 1 proc. 1

code for procedure 2 proc. 2

⋮
code for procedure n proc. n

Code memory

• code segment: almost
always considered as
statically allocated

⇒ neither moved nor
changed at runtime

• compiler aware of all
addresses of “chunks” of
code: entry points of the
procedures

• but:
• generated code often

relocatable
• final, absolute adresses

given by linker / loader

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-7

Activation records

space for arg’s (parameters)

space for bookkeeping
info, including return
address

space for local data

space for local temporaries

• schematic organization of
activation records/activation
block/stack frame . . .
• goal: realize

• parameter passing
• scoping rules /local variables

treatment
• prepare for call/return behavior

• calling conventions on a platform

Section
Different layouts

Full static layout
Stack-based runtime environments
Stack-based RTE with nested procedures
Functions as parameters

Chapter 8 “Run-time environments”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-9

Full static layout

code for main proc.

code for proc. 1

⋮
code for proc. n

global data area

act. record of main proc.

activation record of proc. 1

⋮
activation record of proc. n

• static addresses of all of the
memory known to the compiler
• executable code
• variables
• all forms of auxiliary data (for

instance big constants in the
program, e.g., string literals)

• for instance: (old) Fortran
• nowadays rather seldom (or special

applications like safety critical
embedded systems)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-10

Fortran example
PROGRAM TEST
COMMON MAXSIZE
INTEGER MAXSIZE
REAL TABLE(1 0) ,TEMP
MAXSIZE = 10
READ ∗ , TABLE(1) ,TABLE(2) ,TABLE(3)
CALL QUADMEAN(TABLE, 3 ,TEMP)
PRINT ∗ ,TEMP
END

SUBROUTINE QUADMEAN(A, SIZE ,QMEAN)
COMMON MAXSIZE
INTEGERMAXSIZE , SIZE
REAL A(SIZE) ,QMEAN, TEMP
INTEGER K
TEMP = 0.0
IF ((SIZE .GT . MAXSIZE) .OR . (SIZE . LT . 1)) GOTO 99
DO 10 K = 1 , SIZE

TEMP = TEMP + A(K)∗A(K)
10 CONTINUE
99 QMEAN = SQRT(TEMP/SIZE)

RETURN
END

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-11

Static memory layout example/runtime
environment

MAXSIZEglobal area

TABLE (1)
(2)
. . .
(10)

TEMP

3

main’s act.
record

A

SIZE

QMEAN

return address

TEMP

K

“scratch area”

Act. record of
QUADMEAN

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-12

Static memory layout example/runtime
environment

in Fortan (here Fortran77)
• parameter passing as pointers to the actual parameters
• activation record for QUADMEAN contains place for

intermediate results, compiler calculates, how much is
needed.
• note: one possible memory layout for FORTRAN 77,

details vary, other implementations exists as do more
modern versions of Fortran

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-13

Stack-based runtime environments

• so far: no(!) recursion
• everything’s static, incl. placement of activation records
• ancient and restrictive arrangement of the run-time envs
• calls and returns (also without recursion) follow at

runtime a LIFO (= stack-like) discipline

Stack of activation records
• procedures as abstractions with own local data
⇒ run-time memory arrangement where procedure-local

data together with other info (arrange proper returns,
parameter passing) is organized as stack.

• AKA: call stack, runtime stack
• AR: exact format depends on language and platform

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-14

Situation in languages without local
procedures

• recursion, but all procedures are global
• C-like languages

Activation record info (besides local data, see later)

• frame pointer
• control link (or dynamic link)1

• (optional): stack pointer
• return address

1Later, we’ll encounter also static links (aka access links).

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-15

Euclid’s recursive gcd algo

#i n c l u d e <s t d i o . h>

i n t x , y ;

i n t gcd (i n t u , i n t v)
{ i f (v==0) r e t u r n u ;

e l s e r e t u r n gcd (v , u % v) ;
}

i n t main ()
{ s c a n f ("%d%d" ,&x ,&y) ;

p r i n t f ("%d\n" , gcd (x , y)) ;
r e t u r n 0 ;

}

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-16

Stack gcd

x:15
y:10

global/static area

“AR of main”

u:15
v:10

control link

return address

a-record (1st. call)

u:10
v:5

control link

return address

a-record (2nd. call)

u:5
v:0

control link
fp

return address
sp

a-record (3rd. call)

↓

• control link
• aka: dynamic link
• refers to caller’s FP

• frame pointer FP
• points to a fixed location

in the current a-record
• stack pointer (SP)

• border of current stack
and unused memory

• return address:
program-address of call-site

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-17

Local and global variables and scoping

i n t x = 2 ; /∗ g lob . va r ∗/
vo id g (i n t) ; /∗ p r o t o t y p e ∗/

vo id f (i n t n)
{ s t a t i c i n t x = 1 ;

g (n) ;
x−−;

}

vo id g (i n t m)
{ i n t y = m−1;

i f (y > 0)
{ f (y) ;

x−−;
g (y) ;

}
}

i n t main ()
{ g (x) ;

r e t u r n 0 ;
}

• global variable x
• but: (different) x local to
f

• remember C:
• call by value
• static lexical scoping

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-18

Activation records and activation trees

• activation of a function: corresponds to: call of a
function
• activation record

• data structure for run-time system
• holds all relevant data for a function call and

control-info in “standardized” form
• control-behavior of functions: LIFO
• if data cannot outlive activation of a function
⇒ activation records can be arranged in as stack (like here)
• in this case: activation record AKA stack frame

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-19

Activation record and activation trees
GCD

main()

gcd(15,10)

gcd(10,5)

gcd(5,0)

f and g example

main

g(2)

f(1)

g(1)

g(1)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-20

Variable access and design of ARs

• fp: frame pointer
• m (in this

example):
parameter of g

• AR’s: structurally uniform per
language (or at least compiler) /
platform
• different function defs, different size

of AR
⇒ frames on the stack differently sized
• note: FP points

• not: “top” of the frame/stack, but
• to a well-chosen, well-defined

position in the frame
• other local data (local vars)

accessible relative to that
• conventions

• higher addresses “higher up”
• stack “grows” towards lower

addresses

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-21

Layout for arrays of statically known size
vo id f (i n t x , char c)
{ i n t a [1 0] ;

double y ;
. .

}

name offset
x +5
c +4
a -24
y -32

access of c and
y

c : 4(fp)
y : −32(fp)

access for a[i]

(−24+2∗ i) (fp)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-22

Back to the C code again (global and local
variables)

i n t x = 2 ; /∗ g lob . va r ∗/
vo id g (i n t) ; /∗ p r o t o t y p e ∗/

vo id f (i n t n)
{ s t a t i c i n t x = 1 ;

g (n) ;
x−−;

}

vo id g (i n t m)
{ i n t y = m−1;

i f (y > 0)
{ f (y) ;

x−−;
g (y) ;

}
}

i n t main ()
{ g (x) ;

r e t u r n 0 ;
}

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-23

2 snapshots of the call stack

x:2
x:1 (@f)static

main

m:2

control link

return address

y:1

g

n:1

control link

return address

f

m:1

control link
fp

return address

y:0
sp

g

...

x:1
x:0 (@f)static

main

m:2

control link

return address

y:1

g

m:1

control link
fp

return address

y:0
sp

g

...

• note: call by value, x in f static

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-24

How to do the “push and pop”
• calling sequences: AKA as linking conventions or calling

conventions
• for RT environments: uniform design not just of

• data structures (=ARs), but also of
• uniform actions being taken when calling/returning

from a procedure
• how to do details of “push and pop” on the call-stack

E.g: Parameter passing

• not just where (in the ARs) to find value for the actual
parameter needs to be defined, but well-defined steps
(ultimately code) that copies it there (and potentially
reads it from there)

• “jointly” done by compiler + OS + HW
• distribution of responsibilities between caller and callee:

• who copies the parameter to the right place
• who saves registers and restores them
• . . .

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-25

Steps when calling
• For procedure call (entry)

1. compute arguments, store them in the correct positions
in the new activation record of the procedure (pushing
them in order onto the runtime stack will achieve this)

2. store (push) the fp as the control link in the new
activation record

3. change the fp, so that it points to the beginning of the
new activation record. If there is an sp, copying the sp
into the fp at this point will achieve this.

4. store the return address in the new activation record, if
necessary

5. perform a jump to the code of the called procedure.
6. Allocate space on the stack for local var’s by

appropriate adjustement of the sp
• procedure exit

1. copy the fp to the sp (inverting 3. of the entry)
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-26

Steps when calling g

rest of stack

m:2

control link

return addr.
fp

y:1

...
sp

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

...
sp

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

control link
...

sp

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-27

Steps when calling g (cont’d)

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

. . .
sp

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

y:0

...
sp

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-28

Treatment of auxiliary results:
“temporaries”

rest of stack

. . .

control link

return addr.
fp

. . .

address of x[i]

result of i+j

result of i/k
sp

new AR for f
(about to be
created)

...

• calculations need memory for
intermediate results.
• called temporaries in ARs.

x [i] = (i + j) ∗ (i /k + f (j)) ;

• note: x[i] represents an address
or reference, i, j, k represent
values
• assume a strict left-to-right

evaluation (call f(j) may change
values.)
• stack of temporaries.
• [NB: compilers typically use

registers as much as possible, what
does not fit there goes into the
AR.]

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-29

Variable-length data

type I n t_Vec to r i s a r r a y (INTEGER range <>) of INTEGER ;

procedure Sum(low , h igh : INTEGER ; A : In t_Vec to r) r e t u r n INTEGER
i s

i : i n t e g e r
beg in

. . .
end Sum ;

• Ada example
• assume: array passed by value

(“copying”)
• A[i]: calculated as @6(fp)
+ 2*i

• in Java and other languages:
arrays passed by reference
• note: space for A (as ref) and

size of A is fixed-size (as well
as low and high)

rest of stack

low:. . .

high:. . .

A:

size of A: 10

control link

return addr.
fp

i:...

A[9]

. . .

A[0]

...
sp

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-30

Nested declarations (“compound
statements”)

vo id p (i n t x , double y)
{ char a ;

i n t i ;
. . . ;

A: { double x ;
i n t j ;
. . . ;

}
. . . ;

B : { char ∗ a ;
i n t k ;
. . . ;

} ;
. . . ;

}

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

x:

j:

...
sp

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

a:

k:

...
sp

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-31

Nested procedures in Pascal
program nonLoca lRe f ;
procedure p ;

var n : i n t e g e r ;
procedure q ;
beg in

(∗ a r e f to n i s now non−l o c a l , non−g l o b a l ∗)
end ; (∗ q ∗)

procedure r (n : i n t e g e r) ;
beg in

q ;
end ; (∗ r ∗)

beg in (∗ p ∗)
n := 1 ;
r (2) ;

end ; (∗ p ∗)

beg in (∗ main ∗)
p ;

end .

• proc. p contains q and r nested
• also “nested” (i.e., local) in p: integer n

• in scope for q and r but
• neither global nor local to q and r

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-32

Accessing non-local var’s

vars of main

control link

return addr.

n:1

p

n:2

control link

return addr.

r

control link
fp

return addr.
sp

q

...

• n in q: under lexical scoping: n declared
in procedure p is meant
• this is not reflected in the stack (of

course) as this stack represents the
run-time call stack.
• remember: static links (or access links)

in connection with symbol tables

Symbol tables

• “name-
addressable”
mapping
• access at

compile time
• cf. scope tree

Dynamic memory

• “adresss-adressable”
mapping
• access at run time
• stack-organized,

reflecting paths in
call graph
• cf. activation tree

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-33

Access link as part of the AR

vars of main

(no access link)

control link

return addr.

n:1

n:2

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

• access link (or static link): part
of AR (at fixed position)
• points to stack-frame

representing the current AR of
the statically enclosed
“procedural” scope

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-34

Example with multiple levels
program c h a i n ;

procedure p ;
var x : i n t e g e r ;

procedure q ;
procedure r ;
beg in

x :=2;
. . . ;
i f . . . then p ;

end ; (∗ r ∗)
beg in

r ;
end ; (∗ q ∗)

beg in
q ;

end ; (∗ p ∗)

beg in (∗ main ∗)
p ;

end .

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-35

Access chaining

AR of main

(no access link)

control link

return addr.

x:1

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

• program chain

• access (conceptual): fp.al.al.x
• access link slot: fixed “offset” inside

AR (but: AR’s differently sized)
• “distance” from current AR to place

of x
• not fixed, i.e.
• statically unknown!

• However: number of access link
dereferences statically known
• lexical nesting level

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-36

Implementing access chaining

As example:

fp.al.al.al. ... al.x

• access need to be fast => use registers
• assume, at fp in dedicated register

4(fp) −> reg // 1
4(r eg) −> reg // 2
. . .
4(r eg) −> reg // n = d i f f e r e n c e i n n e s t i n g l e v e l s
6(r eg) // a c c e s s co n t en t o f x

• often: not so many block-levels/access chains nessessary

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-37

Calling sequence
• For procedure call (entry)

1. compute arguments, store them in the correct positions
in the new activation record of the procedure (pushing
them in order onto the runtume stack will achieve this)

2. • push access link, value calculated via link chaining (“
fp.al.al.... ”)

• store (push) the fp as the control link in the new AR
3. change fp, to point to the “beginning”

of the new AR. If there is an sp, copying sp into fp at this point
will achieve this.

1. store the return address in the new AR, if necessary
2. perform a jump to the code of the called procedure.
3. Allocate space on the stack for local var’s by

appropriate adjustement of the sp
• procedure exit

1. copy the fp to the sp
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s and the access link

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-38

Calling sequence: with access links

AR of main

(no access link)

control link

return addr.

x:...

access link

control link

return addr.

access link

control link

return addr.

no access link

control link

return addr.

x:...

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

• main → p → q → r → p →
q → r

• calling sequence: actions to do
the “push & pop”

• distribution of responsibilities
between caller and callee

• generate an appropriate access
chain, chain-length statically
determined

• actual computation (of course)
done at run-time

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-39

Another frame design (Tiger)
lstinputlisting[language=ocaml] /cor/tiger/src/compil-
er/frames.ml
• full higher-order functions = functions are “data” same

as everything else
• function being locally defined
• function as arguments to other functions
• functions returned by functions

→ ARs cannot be stack-allocated
• closures needed, but heap-allocated (̸= Louden)
• objects (and references): heap-allocated
• less “disciplined” memory handling than stack-allocation
• garbage collection2

• often: stack based allocation + fully-dynamic (=
heap-based) allocation

2The stack discipline can be seen as a particularly simple (and
efficient) form of garbage collection: returning from a function makes it
clear that the local data can be thrashed.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-40

Example with multiple levels
program c h a i n ;

procedure p ;
var x : i n t e g e r ;

procedure q ;
procedure r ;
beg in

x :=2;
. . . ;
i f . . . then p ;

end ; (∗ r ∗)
beg in

r ;
end ; (∗ q ∗)

beg in
q ;

end ; (∗ p ∗)

beg in (∗ main ∗)
p ;

end .

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-41

Access chaining

AR of main

(no access link)

control link

return addr.

x:1

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

• program chain

• access (conceptual): fp.al.al.x
• access link slot: fixed “offset” inside

AR (but: AR’s differently sized)
• “distance” from current AR to place

of x
• not fixed, i.e.
• statically unknown!

• However: number of access link
dereferences statically known
• lexical nesting level

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-42

Procedures as parameters
program c l o s u r e e x (output) ;

procedure p (procedure a) ;
beg in

a ;
end ;

procedure q ;
var x : i n t e g e r ;

procedure r ;
beg in

w r i t e l n (x) ; // ``non− l o c a l ' '
end ;

beg in
x := 2 ;
p (r) ;

end ; (∗ q ∗)

beg in (∗ main ∗)
q ;

end .

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-43

Procedures as parameters, same example in
Go

package main
import (" fmt ")

var p = func (a (func () ())) { // (u n i t −> u n i t) −> u n i t
a ()

}

var q = func () {
var x = 0
var r = func () {
fmt . P r i n t f (" x = %v " , x)
}
x = 2
p (r) // r as argument

}

func main () {
q () ;

}

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-44

Procedures as parameters, same example in
ocaml

l e t p (a : u n i t −> u n i t) : u n i t = a () ; ;

l e t q () =
l e t x : i n t r e f = r e f 1
i n l e t r = f u n c t i o n () −> (p r i n t _ i n t ! x) (∗ d e r e f ∗)
i n
x := 2 ; (∗ as s i gnment to r e f −typed va r ∗)
p (r) ; ;

q () ; ; (∗ ``body o f main ' ' ∗)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-45

Closures and the design of ARs

• [1] rather “implementation centric”
• closure there:

• restricted setting
• specific way to achieve closures
• specific semantics of non-local vars (“by reference”)

• higher-order functions:
• functions as arguments and return values
• nested function declaration

• similar problems with: “function variables”
• Example shown: only procedures as parameters, not

returned

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-46

Closures, schematically

• independent from concrete design of the RTE/ARs:
• what do we need to execute the body of a procedure?

Closure (abstractly)

A closure is a function body3 together with the values for all
its variables, including the non-local ones.3

• individual AR not enough for all variables used
(non-local vars)
• in stack-organized RTE’s:

• fortunately ARs are stack-allocated
→ with clever use of “links” (access/static links): possible

to access variables that are “nested further out”/
deeper in the stack (following links)

3Resp.: at least the possibility to locate them.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-47

Organize access with procedure parameters
• when calling p: allocate a stack frame
• executing p calls a => another stack frame
• number of parameters etc: knowable from the type of a
• but 2 problems

“control-flow” problem
currently only RTE, but: how
can (the compiler arrange
that) p calls a (and allocate a
frame for a) if a is not know
yet?

data problem
How can one statically arrange
that a will be able to access
non-local variables if statically
it’s not known what a will be?

• solution: for a procedure variable (like a): store in AR
• reference to the code of argument (as representation of

the function body)
• reference to the frame, i.e., the relevant frame pointer

(here: to the frame of q where r is defined)
• this pair = closure!

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-48

Closure for formal parameter a of the
example

• stack after the call to p

• closure ⟨ip, ep⟩
• ep: refers to q’s frame

pointer
• note: distinction in

calling sequence for
• calling “ordinary”

proc’s and
• calling procs in proc

parameters (i.e., via
closures)

• that may be unified
(“closures” only)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-49

After calling a (= r)

• note: static link of the
new frame: used from
the closure!

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-50

Making it uniform

• note: calling conventions
differ
• calling procedures as

formal parameters
• “standard” procedures

(statically known)
• treatment can be made

uniform

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-51

Limitations of stack-based RTEs
• procedures: central (!) control-flow abstraction in

languages
• stack-based allocation: intuitive, common, and efficient

(supported by HW)
• used in many languages
• procedure calls and returns: LIFO (= stack) behavior
• AR: local data for procedure body

Underlying assumption for stack-based RTEs
The data (=AR) for a procedure cannot outlive the
activation where they are declared.

• assumption can break for many reasons
• returning references of local variables
• higher-order functions (or function variables)
• “undisciplined” control flow (rather deprecated, goto’s

can break any scoping rules, or procedure abstraction)
• explicit memory allocation (and deallocation), pointer

arithmetic etc.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-52

Dangling ref’s due to returning references

i n t ∗ dang l e (vo id) { q// r e t u r n type : p o i n t e r to an i n t
i n t x ; // l o c a l va r
r e t u r n &x ; // a d d r e s s o f x

}

• similar: returning references to objects created via new
• variable’s lifetime may be over, but the reference lives

on . . .

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-53

Function variables
program Funcvar ;
var pv : Procedure (x : i n t e g e r) ; (∗ p rocedu r var ∗)

Procedure Q() ;
var

a : i n t e g e r ;
P rocedure P(i : i n t e g e r) ;
beg in

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

beg in
pv := @P; (∗ `` re tu rn ' ' P (as s i d e e f f e c t) ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
beg in (∗ he r e : f r e e P a s c a l ∗)

Q() ;
pv (1) ;

end .

funcvar
Runtime error 216 at $0000000000400233
$0000000000400233
$0000000000400268
$00000000004001E0

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-54

Functions as return values
package main
import (" fmt ")

var f = func () (func (i n t) i n t) { // u n i t −> (i n t −> i n t)
var x = 40 // l o c a l v a r i a b l e
var g = func (y i n t) i n t { // n e s t e d f u n c t i o n

r e t u r n x + 1
}
x = x+1 // update x
r e t u r n g // f u n c t i o n as r e t u r n v a l u e

}

func main () {
var x = 0
var h = f ()
fmt . P r i n t l n (x)
var r = h (1)
fmt . P r i n t f (" r = %v " , r)

}

• function g
• defined local to f
• uses x, non-local to g, local to f
• is being returned from f

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-55

Fully-dynamic RTEs

• full higher-order functions = functions are “data” same
as everything else
• function being locally defined
• function as arguments to other functions
• functions returned by functions

→ ARs cannot be stack-allocated
• closures needed, but heap-allocated
• objects (and references): heap-allocated
• less “disciplined” memory handling than stack-allocation
• garbage collection
• often: stack based allocation + fully-dynamic (=

heap-based) allocation

Section
Parameter passing

Chapter 8 “Run-time environments”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-57

Communicating values between procedures

• procedure abstraction, modularity
• parameter passing = communication of values between

procedures
• from caller to callee (and back)
• binding actual parameters to forma ones
• with the help of the RTE
• formal parameters vs. actual parameters
• two principal versions

1. by-value
2. by-reference

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-58

CBV and CBR, roughly

Core distinction/question

on the level of caller/callee activation records (or the stack
frame): how does the AR of the callee get hold of the value
the caller wants to hand over?

1. callee’s AR with a copy of the value of the actual
parameter

2. the callee AR with a pointer to the memory slot of the
actual parameter

• if one has to choose only one: it’s call-by-value
• remember: non-local variables (in lexical scope), nested

procedures, and even closures:
• those variables are “smuggled in” by reference
• [NB: there are also (seldomly) by value closures]

Parameter passing by-value

• in C: CBV only
parameter passing
method
• in some lang’s:

formal parameters
“immutable”
• straightforward:

copy actual
parameters →
formal parameters
(in the ARs).

vo id i n c 2 (i n t x) { ++x , ++x ; }

vo id i n c 2 (i n t ∗ x) { /∗ c a l l : i n c (&y) ∗/
++(∗x) , ++(∗x) ;

}

vo id i n i t (i n t x [] , i n t s i z e) {
i n t i ;
f o r (i =0; i <s i z e ,++ i) x [i]= 0

}

arrays: “by-reference” data

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-60

Call-by-reference

• hand over pointer/refer-
ence/address of the
actual parameter
• useful especially for large

data structures
• typically (for cbr): actual

parameters must be
variables
• Fortran actually allows

things like P(5,b) and
P(a+b,c).

vo id i n c 2 (i n t ∗ x) { /∗ c a l l : i n c (&y) ∗/
++(∗x) , ++(∗x) ; }

v o i d P(p1 , p2) {
. .
p1 = 3

}
va r a , b , c ;
P(a , c)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-61

Call-by-value, call-by-reference, or what?

p u b l i c c l a s s Inctwo {
p u b l i c s t a t i c vo id i n c 2 (i n t x) {++x;++x ; }
p u b l i c s t a t i c vo id i n c 2 (I n t e g e r x) {x++;x++;}
p u b l i c s t a t i c vo id main (S t r i n g [] a rg) {

i n t x1 = 0 ;
I n t e g e r x2 = new I n t e g e r (0) ; // d e p r e c a t e d
i n c 2 (x1) ;
i n c 2 (x2) ;
System . out . p r i n t (x2) ; // gues s what ' s p r i n t e d

}
} ;

Guess (and try out), what’s printed? The explanation is not
(just) connected with parameter passing.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-62

Call-by-value-result

• call-by-value-result can give different results from cbr
• allocated as a local variable (as cbv)
• however: copied “two-way”

• when calling: actual → formal parameters
• when returning: actual ← formal parameters

• aka: “copy-in-copy-out” (or “copy-restore”)
• Ada’s in and out parameters
• when are the value of actual variables determined when

doing “actual ← formal parameters”
• when calling
• when returning

• not the cleanest parameter passing mechanism
around. . .

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-63

A (dubious) call-by-value-result example

vo id p (i n t x , i n t y)
{

++x ;
++y;++y ;

}

main ()
{ i n t a = 1 ;

p (a , a) ; // :−O
r e t u r n 0 ;

}

• C-syntax (C has cbv, not cbvr)
• note: aliasing (via the arguments, here obvious)
• cbvr: same as cbr, unless aliasing “messes it up”4

4One can ask though, if not call-by-reference would be messed-up in
the example already.

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-64

Call-by-name (C-syntax)

• most complex (or is it . . . ?)
• hand over: textual representation (“name”) of the

argument (substitution)
• in that respect: a bit like macro expansion (but lexically

scoped)
• actual paramater not calculated before actually used!
• on the other hand: if needed more than once:

recalculated over and over again
• aka: delayed evaluation
• Implementation

• actual paramter: represented as a small procedure
(thunk, suspension), if actual parameter = expression

• optimization, if actually parameter = variable (works
like call-by-reference then)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-65

Call-by-name examples
• in (imperative) languages without procedure

parameters:
• delayed evaluation most visible when dealing with things

like a[i]
• a[i] is actually like “apply a to index i”
• combine that with side-effects (i++) ⇒ pretty

confusing

vo id p (i n t x) { . . . ; ++x ; }

• call as p(a[i])
• corresponds to
++(a[i])
• note:

• ++ _ has a side effect
• i may change in ...

i n t i ;
i n t a [1 0] ;
vo id p (i n t x) {

++i ;
++x ;

}

main () {
i = 1 ;
a [1] = 1 ;
a [2] = 2 ;
p (a [i]) ;
r e t u r n 0 ;

}

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-66

Another example: “swapping”

i n t i ; i n t a [i] ;

swap (i n t a , b) {
i n t i ;
i = a ;
a = b ;
b = i ;

}

i = 3 ;
a [3] = 6 ;

swap (i , a [i]) ;

• note: local and global variable i

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-67

Call-by-name illustrations

procedure P(par) : name par , i n t par
beg in

i n t x , y ;
. . .
par := x + y ; (∗ a l t e r n a t i v e : x := par + y ∗)

end ;

P(v) ;
P(r . v) ;
P (5) ;
P(u+v)

v r.v 5 u+v
par := x+y ok ok error error
x := par +y ok ok ok ok

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-68

Lazy evaluation

• call-by-name
• complex & potentially confusing (in the presence of side

effects)
• not really used (there)

• declarative/functional languages: lazy evaluation
• optimization:

• avoid recalculation of the argument
⇒ remember (and share) results after first calculation

(“memoization”)
• works only in absence of side-effects

• most prominently: Haskell
• useful for operating on infinite data structures (for

instance: streams)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-69

Lazy evaluation / streams

f i b : : I n t −> I n t −> [I n t]
f i b 0 _ = []
f i b m n = m : (f i b n (m+n))

g e t I t : : [I n t] −> I n t −> I n t
g e t I t [] _ = unde f ined
g e t I t (x : x s) 1 = x
g e t I t (x : x s) n = g e t I t xs (n−1)

Section
Virtual methods in OO

Chapter 8 “Run-time environments”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-71

Object-orientation

• class-based/inheritance-based OO
• classes and sub-classes
• typed references to objects
• virtual and non-virtual methods

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-72

Virtual and non-virtual methods + fields

c l a s s A {
p u b l i c :
double x , y ;
vo id f () ;
v i r t u a l vo id g () ;

} ;

c l a s s B: p u b l i c A {
p u b l i c :
double z ;
vo id f () ;
v i r t u a l vo id g () ;
v i r t u a l vo id h () ;

} ;

c l a s s C : p u b l i c B {
p u b l i c :
double u ;
v i r t u a l vo id h () ;

} ;

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-72

Virtual and non-virtual methods + fields

c l a s s A {
p u b l i c :
double x , y ;
vo id f () ;
v i r t u a l vo id g () ;

} ;

c l a s s B: p u b l i c A {
p u b l i c :
double z ;
vo id f () ;
v i r t u a l vo id g () ;
v i r t u a l vo id h () ;

} ;

c l a s s C : p u b l i c B {
p u b l i c :
double u ;
v i r t u a l vo id h () ;

} ;

A a

x

y

. . .

A-object

x

y

z

. . .

B-object

x

y

z

u

. . .

C-object

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-73

Call to virtual and non-virtual methods
non-virtual method f

call target
a.f A::f
b.f B::f
c.f B::f

virtual methods g and h
call target
a.g A::g or B::g
b.g B::g
c.g B::g

a.h illegal
b.h B::h or C::h
c.h C::h

A a

x

y

. . .

A-object

x

y

z

. . .

B-object

x

y

z

u

. . .

C-object

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-74

Late binding/dynamic binding

• details very much depend on the language/flavor of OO
• single vs. multiple inheritance?
• method update, method extension possible?
• single dispatch vs. multiple dispatch
• how much information available (e.g., static type

information)?
• simple approach: “embedding” methods (as references)

• seldomly done (but needed for updateable methods)
• using inheritance graph

• each object keeps a pointer to its class (to locate virtual
methods)

• virtual function table
• in static memory
• no traversal necessary
• class structure need be known at compile-time
• C++

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-75

Virtual function table
• static check (“type check”) of rX .f()

• for virtual methods: f must be defined in
X or one of its superclasses

• non-virtual binding: finalized by the
compiler (static binding)
• virtual methods: enumerated (with offset)

from the first class with a virtual method,
redefinitions get the same “number”
• object “headers”: point to the class’s

virtual function table
• rA.g():

c a l l r_A . v i r t t a b [g _ o f f s e t]

• compiler knows
• g_offset = 0
• h_offset = 1

x

y

virtual function
table pointer A::g

x

y

virtual function
table pointer

z

B::g

B::h

x

y

virtual function
table pointer

z

u

B::g

C::h

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-76

“Mutable” classes (e.g. Smalltalk)

• (all methods virtual)
• complication: classes

“mutable”, method
extension, extension
methods
• Thus: implementation of
x.g()
• go to the object’s class
• search for g following

the superclass
hierarchy.

head

x

y

A-object

super

A::g

head

x

y

z

B-object

super

B::g

B::h

head

x

y

z

u

C-object

super

C::h

⊥

Section
Garbage collection

Chapter 8 “Run-time environments”
Course “Compiler Construction”
Martin Steffen
Spring 2024

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-78

Management of dynamic memory: GC &
alternatives

• dynamic memory: allocation & deallocation at run-time
• different alternatives

1. manual
• “alloc”, “free”
• error prone

2. “stack” allocated dynamic memory
• typically not called GC

3. automatic reclaim of unused dynamic memory
• requires extra provisions by the compiler/RTE

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-79

Heap

• “heap” unrelated to the
well-known heap-data structure
from A&D
• part of the dynamic memory
• contains typically

• objects, records (which are
dynamocally allocated)

• often: arrays as well
• for “expressive” languages:

heap-allocated activation
records

• coroutines (e.g. Simula)
• closures for higher-order

functions

code area

global/static area

stack

free space

heap

Memory

https://en.wikipedia.org/wiki/Simula

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-80

Problems with free use of pointers

s

i n t ∗ dang l e (vo id) { q// r e t u r n type : p o i n t e r to an i n t
i n t x ; // l o c a l va r
r e t u r n &x ; // a d d r e s s o f x

}

typede f i n t (∗ proc) (vo id) ;

p roc g (i n t x) {
i n t f (vo id) { /∗ i l l e g a l ∗/

r e t u r n x ;
}
r e t u r n f ;

}

main () {
proc c ;
c = g (2) ;
p r i n t f ("%d\n" , c ()) ; /∗ 2? ∗/
r e t u r n 0 ;

}

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-80

Problems with free use of pointers

• as seen before: references, higher-order functions,
coroutines etc ⇒ heap-allocated ARs
• higher-order functions: typical for functional

languages,
• heap memory: no LIFO discipline
• unreasonable to expect user to “clean up” AR’s

(already alloc and free is error-prone)
⇒ garbage collection (already dating back to

1958/Lisp)

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-81

Some basic design decisions

• gc approximative, but non-negotiable condition: never
reclaim cells which may be used in the future
• one basic decision:

1. don’t move “objects”
• may lead to fragmentation

2. move objects which are still needed
• extra administration/information needed
• all reference of moved objects need adaptation
• all free spaces collected adjacently (defragmentation)

• when to do gc?
• how to get info about definitely unused/potentially used

obects?
• “monitor” the interaction program ↔ heap while it

runs, to keep “up-to-date” all the time
• inspect (at approriate points in time) the state of the

heap

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-82

Mark (and sweep): marking phase

• observation: heap addresses only reachable
directly through variables (with references), kept

in the run-time stack (or registers)
indirectly following fields in reachable objects, which

point to further objects . . .
• heap: graph of objects, entry points aka “roots” or root

set
• mark: starting from the root set:

• find reachable objects, mark them as (potentially) used
• one boolean (= 1 bit info) as mark
• depth-first search of the graph

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-83

Marking phase: follow the pointers via DFS

• layout (or “type”) of objects need
to be known to determine where
pointers are
• food for thought: doing DFS

requires a stack, in the worst case
of comparable size as the heap
itself

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-84

Compaction

Marked
Compacted

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-85

After marking?

• known classification in “garbage” and “non-garbage”
• pool of “unmarked” objects
• however: the “free space” not really ready at hand:
• two options:

1. sweep
• go again through the heap, this time sequentially (no

graph-search)
• collect all unmarked objects in free list
• objects remain at their place
• RTE need to allocate new object: grab free slot from

free list
2. compaction as well:

• avoid fragmentation
• move non-garbage to one place, the rest is big free

space
• when moving objects: adjust pointers

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-86

Stop-and-copy

• variation of the previous compaction
• mark & compaction can be done in recursive pass
• space for heap-managment

• split into two halves
• only one half used at any given point in time
• compaction by copying all non-garbage (marked) to the

currently unused half

INF5110 –
Compiler

Construction

Targets & Outline

Intro

Different layouts
Full static layout

Stack-based runtime
environments

Stack-based RTE with
nested procedures

Functions as parameters

Parameter passing

Virtual methods in
OO

Garbage collection

8-87

References I

Bibliography

[1] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Publishing.

	Run-time environments
	Targets & Outline
	Intro
	Different layouts
	Parameter passing
	Virtual methods in OO
	Garbage collection

