Chapter 10

Code generation

Course “Compiler Construction”
Martin Steffen
Spring 2024

Chapter 10
Learning Targets of Chapter “Code generation”.

S B, WN -

2AC

cost model

register allocation
control-flow graph
local liveness analysis (data flow analysis)

“ " - -
global” liveness analysis

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-2

KBS G
N

?@
e

Chapter 10
Outline of Chapter “Code generation”.

Intro

&

SNIVE
STnAS

2AC and costs of instructions

Basic blocks and control-flow graphs
Liveness analysis (general)

Local liveness: dead or alive

Local liveness*': Dependence graph
Global analysis

Code generation algo

Section

Intro

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2024

Code generation

® note: code generation so far: AST™ to intermediate
code

® three address intermediate code (3AIC)
¢ P-code

® = intermediate code generation
® j.e., we are still not there ...

® material here: based on the (old) dragon book [2] (but
principles still ok)

® there is also a new edition [1]

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-5

Intro: code generation

* goal: translate intermediate code (= 3Al-code) to
machine language

* machine language/assembler:

® even more restricted
® here: 2 address code

*® limited number of registers

* different address modes with different costs (registers
vs. main memory)

Goals

e efficient code
® small code size also desirable

® but first of all: correct code

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-6

Code “optimization”

often conflicting goals

code generation: prime arena for achieving efficiency
optimal code: undecidable anyhow (and: don't forget
there's trade-offs).

even for many more clearly defined subproblems:
untractable

“optimization”

interpreted as: heuristics to achieve “good code” (without
hope for optimal code)

due to importance of optimization at code generation

® time to bring out the “heavy artillery”

® so far: all techniques (parsing, lexing, even sometimes
type checking) are computationally “easy”

® at code generation/optimization: perhaps invest in
aggressive, computationally complex and rather
advanced techniques

® many different techniques used

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-7

Section

2AC and costs of instructions

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen

Spring 2024

2-address machine code used here

e “typical” op-codes, but not a instruction set of a
concrete machine

® two address instructions
® Note: cf. 3-address-code intermediate representation
vs. 2-address machine code

® machine code is not lower-level /closer to HW because it
has one argument less than 3AC

® it's just one illustrative choice

® the new Dragon book: uses 3-address-machine code

® translation task from IR to 3AC or 2AC: comparable
challenge

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-9

2-address instructions format

Format

OP source dest

® note: order of arguments here (esp. for minus)
® restrictions on source and target

® register or memory cell
® source: can additionally be a constant

ADD a b // b :=b + a
SUBab // b:=Db-—a
MULab // b:=b « a
GOTO i // unconditional jump

e further opcodes for conditional jumps, procedure calls

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-10

Side remarks: 3A machine code
Possible format

OP sourcel source2 dest

® but: what's the difference to 3A intermediate code?

® apart from a more restricted instruction set:
® restriction on the operands, for example:
® only one of the arguments allowed to be a memory
access
® no fancy addressing modes (indirect, indexed ... see
later) for memory cells, only for registers
® not “too much” memory-register traffic back and forth
per machine instruction

® example:
&xX = &y + *z

may be 3A-intermediate code, but not 3A-machine code

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-11

Cost model
® “optimization”: need some well-defined “measure” of
the "quality” of the produced code
® interested here in execution time
® not all instructions take the same time

® estimation of execution

* factors outside our control/not part of the cost model:

effect of caching

cost factors:

® size of instruction
® jt's here not about code size, but
® instructions need to be loaded
® longer instructions = perhaps longer load
* address modes (as additional costs: see later)

® registers vs. main memory vs. constants
® direct vs. indirect, or indexed access

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-12

Instruction modes and additional costs

op

mode (s)

mode (d) ‘ source address

destination address ‘

4 bytes 4 bytes 4 bytes

Modes and cost model

mode abbr. address added cost
absolute M M 1
register R R 0
indexed c(R) ¢+ cont(R) 1
indirect register ~ *R cont(R) 0
indirect indexed *c(R) cont(c + cont(R)) 1
literal H#M the value M 1 only for source

® indirect: useful for elements in “records” with known
off-set

® indexed: useful for slots in arrays

Examplesa := b + ¢

Using registers (costs=7)

MOV b, RO /

/ R
ADD ¢, RO // R
/ a

MOV RO, a /

Mem.-mem. ops (costs=7?)

MOV b, a // a
ADD c, a // a

+

a

Addresses in registers

(costs=7?)

MOV *R1, %R0 // %R0
ADD xR2, %R0 // %R0

*R1
*R2 + xR0

Assume RO, R1, and R2

contain addresses for a, b,

and ¢

Storing back to mem.

(costs=7?)

ADD R2, R1
MOV R1, a

// Rl =R2 + R1
// a =Rl

Assume R1 and R2 contain

values for b, and c

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-14

Examplesa := b + ¢

Using registers (costs=6)

MOV b, RO // RO = b
ADD ¢, RO // RO = c + RO
MOV RO, a // a = RO

Mem.-mem. ops (costs=6)

MOV b, a // a
ADD c, a // a

I
o o

+ a

Addresses in registers
(costs=2)

MOV *R1, %R0 // %R0
ADD xR2, %R0 // %R0

*R1
*R2 + xR0

Assume RO, R1, and R2
contain addresses for a, b,
and c

Storing back to mem.
(costs=3)

ADD R2, R1 // Rl = R2 + R1
MOV R1, a // a =R1

Assume R1 and R2 contain
values for b, and c

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-14

IAS G
N

?@
NGigas g

»

SNIVE
STnAS

Section

Basic blocks and control-flow graphs

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Basic blocks

® machine code level equivalent of straight-line code

(a largest possible) sequence of instructions without
® jump out
® jump in

* elementary unit of code analysis/optimization?

amenable to analysis techniques like

® static simulation/symbolic evaluation
® abstract interpretation

basic unit of code generation

Those techniques can also be used across basic blocks, but then
they become more costly and challenging.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-16

Control-flow graphs

CFG

basically: graph with

nodes = basic blocks

edges = (potential) jumps (and “fall-throughs™)

here (as often): CFG on 3AIC (linear intermediate code)
also possible CFG on low-level code,

or also:
* CFG extracted from AST?
® here: the opposite: synthesizing a CFG from the linear
code
explicit data structure (as another intermediate
representation) or implicit only.

2See also the exam 2016.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-17

From 3AC to CFG: “partitioning algo”
* remember: 3AIC contains /abels and (conditional)
jumps
= algo rather straightforward
® the only complication: some labels can be ignored
* we ignore procedure/method calls here

® concept: “leader” representing the nodes/basic blocks

Leader

e first line is a leader
* GOTO: line labelled i is a leader
® instruction after a GOTO is a leader

Basic block

instruction sequence from (and including) one leader to (but
excluding) the next leader or to the end of code

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-18

Partitioning algo

L1
L2

L5

L3

if goto L5
goto L3
if goto L1
goto L3

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-19

Partitioning algo

® note: no line jumps to Lo

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-19

3AIC for factorial (from previous chapter)

read x

tl = x>0

if_false tl goto L1
fact =1

label L2

t2 = fact * x
fact = t2
t3 =x —1

x = t3

td = x = 0

if_false t4 goto L2
write fact

label L1

halt

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-20

Factorial: CFG

goto/conditional goto:
never inside block
not every block

® ends in a goto

® starts with a label
ignored here:
function/method calls,
i.e., focus on

intra-procedural cfg

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-21

Levels of analysis

® here: three levels where to apply code analysis /
optimizations
levels

1. local: per basic block (block-level)
2. global: per function body/intra-procedural CFG
3. (inter-procedural: really global, whole-program analysis)

® better terminology: block-local, procedure-local etc.

® the “more global”, the more costly the analysis and,
especially the optimization (if done at all)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-22

Loops in CFGs

loop optimization: “loops” are thankful places for
optimizations
important for analysis to detect loops (in the cfg)

importance of loop discovery: not too important any
longer in modern languages.

Loops in a CFG vs. graph cycles

concept of loops in CFGs not identical with cycles in a
graph
all loops are graph cycles but not vice versa

intuitively: loops are cycles originating from source-level
looping constructs (“while”)

goto's may lead to non-loop cycles in the CFG
importance of loops: loops are “well-behaved” when
considering certain optimizations/code transformations
(goto's can destroy that...)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-23

Loops in CFGs

Loop L with header h
Loop L in a CFG: set of nodes, including header node
h e L:

1. any node in L: a pathin L to h

2. a path in L from h to any node in L

3. every edge that goes from outside L into L passes
through h

often additional assumption/condition: “root” node of a
CFG (there's only one) is not itself an entry of a loop

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-24

Loop example

® Loops:

® {Bs3, B4} (nested)

® {B4, B3, B1, Bs, Ba}
® Non-loop:

* {B1, B>, Bs}

® unique entry marked red

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-25

Loop non-examples

(a) (b)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-26

Loops as fertile ground for optimizations

while (i < n) {i++; A[i] = 3%k }

® possible optimizations

® move 3xk “out” of the loop
® put frequently used variables into registers while in the
loop (like 7)

® when moving out computation from the loop:
® put it “right in front of the loop”

= add extra node/basic block in front of the entry of the
loop3

3That’s one of the motivations for unique entry.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-27

Data flow analysis in general

e general analysis technique working on CFGs
® many concrete forms of analyses
* such analyses: basis for (many) optimizations

® data: info stored in memory/temporaries/registers etc.
® control:

® movement of the instruction pointer
® abstractly represented by the CFG

® inside elementary blocks: increment of the instruction
pointer

® edges of the CFG: (conditional) jumps

® jumps together with RTE and calling convention

Data flowing from (a) to (b)

Given the control flow (normally as CFG): is it possible or is
it guaranteed (“may” vs. “must” analysis) that some “data”
originating at one control-flow point (a) reaches control flow
point (b).

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-28

Data flow as abstraction

® data flow analysis DFA: fundamental and important Compier

Construction

static analysis technique

® it's impossible to decide statically if data from (a)
actually “flows to” (b)

Targets & Outline

Intro

= approximative (= abstraction) 2AC and costs of
® therefore: work on the CFG: if there are two Trrfta B e
options/outgoing edges: consider both contorlow
¢ Data-flow answers therefore approximatively Liveness analysis
® if it's possible that the data flows from (a) to (b) ie::‘ll)eness_
® it's neccessary or unavoidable that data flows from (a) dead or alive

to (b) Local livenesst 1
Dependence graph

e for basic blocks: exact answers possible

Global analysis

Code generation
algo

10-29

Section

Liveness analysis (general)

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Data flow analysis: Liveness

* prototypical / important data flow analysis

® especially important for register allocation

Basic question

When (at which control-flow point) can | be sure that |
don't need the current content of a variable (temporary,
register) any more?

® optimization: if not needed for sure in the future:
register can be used otherwise

Definition (Live)

A “variable” is live at a given control-flow point if there
exists an execution starting from there (given the level of
abstraction), where the current content of the variable is
used in the future.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-31

Definitions and uses of variables

“ . " .
variables”: also temporary variables are meant.

basic notions underlying most data-flow analyses
(including liveness analysis)

here: def’s and uses of variables (or temporaries etc.)

all data, including intermediate results, has to be stored
somewhere, in variables, temporaries, etc.

Def’s and uses

a “definition” of = assignment to x (store to x)

a “use” of x: read content of z (load x)

variables can occur more than once, so

a definition/use refers to instances or occurrences of
variables (“use of x in line I " or “use of = in block b ")

same for liveness: “z is live here, but not there”

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-32

Defs, uses, and liveness

x is "defined” (= assigned
to) in 0, 3, and 4

w is live “in" (= at the end
of) block 2, as it may be
used in 3

a non-live variable at some
point: “dead”, which means:
the corresponding memory
can be reclaimed

note: here, liveness across
block-boundaries = “global”
(but blocks contain only one
instruction here)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-33

Def-use or use-def analysis

use-def: given a “use”: determine all possible
"definitions”

def-use: given a “def”: determine all possible “uses”
for straight-line-code/inside one basic block
® deterministic: each line has has exactly one place where

a given variable has been assigned to last (or else not
assigned to in the block). Equivalently for uses.

for whole CFG:

® approximative (“may be used in the future”)
® more advanced techiques (caused by presence of
loops/cycles)
def-use analysis:
® closely connected to liveness analysis (basically the
same)
* prototypical data-flow question (same for use-def

analysis), related to many data-flow analyses (but not
all)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-34

Calculation of def/uses (or liveness ...)

® three levels of complication
1. inside basic block
2. branching (but no loops)
3. Loops
4. [even more complex: inter-procedural analysis]

For SLC/inside basic block For whole CFG

® deterministic result ® iterative algo needed
* simple “one-pass” ¢ dealing with
treatment enough non-determinism:

.. o . over-approximation
® similar to “static PP

“ " -
simulation” ® “closure” algorithms,

similar to the way e.g.,
dealing with first and
follow sets

* = fix-point algorithms

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-35

Section

Local liveness: dead or alive

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Inside one block: optimizing use of
temporaries

® simple setting: intra-block analysis & optimization, only
® temporaries:

® symbolic representations to hold intermediate results
® generated on request, assuming unbounded numbers
® intention: use registers

¢ limited about of register available (platform dependent)

Assumption about temps (here)

® temp's don't transfer data across blocks (# program
var's)

= temp’s dead at the beginning and at the end of a block

® but: variables have to be assumed live at the end of a
block (block-local analysis, only)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-37

Forward vs. backward

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-38

Intra-block liveness

® let's call operand: variables or
temp's

® neither temp’s nor vars in the
example are “single assignment”,

tl (= a — b

t2 = ti * 32 ® but first occurrence of a temp in a
:1 — :1 * (t: block: a definition (but for temps it
a = tl x a would often be the case, anyhow)

® uses of operands: on the rhs's,
definitions on the lhs's

® not good enough to say “t; is live
in line 4" (why?)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-39

Single step per line: transfer function

¢ liveness-status of an operand: different from lhs vs. rhs

. . . . INF5110 —
In a given Instruction Compiler

Construction

¢ informal definition: an operand is live at some
occurrence, if its content is used some place in the
future

Targets & Outline
Intro

o a2 . 2AC f
Definition (consider statement z; := x5 op x3) mstructions.

g g g g) . Basic blocks and
® Variable x is live at the beginning of x1 := x2 op x3, if control-flow
0 0 graphs
1. if z is 2o or x3, or

Liveness analysis

2. if x live at its end, if x and x; are different variables (general)
® A variable z is live at the end of an instruction, el
dead or alive
!f it's live at beg/nlnmg of the next instruction Local fivenoseH+:
® if no next instruction Dependence graph
® temp's are dead Global analysis
® user-level variables are (assumed) live Code generation
algo

10-40

Algo: dead or alive (binary info)

// —— initialise T
for all entries: T[i,x] := D
except: for all variables a // but not temps
T[n,a] = L,
//—— backward pass

i = n—1 down to O
instruction at i+1l: z:=yop z;

for instruction
let current

T[i,o] := T[i+1l,0] (for all other vars o)
T[i,x] := D // note order; x can '‘equal''
Tli,y] =L
T[i,z] =L

end

y

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-41

Algo: dead or alive (binary info) (2)

® Data structure T": table, mapping for each
line/instruction i and variable: boolean status of
“live” /"dead”

® represents liveness status per variable at the end (i.e.
rhs) of that line

® basic block: n instructions, from 1 until n, where “line
0" represents the “sentry” imaginary line “before” the
first line (no instruction in line 0)

® backward scan through instructions/lines from n to 0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-42

Run of of the algo

line| a b ¢ t1 to
0 |L L L D D
1 L L L L D
2 D L L L L
3 L L L L D
4 L L L L D
5 L L L D D

Table: Liveness analysis example: result of the analysis

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-43

»

SNIVE
STnAS

SAS G
@
8 4
Neigass

Section

Local liveness™": Dependence graph

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Adding information: next-use

® more refined information
® not just binary dead-or-alive but next-use info

= three kinds of information

1. Dead: D
2. Live:

® with local line number of next use: L(n)
® potential use of outside local basic block L(Ll)

® otherwise: same algo

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness T :
Dependence graph

Global analysis

Code generation
algo

10-45

Algo: alive with next use

/) —
for all
except:

[————
for

let cu
T[i
T[i
T[i
T[i
end

initia

lise T

entries: T[i, x]

for

instruction

rrent
0] =
x] =
oyl o=

z] =

all
T[n,a] :=
backward pass

D

variables a // but not temps
L(L),

i = n—1 down to O

D // note order; x can

instruction at
T[i+1l,0] (for
L(i+1)
L(t+1)

i+1:
all

T =yopz,;

other vars o)
‘Tequal !

y or z

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness T :
Dependence graph

Global analysis

Code generation
algo

10-46

g oA W N

Run of the algo

INF5110 —
Compiler
Construction

line a b c t1 to
[O] L(l) L(l) L(4) D D Targets & Outline
1 L(2> L(L) L(4) L(2) D Intro
2 D L(J_) L(4) L(S) L<3) 2A:: al:fi costs of
3 L(5) L(J_) L(4) L(4) D Basic blocks and
4 | L(5) L(L) L(L) L(5) D control o
graphs
5 L(J_) L(J_) L(J_) D D Liveness analysis
(general)
tl = a—b dend or aive.
t2 = tl * . 1.
a = tl x t2 Dependonce graph
tl = tl — ¢)
a — t1 % a Global analysis

Code generation
algo

10-47

Dependency graph and def-use

® small step from next-use of all-future-uses

Def-use analysis

Connect definitions with all their uses = dependency graph

® straight-line code
* acyclic graph = DAG (or partial order)
* nodes: (lines of) instructions (or variable instance)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness T :
Dependence graph

Global analysis

Code generation
algo

10-48

DAG of the block

INF5110 -

Compiler
Construction

t Targets & Outline
1
Intro
tl ;= a— b 2AC and costs of
t2 = t1 % a instructions
t2 a = tl x t2 Basic blocks and
t1l - tl — ¢ control-flow
a = tl x a graphs
1 Liveness analysis
(general)
a
Local liveness:

[NI VR SR

tl dead or alive

Local liveness ™71
Dependence graph

Global analysis

a

Code generation
algo

10-49

DAG of the block

s
X

(5)e

no linear order (as in
code), only partial order
the next use: meaningless
but: all “next” uses
visible

node = occurrence of a
variable

e.g.. node 1 for
“defining” t1 has three
uses

different “versions”
(instances) of ¢;

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness
Dependence graph

Global analysis

Code generation
algo

10-49

tl
t2
t3

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness T :
Dependence graph

Global analysis

Code generation
algo

10-50

Dependence graphs for pure expressions:
cf. AST!

INF5110 —
Compiler
Construction
tl = 2 % z
t2 = x 4+ tl
t3 ;= a4+ b Targets & Outline
X 1= t2 — t3

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness T :
Dependence graph

Global analysis

Code generation
algo

10-50

(S)SA format

*

*

t1
tl := a — b to
t2 = tl a
a = tl x t2
tl = tl — ¢
a = tl a a

ty

a

Figure: DAG for the 3AIC code
block

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness ™71
Dependence graph

Global analysis

Code generation
algo

10-51

(S)SA format

tl
t2
al
t3
a2

a0
tl
tl
tl
t3

b0
a0
t2
c0
al

/.

1
to
ai

@az

Figure: DAG for the 3AIC code
block

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local liveness ™71
Dependence graph

Global analysis

Code generation
algo

10-51

Section

Global analysis

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen
Spring 2024

Global data flow analysis

® block-local

® block-local analysis (here liveness): exact information
possible

® block-local liveness: 1 backward scan

® important use of liveness: register allocation,
temporaries typically don't survive blocks anyway

® global: working on complete CFG
2 complications

® branching: non-determinism, unclear which branch is
taken

* loops in the program (loops/cycles in the graph): simple
one pass through the graph does not cut it any longer

* exact answers no longer possible (undecidable)

work with safe approximations

Y

e this is: general characteristic of DFA

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-53

Generalizing block-local liveness analysis

® assumptions for block-local analysis

® all program variables (assumed) live at the end of each
basic block
® all temps are assumed dead there.

® now: we do better, info across blocks

at the end of each block:

which variables may be used in subsequent block(s).

® now: re-use of temporaries (and thus corresponding
registers) across blocks possible

® remember local liveness algo: determined liveness status
per var/temp at the end of each “line/instruction”

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-54

Connecting blocks in the CFG: inLive and
outLive

* CFG:

® pretty conventional graph (nodes and edges, often
designated start and end node)
® nodes = basic blocks = contain straight-line code (here
3AIC)
® being conventional graphs:
® conventional representations possible
® E.g. nodes with lists/sets/collections of immediate
successor nodes plus immediate predecessor nodes
® remember: local liveness status

® can be different before and after one single instruction
® liveness status before expressed as dependent on status
after
= backward scan

® Now per block: inLive and outLive

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-55

inLive and outLive

* tracing / approximating set of live variables* at the
beginning and end per basic block
® inLive of a block: depends on
® outLive of that block and
¢ the SLC inside that block

® outLive of a block: depends on inLive of the successor
blocks

Approximation: To err on the safe side
Judging a variable (statically) live: always safe. Judging

wrongly a variable dead (which actually will be used): unsafe

® goal: smallest (but safe) possible sets for outLive (and
inLive)

*To stress “approximation”: inLive and outLive contain sets of
statically live variables. If those are dynamically live or not is
undecidable.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-56

Example: factorial CFG

B5

&

@
read x
€1 = ox >

0
if_false tl
goto 1L

label Ll
halt

® inLive and outLive

® picture shows arrows as

successor nodes

® needed predecessor nodes

(reverse arrows)

node/block predecessors

By

0

{B1}
{Ba, B3}
{Bs}
{B1, Ba}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-57

Block local info for global liveness/data
flow analysis

* 1 CFG per procedure/function/method
e as for SLC: algo works backwards

e for each block: underlying block-local liveness analysis

3-valued block local status per variable

result of block-local live variable analysis
1. locally live on entry: variable used (before overwritten)
2. locally dead on entry: variable overwritten (before used)

3. status not locally determined: variable neither assigned
to nor read locally

e for efficiency: precompute this info, before starting the
global iteration = avoid recomputation for blocks in
loops

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-58

Global DFA as iterative “completion
algorithm”

o different names for the general approach
® closure algorithm, saturation algo
® fixpoint iteration
® basically: a big loop with
® iterating a step approaching an intended solution by
making current approximation of the solution larger
® until the solution stabilizes
* similar (for example): calculation of first- and
follow-sets
® often: realized as worklist algo

® named after central data-structure containing the
“work-still-to-be-done"

® here possible: worklist containing nodes untreated wrt.

liveness analysis (or DFA in general)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-59

Example

L1:

L5

L4:

a 5

x = 8

y = a + X

if_true x=0 goto L4

z = a + x // B3
a =y + z

if_false a=0 goto L1
a = a+1 // B2
y = 3 + x

a = x + vy

result := a + z

return result // B6
a =y + 8

y = 3

goto L5

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1

D lence graph

Global analysis

Code generation
algo

10-60

CFG: initialization

I ar=xt+y I
B
5 result:=a+z

A

y

Bg' return result '

inLive and
outLive: initialized
to () everywere
note: start with
(most) unsafe
estimation

extra (return) node

but: analysis here
local per
procedure, only

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-61

Iterative algo

General schema

Initialization start with the “minimal” estimation (0
everywhere)

Loop pick one node & update (= enlarge) liveness
estimation in connection with that node

Until finish upon stabilization (= no further
enlargement)

* order of treatment of nodes: in principle arbitrary®
® in tendency: following edges backwards

® comparison: for linear graphs (like inside a block):

® no repeat-until-stabilize loop needed
® 1 simple backward scan enough

®There may be more efficient and less efficient orders of treatment.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-62

Liveness: run

0
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

BG' return result '

{=,y, 2}

{r}

{r}
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

BG' return result '

{z,y, 2}

{=,y, 2}

{r}

{r}
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

BG' return result '

{z,y, 2}

{=,y, 2}

{r}

{r}
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

{z,y, 2}
B3

{=,y, 2}

{a,x, 2z}
Bz

{z,y, 2}

{r}

{r}
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

{z,y, 2}
B3

{=,y, 2}

{a,x, 2z}
Bz

{z,y, 2}

{r}

{r}
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

{z,y, 2}
B3

{a,z,a} {z,y, 2}

{a,x, 2z}
Bz

{z,y, 2}

{r}

{r}
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

0
0
Y 0
a+x |
{{a,z,y,z}

{z,y, 2}
B3

{a,z,a} {z,y, 2}

{a,x, 2z}
Bz

{z,y, 2}

{r}

{r}
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

0
0
Y {a, 2}
a+x
1|{ ar 20,2}

{z,y, 2}
B3

{a,z,a} {z,y, 2}

{a,x, 2z}
Bz

{z,y, 2}

{r}

{r}
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

Bo 0
{a, 2z}
Y (a2}
a+x |
/(a,2,4,2}

{z,y, 2}
B3

{a,z,a} {z,y, 2}

{a,x, 2z}
Bz

{z,y, 2}

{r}

{r}
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness: run

Bo {z}
{a, 2}
Y
{a, z}
a+x I
(a2 0,2)

{z,y, 2}
B3

{a,z,a} {z,y, 2}

{a,x, 2z}
Bz

{z,y, 2}

{r}

{r}
BG' return result '
0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-63

Liveness example: remarks

* the shown traversal strategy is (cleverly) backwards
® example resp. example run simplistic:

* the loop (and the choice of “evaluation” order):

“harmless loop”

after having updated the outLive info for B; following the
edge from Bj to By backwards (propagating flow from B;
back to B3) does not increase the current solution for B

* no need (in this particular order) for continuing the
iterative search for stabilization

® in other examples: loop iteration cannot be avoided

* note also: end result (after stabilization) independent
from evaluation order! (only some strategies may
stabilize faster...)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-64

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{z,y,a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{z,y,a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{a}

{y,a}
{y,a}

{a,z,y}

{z,y,a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{a}

{y,a}
{y,a}

{a,z,y}

{z,y,a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{a}

{y,a}

{y,a}

{a,z,y}

{z,y,2}

{=,2,a}

{z,z,a}

{z,y,a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{a}

{y,a}
{y,a}

{z,y,2}

{=,2,a}

{z,z,a}

{z,y,a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{a}

{y,a}

{y,2,a}

{z,y,2}

{=,2,a}

{z,z,a}

{z,y,a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{a}

{y,2,a}

{y,2,a}

{z,y,2}

{=,2,a}

{z,z,a}

x,y, 2, a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Another, more interesting, example

{a, 2}

{y,2,a}

{y,2,a}

{z,y,2}

{=,2,a}

{z,z,a}

x,y, 2, a}

a +y
result:=a+l

Bs
{r}

{r}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-65

Example remarks

® loop: this time: updating estimation more than once

® evaluation order not chosen ideally (but it's not
generally solvable)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-66

Precomputing the block-local “liveness
effects”

® precomputation of the relevant info: efficiency
® traditionally: represented as kill and generate
information
® here (for liveness)
1. kill: variable instances, which are overwritten
2. generate: variables used in the block (before
overwritten)
3. rests: all other variables won't change their status

Constraint per basic block (transfer function)

inLive = outLive\kill(B) U generate(B)

® note:
® order of kill and generate in above's equation
® a variable killed in a block may be “revived” in a block

® simplest (one line) example: x := x +1

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-67

Example once again: kill and gen

Bo

B

B5'k: {r,a}, g {z,y} '

Y

Bs'k: {} & {r} |

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

B

B5'k: {r,a}, g {z,y} '

Y

{r}
Bs'k: {} & {r} | .

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

B

0
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} | .

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

B

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} | .

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

{z,y}

B

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

{z,y}
{z,y}

B

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

{z,y}
{z,y}

B

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

{z,y}
{z,y}

B

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

ki {z,y}, g {a}

{y,a}

{y,a}
{z,y}

By

ki {z,y} g {a, vy}

{z,y}
{z,y}

k[k: {a}, g {y, 2z}

By

ki {z,y}, & {z,y}

B

{z,y,a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo {a}
ki {z,y} g {a}
{y,a}
{y,a}

Bi|k: {z,y} g {a,y}

{z,y}

{z,y}
{z,y}

k[k: {a}, g {y, 2z}

By

ki {z,y}, & {z,y}

B

{z,y,a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo {a}
ki {z,y} g {a}
{y,a}
{y,a}
Bi|k: {=,y}, g {a,y}
{a,z,y}

{z,y}
{z,y}

k[k: {a}, g {y, 2z}

By

ki {z,y}, & {z,y}

{z,2,a}

{z,y,a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

B

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo {a}
ki {z,y} g {a}
{y,a}
{y,a}
Bi|k: {=,y}, g {a,y}
{a,z,y}

0

{z,y}
{z,y}

k[k: {a}, g {y, 2z}

By

ki {z,y}, & {z,y}

{z,z,a}

{z,2,a}

{z,y,a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

B

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo {a}
ki {z,y} g {a}
{y,a}
{y,a}
Bi|k: {=,y}, g {a,y}
{a,z,y}

{x,y,z} {z,y}

{z,y}

k[k: {a}, g {y, 2z} ki {z,y} g {z,y}

By

{z,2,a}

{z,2,a}

{z,y,a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

Ba

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo {a}
ki {z,y} g {a}
{y,a}
{y,a}
Bik {z, v} g {a,y})
{a,z,y, 2}

{x,y,z} {z,y}

{z,y}

k[k: {a}, g {y, 2z} ki {z,y} g {z,y}

By

{z,2,a}

{z,2,a}

{z,y,a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

Ba

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo {a}
ki {z,y} g {a}
{y,a}
{y,z,a}
Bik {z, v} g {a,y})
{a,z,y, 2}

{z,y}
{z,y}

{z,y, 2}

By

k[k: {a}, g {y, 2z} ki {z,y} g {z,y}

{z,2,a}

{z,2,a}

{z,y,a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

Ba

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo

{a}

{y,2,a}

ki {z,y}, g {a}

{y,z,a}
B[k {z, vy}, & {a,y}),)
a,xr,y,z

{z,y}
{z,y}

{z,y,2}

By

k: {a}, g {y, z} ki {z,y} g {z,y}

{z,z,a}

{z,2,a}

!z, y, 2, a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

Ba |k {y} & {z}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Example once again: kill and gen

Bo {a, 2}

ki {z,y}, g {a}

{y,2,a}

{y,z,a}
B[k {z, vy}, & {a,y}),)
a,xr,y,z

{z,y}
{z,y}

{z,y,2}

By

k: {a}, g {y, z} ki {z,y} g {z,y}

{z,z,a}

{z,2,a}

!z, y, 2, a}

{z,y}
B5'k: {r,a}, g {z,y} '
{r}

Y

{r}
Bs'k: {} & {r} ' 0

Ba |k {y} & {z}

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-68

Section

Code generation algo

Chapter 10 “Code generation”
Course “Compiler Construction”
Martin Steffen

Spring 2024

Simple code generation algo

® simple algo: intra-block code generation
® core problem: register use
® register allocation & assignment

® hold calculated values in registers longest possible
® intra-block only = at exit:

® all variables stored back to main memory

® all temps assumed “lost”

® remember: assumptions in the intra-block liveness
analysis

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-70

Limitations of the code generation

® |ocal intra block:

® no analysis across blocks
® no procedure calls, etc.

® no complex data structures

@ arrays

® pointers
[J

some limitations on how the algo itself works for one
block

® for read-only variables: never put in registers, even if
variable is repeatedly read

® algo works only with the temps/variables given and
does not come up with new ones
® for instance: DAGs could help

® no semantics considered
¢ like commutativity: a + b equals b+ a

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-71

Purpose and “signature” of the getreg
function

® one core of the code generation algo
® simple code-generation here = simple getreg
getreg function

available: liveness/next-use info
Input: TAIC-instruction x := y op z

Output: return location where z is to be stored

® location: register (if possible) or memory location

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-72

Code generation invariant

it should go without saying ...
Basic safety invariant
At each point, “live” variables (with or without next use in

the current block) must exist in at least one location

® another invariant: the location returned by getreg: the
one where the result of a 3AIC assignment ends up

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-73

Register and address descriptors

® code generation/getreg: keep track of

1. register contents
2. addresses for names

Register descriptor Address descriptor

* tracking current * tracking location(s) where
“content” of reg's (if current value of name can be
any) found

® consulted when new ® possible locations: register,
reg needed stack location, main memory

® as said: at block ® > 1 location possible (but not
entry, assume all regs due to over-approximation,
unused exact tracking)

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-74

Code generation algo for z := y op 2
1. determine location (preferably register) for result

| = getreg(""x ;= y op z'")
|

2. make sure, that the value of y isin [:

® consult address descriptor for y = current locations [,

for y

® choose the best location I, from those (preferably
register)

® if value of y not in [, generate

MOV 1y, |
L

3. generate

OP Il,, | // l,: a current location of z (prefer reg's)

® update address descriptor [z —]
® if [is a reg: update reg descriptor | — x

4. exploit liveness/next use info: update register
descriptors

Skeleton code generation algo for
r =1y op 2

I = getreg('"x:= y op z'') // target location for x
if 1¢T.(y) then let Iy € Te(y)) in emit ("MOV I, I");
let I, € Ta(z) in emit ("OP I,,l");

® “skeleton”

® nondeterministic: we ignored how to choose [, and [,

® we ignore bookkeeping in the name and address
descriptor tables (= step 4 also missing)

® details of getreg hidden.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-76

| = getreg("x:= y op z'') // generate target location
1 Tuly)
then let Iy €Ty(y)) // pick a location for y
in emit (MOV [,, |)
else skip;

. i INF5110 —
let [, ETG(Z) in emit ("OP Iy, | "); Compiler
T, =T, [l‘ —uU l] ; Construction

if | is a register

then T, =T [l—x
T T[] Targets & Outline

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-77

Exploit liveness/next use info: recycling
registers

® register descriptors: don't update themselves during
code generation

® once set (e.g. as Ry +— t), the info stays, unless reset

® thus in step 4 for z := x op y:

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-77

Code generation algo for z := y op 2
Il = getreg("i: x := y op z") // i for instructions line number/label
i Lg Tuly)
then let Iy, = best (Ta(y))

in emit ("MOV [, I")
else skip;
let I, = best (Tu(2))
in emit ("OP[.,l");

To:=T\(_+—1);

To:=Talz —1];
if l is a register
then T, :=T:[l— z];

it Tyeli,y] and To(y) =7 then Tp:=T\(r —y)
if —Theli, 2] and To(z) =r then T, :=T.\(r— z)

Updating and exploit liveness info by recycling reg’s
if y and/or z are currently

® not live and are

® in registers,

= “wipe" the info from the corresponding register
descriptors

getreg algo: x : =y op 2

® goal: return a location for x
® basically: check possibilities of register uses

® starting with the “cheapest” option

Do the following steps, in that order

1. in place: if x is in a register already (and if that's fine
otherwise), then return the register

2. new register: if there's an unused register: return that

3. purge filled register: choose more or less cleverly a
filled register and save its content, if needed,
and return that register

4. use main memory: if all else fails

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-79

getreg algo: x :=y op z in more details
1. if
® y in register R
® R holds no alternative names
® y is not live and has no next use after the 3AIC
instruction
® = return R

. else: if there is an empty register R’: return R’
3. else: if

N

® 1z has a next use [or operator requires a register] =

® find an occupied register R
® store R into M if needed (MOV R, M))

® don't forget to update M 's address descriptor, if

needed
® return R

4. else: x not used in the block or no suitable occupied

register can be found
® return x as location [

® choice of purged register: heuristics

® remember (for step 3): registers may contain value for

> 1 variable = multiple mov's

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-80

Sample TAIC

d := (a-b) + (a-c) + (a-c) INF5110 —
Compiler
Construction

Targets & Outline

0 < C
(L [T
< + L L
.
cc oo

Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

u (Y

D D

D D
L(3) D Local liveness™+:
L(4) L(4)

D D

Dependence graph

Global analysis

ICECECECTES

Code generation
algo

10-81

Code sequence

3AIC 2AC reg. descr. addr. descriptor
Ro Ry a b ¢ d t u Y,
[0] L L a b ¢ d t v
1 [t:=a-b | MOV a, RO [a] [Ro]
SUB b, RO t R Ro
2 |u:=a-c | MOVa, Rl . [a] [Ro]
SUB ¢, R1 u RS Ry
3 | vi=t+u | ADDRL, RO v - R Ro
4 | d:=v+u | ADDRL, RO d Ro R
MOV RO, d
R;: unused all var's in "home position” \

address descr's: “home position” not explicitly needed.

e.g. variable a to be found “at a " (if not stale), as
indicated in line “0".

in the table: only changes (from top to bottom)

indicated
after line 3:
® { dead

® ¢ resides in Ry (and nothing else in Ry)

> reuse Ry

Remark: info in [brackets|: “ephemeral”

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-82

References |

Bibliography

[1] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers: Principles, Techniques and
Tools. Pearson,Addison-Wesley, second edition.

[2] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and Tools.
Addison-Wesley.

INF5110 —
Compiler
Construction

Targets & Outline
Intro

2AC and costs of
instructions

Basic blocks and
control-flow
graphs

Liveness analysis
(general)

Local liveness:
dead or alive

Local livenesst 1
Dependence graph

Global analysis

Code generation
algo

10-83

	Code generation
	Targets & Outline
	Intro
	2AC and costs of instructions
	Basic blocks and control-flow graphs
	Liveness analysis (general)
	Local liveness: dead or alive
	Local liveness++: Dependence graph
	Global analysis
	Code generation algo

