
Java Path Finder (JPF)
Christian Bergum Bergersen
June 1, 2015

What is Java Path Finder?

I Java Path Finder is an open-source analysis system that
automatically verifies/model check Java programs. Initially
developed by NASA.

I The Java code is the model for JPF. Using a customizable
Virtual Machine that supports features such as state storage,
state matching and much more! Actually a VM running on top
of JVM.

I Module based, the core JPF model supports checks for generic
properties such as absence of unhandled exceptions, deadlocks,
and race conditions.

June 1, 2015 2

Java Path Finder components

June 1, 2015 3

Example: Java code with race-condition

1 c l a s s Racer extends Thread {
2 s t a t i c i n t s h a r e d I n t = 0 ;
3

4 p ub l i c vo i d run () {
5 System . out . p r i n t f ("Thread %d s t a r t e d !\ n" , g e t I d ()) ;
6 f o r (i n t i = 0 ; i < 10000 ; i++) {
7 s h a r e d I n t++;
8 }
9 }

10

11 p ub l i c s t a t i c vo i d main (S t r i n g [] a) throws Excep t i on {
12 new Racer () . s t a r t () ; new Racer () . s t a r t () ;
13 Thread . s l e e p (1000) ;
14 System . out . p r i n t l n ("Value : " + s h a r e d I n t) ;
15 }
16 }

June 1, 2015 4

$ java Racer
Thread 8 started!
Thread 9 started!
Value: 19786

$ java Racer
Thread 8 started!
Thread 9 started!
Value: 18702

I Non-deterministic result due to concurrency without
synchronization. Value: should be 20000 !

I In Java, this is easily fixed by adding a mutex (synchronized
method or block).

June 1, 2015 5

I This example is small and trivial, but JPF can also be used to
find race-conditions in much bigger and complex programs!

$ java -jar RunJPF.jar ../Racer.jpf

JavaPathfinder v7.0 - (C) RIACS/NASA Ames Research Center
== system under test
Racer.main()
== error 1
gov.nasa.jpf.listener.PreciseRaceDetector
race for field Racer.globalInt

Thread-1 at Racer.run(Racer.java:7)
"sharedInt++;" : putstatic

Thread-2 at Racer.run(Racer.java:7)
"sharedInt++;" : getstatic

June 1, 2015 6

Testing/Runtime verification vs Model
Checking

I When writing and executing a test for a program, you only
execute a single execution path! Almost impossible to identify
and write a test for all execution paths!

I A model checker as JPF can identify all execution paths,
execute them and show traces leading to errors.

I For n threads with m statements each, the number of possible
scheduling sequences equals t.

t =
(n ∗ m)!

m!n

June 1, 2015 7

The State Space Explosion Problem
Since concurrent actions can be executed in any arbitrary order,
considering all possible interleaving’s of concurrent actions can lead
to a very large state space. It can be shown that the number of
states increases exponentially with the number of threads.

In JPF this means limitations in the size of programs JPF manage
to check. Often when model checking big programs in JPF you will
see:

Too little memory to hold all states

java.lang.OutOfMemoryError: Java heap space

June 1, 2015 8

Possible Solution - The State Explosion
Problem
It would be very tempting to give the JVM more/unlimited memory
so it can hold all states in memory. However, thought JPF can hold
all states in memory, the execution time needed to check all
interleaving’s between threads may take hours to days for quite
small programs.

June 1, 2015 9

Good solution - The State Explosion
Problem

I Reducing the size of the state space that needs to be checked.
I The challenge is to reduce the full state space into a subset

without losing semantic.

Partial Order Reduction
A solution is to use a technique called Partial Order Reduction
(POR) which basically groups all instructions in a thread, that do
not have any effects outside the thread, into a single transition.

June 1, 2015 10

Partial Order Reduction (POR)

I JPF uses an on-the-fly partial order reduction algorithm to cut
down the state space by identifying sets of concurrent actions.

I On-the-fly means that JPF under runtime executing the code
inspects instructions.

I State transition is determined by the instruction type in JPF.

June 1, 2015 11

Partial Order Reduction (POR)

June 1, 2015 12

Partial Order Reduction (POR) Example

June 1, 2015 13

Partial Order Reduction (POR) Example

June 1, 2015 14

Conclusion

I We have only looked on a tiny core part of JPF, namely
deadlock detection and the use of partial order reduction to
collapse the state space.

I The important part is partial order reduction.
I Partial order reduction is used to construct a reduced state

graph, without losing behavior.
I Reduced state graphs gives us the benefits of a reduced state

space that needs to be model checked, can be applied in
automatic and manual (by human) model checking.

June 1, 2015 15

References

I W.Visser, K.Havelund, G.Brat and S.P. "Model Checking
Programs"

I Nastaran Shafiei. "Partial Order Reduction of Java Path
Finder". 2010.

I Pavel Parizek. "Java Pathfinder". Slides.
I Peter C. Mehlitx. "Java Pathfinde Lecture 2: Under the

hood". Slides.
I Illustrations on slide 3 and 14 is taken from Java Path finder

website, visited 19.5.2015.
http://babelfish.arc.nasa.gov/trac/jpf/wiki

I Blue slides taken from: http:
//www.uio.no/studier/emner/matnat/ifi/INF5140/v09/
undervisningsmateriale/10-3-Holzmann-Ch9.pdfJune 1, 2015 16

http://babelfish.arc.nasa.gov/trac/jpf/wiki
http://www.uio.no/studier/emner/matnat/ifi/INF5140/v09/undervisningsmateriale/10-3-Holzmann-Ch9.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5140/v09/undervisningsmateriale/10-3-Holzmann-Ch9.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5140/v09/undervisningsmateriale/10-3-Holzmann-Ch9.pdf

