
UNIVERSITY OF OSLO
Department of Informatics

INF5150
Obligatory Exercise
Drop 2

Group 3:
Bjørn Olav Samdal,
Florian Müller,
Ingar Vindenes,
Shawn Svendsen,
Tom Lysemose

18th November 2005

Contents

1 Introduction 4
1.1 Rational Software Modeler. 4

2 Executable UML Design 5
2.1 Class Diagram. 5
2.2 Signals. 6
2.3 Composite Structure: MBDS. 7
2.4 Composite Structure: Controller. 8
2.5 Composite Structure: EventHandler. 10
2.6 Controller State Machine. 12
2.7 Session State Machine. 14
2.8 EventHandler State Machine. 16
2.9 Event State Machine. 18
2.10 User explanation. 20
2.11 Using the GUI. 20
2.12 Using SMS . 21
2.13 Additional information . 21

3 Risk Analysis 22
3.1 Context identification. 22
3.2 Risk identification. 25
3.3 Risk analysis . 26
3.4 Risk evaluation . 27
3.5 Risk treatment. 28

4 Refinement proof 30

3

1 Introduction

This paper describes our proposal for a solution to the second obligatory exercise in INF5150,
or Drop2. The main goal in Drop2 is to create an executable UMLdesign of the solution
provided by the teachers to the first exercise - hereafter called Drop11.In section2 on the fa-
cing page we will go into detail about our design, and how to run and test it.

The provided solution, that our solution is built on, is set of models describing a system called
“ "Multiple Blind Date System"(MBDS). As the name suggest, it is a system to help people
meet others - without knowing in advance who they will meet. This is done by letting the
users of the system send SMS messages to join events. Before the event take place the MBDS-
service will return a SMS message containing information about the event location, and how
to get there to the user. Drop1 consist mainly of as set of assumptions, a class diagram, the
composite structure and sequence diagrams modelling the MBDS-service. The diagrams show
how three different specifications can be implemented, and in addition how the last two are
refinements of the first.

After the executable UML design, we will briefly explain how we may understand the design
as a refinement of Drop1.

The next part of our solution is a risk analysis using the CORAS tool. The CORAS tool is a
system built on open standards that support the CORAS methodology. It is a efficient way of
performing a risk analysis in a structured approach. The requirements limit the analysis to four
risks that does not meet the risk evaluation criteria - to limit the work load.

1.1 Rational Software Modeler

The main tool used to create the executable UML design is the Rational Software Modeler
(RSM). The UML design will be compiled into JavaFrame through a RSM-plugin provided by
the course management. The installation and adjustments tomake this work took quite a long
time.

The RSM software used is not the perfect tool to make models, especially regarding the state
machines. We also had problems when exporting the diagrams as images. Sometimes RSM
didn’t include all the parts of the diagram when exporting itas an image - without giving any
error messages - making the exported diagram faulty.

1This should not be mixed with our proposal for the first obligatory exercise, which was also called Drop1

4

2 Executable UML Design

2.1 Class Diagram

The class diagram is equal to the class diagram of the solution of Drop1. The phone num-
bers2 of the customers are stored as Strings. When a list as a data type was needed, the class
ArrayList out of thejava.util package was used. The classesLocationSupplier,
Event andControllerSM contain attributes of this data type.

The classPhoneNo just contains the attributenumber of the typeString.

Figure 1: MBDS class diagram

2For the unique identification of the users a unique sms identifier, given by PATS, is used.

5

2.2 Signals

The following signals are used within our system:

• ClosestBusStop (PhoneNo phoneNo, String depBusStopID, String depBusStopName)

• EventMade (String eventType, long time, String locName)

• GetClosestBusStop (PhoneNo phoneNo, String custPos)

• GetLocation (PhoneNo phoneNo)

• GetLocInfo (String locName, long eventID)

• JoinEvent (PhoneNo phoneNo, String eventType, long time)

• JoinEventOk (PhoneNo phone)

• LocInfo (long eventID, String destBusStopID, String destBusStopName)

• MakeEvent (String eventType, long time, String locName)

• TooMany (PhoneNo phoneNo)

• TrigEventMessage (PhoneNo phoneNo, String eventType, String locName, String dest-
BusStopID, String destBusStopName)

6

2.3 Composite Structure: MBDS

Since it is a given constraint by JavaFrame, parts within thecomposite structure diagrams can
only be either another composite or a statemachine. Our compositeBDSystem equals the
BDSystem-composite of the Drop1 with a additionalInputEdgeMediator called“Gui-
InputMediator” This mediator offers a graphical user interface for a simplified usage. The
other mediators use theDynOutMediator andSmsOutputMediator types.

The partscontroller andeventhandler are other composites,locationsupplier
is a statemachine, which will be desribed in a more more detailed later on.

Figure 2: Composite Structure MBDS

7

2.4 Composite Structure: Controller

TheController composite is also very similar to the given composite of Drop1. It contains
two parts:

1. controllersm of typeControllerSM: It is a statemachine und has a central role,
it handles all incoming sms messages and forwards incoming messages from the location
supplier and the eventhandler to the right session instances.

2. sessionsm of typeSessionSM: A instance of the type Session is created everytime
a customer wants to join an event. “It handles the communication with the customer
related to his particular event” (from Drop1 solution).

If the controller receives a SMS message, the following preprocessing algorithm will be ex-
ecuted within the SMSEffect2 activity:

Listing 1: SmsEffect2 activity
1 System .out .println (" [Cont ro l le rSM] SMS r e c e i v e d : "+sig .getMessage ()) ;

/ / p r e p r o c e s s sms message t e x t
sig .setMessage (sig .getMessage () .substring (sig .getMessage () .indexOf (" ") ←֓

+1)) ;
sig .setMessage (sig .getMessage () .substring (sig .getMessage () .indexOf (" ") ←֓

+1)) ;
5 sig .setMessage (sig .getMessage () .substring (sig .getMessage () .indexOf (" ") ←֓

+1)) ;
System .out .println (" [Cont ro l le rSM] P r e p r o c e s s e d message t e x t : "+sig . ←֓

getMessage ()) ;

As one can see,ControllerSM contains the mediatortoSessionwhich type is
DynSessionRouter. This class has the stereotypeSimpleRouterMediator and for-
wards messages to dynamical created instances of the classSession with the following al-
gorithm:

Listing 2: DynSessionRouter activity
/ / fo rward t o r e q u e s t e d s e s s i o n

2 String phonenumber = new String () ;
i f (sig i n s t a n c e o f JoinEventOk) {

phonenumber = ((JoinEventOk)sig) .phone .number ;
} e l s e i f (sig i n s t a n c e o f TrigEventMessage) {

6 phonenumber = ((TrigEventMessage)sig) .phoneNo .number ;
} e l s e i f (sig i n s t a n c e o f PosResult) {

System .out .println (" [Cont ro l le rSM] Rece ived P osResu l t from " + ((←֓
PosResult)sig) .getMessageId ()) ;

phonenumber = ((PosResult)sig) .getMessageId () ;
10 } e l s e i f (sig i n s t a n c e o f ClosestBusStop) {

phonenumber = ((ClosestBusStop)sig) .phoneNo .number ;
} e l s e i f (sig i n s t a n c e o f DynInfo) {

phonenumber = ((DynInfo)sig) .getRoutingInfo () ;
14 } e l s e i f (sig i n s t a n c e o f TooMany) {

phonenumber = ((TooMany)sig) .phoneNo .number ;

8

}

18 f o r (i n t i=0; i<mediatorList .size () ; i++) {
ToSessionSMMediator mediator = (ToSessionSMMediator) mediatorList .get (←֓

i) ;

i f (phonenumber .equals (mediator .phoneNo .number)) {
22 mediator .forward (sig) ;

System .out .println (" [DynSess ionRouter] DynRouter : s i g i s f o rwarded "←֓
) ;

}
}

Instances of the typeSessionSM got the parametersphoneNo, eventType andtime
with the data typesPhoneNo, String andlong. More details about the usage of these
parameters will be given later on.

Figure 3: Composite Structure: Controller

9

2.5 Composite Structure: EventHandler

The compositeEventHandler contains the partseventhandlersm of the type
EventHandlerSM and dynamical created partsevent typeEvent. eventhandlersm
creates new events and forwards messages that are addressedto single events. Instances of
the typeEvent are dynamical created byeventhandler as response on aMakeEvent
signal. They expect the parameterseventStartTime (long), eventType (String),
locName (String) andmyID (long), which is a unique identifier for the event.

The eventhandlersm forwards messages for single events through the porttoEvent
which is of the type
DynEventRouter. DynEventRouter is a class with the stereotypeSimpleRouterMediator
and uses the following algorithm for the message forwarding:

Listing 3: DynEventRouter activity
i f (sig i n s t a n c e o f LocInfo) {

/ / fo rward message t o r e q u e s t e d e v e n t
3 LocInfo locinfo = (LocInfo)sig ;

f o r (i n t i=0; i<mediatorList .size () ; i++) {
ToEventSMMediator mediator = (ToEventSMMediator) mediatorList .get (i) ;

7 System .out .println (" [DynEventRouter] DynRouter : med ia to r . myID = " +←֓
mediator .myID) ;

System .out .println (" [DynEventRouter] DynRouter : l o c i n f o . event ID = " + ←֓
locinfo .eventID) ;

i f (locinfo .eventID==mediator .myID) {
11 mediator .forward (locinfo) ;

System .out .println (" [DynEventRouter] DynRouter : l o c i n f o i s ←֓
f o rwarded ") ;

}
15 }

} e l s e i f (sig i n s t a n c e o f JoinEvent) {
/ / fo rward message t o r e q u e s t e d e v e n t
JoinEvent joinevent = (JoinEvent)sig ;

19 f o r (i n t i=0; i<mediatorList .size () ; i++) {
ToEventSMMediator mediator = (ToEventSMMediator) mediatorList .get (i) ;

i f (joinevent .time==mediator .time && joinevent .eventType . ←֓
equalsIgnoreCase (mediator .eventType)) {

23 mediator .forward (joinevent) ;

System .out .println (" [DynEventRouter] DynRouter : j o i n e v e n t i s ←֓
f o rwarded ") ;

}
27 }

}

10

Figure 4: Composite Structure: EventHandler

11

2.6 Controller State Machine

TheControllerSM receives incoming SMS messages. It checks, wether it is a join message
or another one3. If a SMS message is recognized as a join message, a new instance of the type
SessionSM is created. Otherwise the following algorithm processes the SMS message:

Listing 4: SmsEffect activity
/ / Handles SMS messages
/ / sms fo rmat : to , from , message
/ / message fo rmat : j o i n−eventType−t ime OR make−eventType−t ime−locName OR ←֓

r e g i s t e r−me
4 csm .user_id=sig .getFrom () ;
csm .smstext=sig .getMessage () ;
String [] parts = csm .smstext .split ("−") ;
System .out .println (" Rece ived message : u s e r _ i d : "+csm .user_id+" , message ←֓

p a r t s ("+parts .length+") : ") ;
8 f o r (i n t i=0; i<parts .length ; i++) {

System .out .print (parts [i]+ " ") ;
}
System .out .println () ;

12 i f (parts [0] . equalsIgnoreCase(" make ")) { / / make−message
/ / make even t−hand l i ng
System .out .println (" [Cont ro l le rSM] C r e a t e even t ") ;
output (new MakeEvent (parts [1] , Long .parseLong (parts [2]) ,parts [3]) , csm . ←֓

toEventH2 ,csm) ;
16 } e l s e i f (parts [0] . equalsIgnoreCase(" r e g i s t e r ")) { / / r e g i s t e r message

i f (csm .registeredCustomers== n u l l) { csm .registeredCustomers=new ←֓

ArrayList () ; }
csm .registeredCustomers .add (new Customer (new PhoneNo (csm .user_id))) ;
System .out .println (" [Cont ro l le rSM] R e g i s t e r cus tomer "+csm .user_id+" . ←֓

Over a l l : "+csm .registeredCustomers .size ()) ;
20 output (new Sms (" S u c c e s s f u l l y r e g i s t e r e d "+csm .user_id ,csm .user_id , " ←֓

2034 ") ,csm .toEnv ,csm) ;
}

If an event was created by the event handler, the controller will notify all registered custom-
ers about the new event. This happens, when the controller receives a message of the type
EventMade and is shown in the following algorithm:

Listing 5: EventMade activity
/ / N o t i f y a l l r e g i s t e r e d u s e r s about new e v e n t
EventMade em=(EventMade)sig ;

3 i f (csm .registeredCustomers!= n u l l) {
ListIterator li=csm .registeredCustomers .listIterator () ;
wh i l e (li .hasNext ()) {

Customer c=(Customer)li .next () ;
7 System .out .println (" [Cont ro l le rSM] N o t i f y i n g "+c .phoneNo .number+" ←֓

abou t new even t ") ;
output (new Sms ("New even t : Type : "+em .eventType+" , Loc : "+em . ←֓

locName+" a t "+em .time ,c .phoneNo .number , " 2034 ") ,csm .toEnv ,csm) ;
}

}

3In our implementation the SMS message types arejoin, registerandmake.

12

All other incoming messages are forwarded to the single sessions whose identifiers are con-
tained within the single messages.

Figure 5: Controller State Machine

13

2.7 Session State Machine

TheSessionSM handles the communication with a single customer related toa particular
event.

When aSessionSM is created, it sends aJoinEvent message to the event handler that is
supposed to forward this message to the single event:

Listing 6: JoinEventEffect activity of SessionSM
/ / send j o i n e v e n t message t o e v e n t hand le r

2 output (new JoinEvent (csm .phoneNo ,csm .eventType ,csm .time) ,csm .toEventH ,csm ←֓
) ;

Afterwards, the instance ofSessionSM is waiting for a reply of the event. If the event is full,
we will receive a TooMany message and send a notification about this to the customer, saying
that the joining is not possible:

Listing 7: TooManyEffect activity
/ / send n e g o t i a t i o n t o cus tomer

2 output (new Sms (" Sorry , bu t you canno t j o i n t h e even t "+csm .eventType+" a t ←֓
"+csm .time+" , because i t i s t oo f u l l . " ,csm .phoneNo .number , " 2034 ") , ←֓

csm .toEnv ,csm) ;

If the joining is possible, we will receive a JoinEventOk message from the event and we will
send a confirmation for the successful joining to the customer:

Listing 8: JoinEventOkEffect activity
/ / send c o n f i r m a t i o n t o cus tomer

2 output (new Sms (" S u c c e s s f u l l y j o i n e d t h e even t "+csm .eventType+" a t "+csm . ←֓
time+" ! " , csm .phoneNo .number , " 2034 ") ,csm .toEnv ,csm) ;

In the state“WaitingForEventTrigger” the session is waiting for the notification trigger. At an
appropriate time, theSessionSM instance will get aTrigEventMessagemessage, which
contains information about the event that is going to take place. These information will be
stored and the location of the customers mobile will be requested at PATS:

Listing 9: trigEventMessageEffect activity
/ / save e v e n t i n f o r m a t i o n

2 csm .locName=sig .locName ;
csm .destBusStopID=sig .destBusStopID ;
csm .destBusStopName=sig .destBusStopName ;
System .out .println (" [SessionSM] S e s s i o n "+csm .phoneNo .number+" was ←֓

t r i g g e r e d : Event a t "+csm .locName) ;
6

/ / g e t L oca t i on o f t h e cus tomer
PosRequest pr=new PosRequest (csm .phoneNo .number) ;
pr .setMessageId (csm .phoneNo .number) ;

10 output (pr ,csm .toEnv ,csm) ;

14

After we received the position, we store it and ask for the closest bus stop regarding this posi-
tion:

Listing 10: PosResultEffect activity
/ / g e t c l o s e s t Bus s t o p

2 csm .smstext = sig .getPositioningResult () ;

i n t ix = csm .smstext .indexOf ("<Breddegrad >") ;
csm .latitude = csm .smstext .substring (ix+12 ,ix+19) ;

6 ix = csm .smstext .indexOf ("<Lengdegrad >") ;
csm .longitude = csm .smstext .substring (ix+12 ,ix+20) ;
System .out .println (" [SessionSM] Tracked p o s i t i o n of cus tomer "+csm . ←֓

phoneNo .number+" : "+csm .latitude+" "+csm .longitude) ;

10 output (new GetClosestBusStop(csm .phoneNo ,csm .latitude+" "+csm .longitude) , ←֓
csm .toLocSup ,csm) ;

After we received the closest bus stop, we have all information that we need for a route request
to Trafikanten:

Listing 11: ClosestBusStopEffect activity
/ / save r e s u l t s

2 csm .depBusStopID=sig .depBusStopID ;
csm .depBusStopName=sig .depBusStopName ;
System .out .println (" [SessionSM−"+csm .phoneNo .number+"] S t o r e d d e p a r t u r e ←֓

i n f o r m a t i o n : "+csm .depBusStopName+" ("+csm .depBusStopID+") ") ;

6 / / DynRequest t o T r a f i k a n t e n
String dynroute="SN$"+csm .depBusStopID ;
System .out .println (" [SessionSM−"+csm .phoneNo .number+"] DynRoute r e q u e s t : ←֓

"+dynroute) ;
output (new DynRequest (dynroute ,csm .phoneNo .number) ,csm .toDynTraf ,csm) ;

In the end we send a notification message to the customer:

Listing 12: DynInfoEffect activity
/ / send n o t i f i c a t i o n SMS t o cus tomer
System .out .println (" [SessionSM−"+csm .phoneNo .number+"] Rece ived DynRoute ←֓

message ") ;
3

DynRoute dr= ((DynInfo)sig) .getDynRoutes () [0] ;
/ / send n o t i f i c a t i o n t o cus tomer
System .out .println (" [SessionSM] N o t i f i c a t i o n i s s e n t t o cus tomer "+csm . ←֓

phoneNo .number) ;
7 output (new Sms (csm .eventType+" a t "+csm .time+" : Take l i n e # "+ dr . ←֓

getLineText () +" from "+csm .depBusStopName+" t o "+dr . ←֓
getDestinationStop () +" a t "+dr .getExpectedDepatureTime () .substring ←֓
(1 1 , 1 6) +" . Get ou t a t : "+csm .destBusStopName , csm .phoneNo .number , " ←֓
2034 ") , csm .toEnv , csm) ;

15

Figure 6: Session State Machine

2.8 EventHandler State Machine

The event handler has basically two functions:

1. Create a new event - When aMakeEventmessage is received the event handler creates
a new instance ofEvent. The unique identifier of the the single events is a static counter
of the typelong that is incremented everytime before a new instance is created.

2. Forward messages to single events - Both,JoinEvent andLocInfo messages, are
forwarded to the single events by theDynEventRouter port ofeventhandlersm.

16

Figure 7: EventHandler State Machine

17

2.9 Event State Machine

Instances of theEventSM will be created every time, a new event is created, either by the
vendor itself or by a customer. Right after the creation, some variables, e.g. for storing the
participating customers and the timer, are initialized andthe closest bus stop for the location of
the event is requested at the:

Listing 13: InitializeEffect of ControllerSM
1 / / I n i t i a l i z e p a r t i c i p a n t s a r ray
csm .participants = new ArrayList () ;
/ / s e t maximal number o f p a r t i c i p a n t s− here f o r t e s t pu rposes on l y 2
csm .maxparts=2;

5

/ / I n i t i a l i z e t i m e r
csm .countdown .setDelay ((i n t)csm .eventStartTime) ;
csm .countdown .startTimer () ;

9

System .out .println (" [EventSM] EventSM "+csm .myID+" c r e a t e d ") ;
System .out .println (" [EventSM] Reques t i ng l o c a t i o n i n f o r m a t i o n f o r even t "←֓

+csm .myID) ;
output (new GetLocInfo (csm .locName ,csm .myID) ,csm .toLocationSup ,csm) ;

After we received the information about the closest bus stopof the location of the event, the
event sends aEventMademessage to the controller:

Listing 14: LocInfoEffect activity
/ / r e c e i v e l o c a t i o n i n f o r m a t i o n
LocInfo locinfo=(LocInfo)sig ;
csm .destBusStopID=locinfo .destBusStopID ;

4 csm .destBusStopName=locinfo .destBusStopName ;
/ / n o t i f y C o n t r o l l e r about new e v e n t
output (new EventMade (csm .eventType ,csm .eventStartTime ,csm .locName) ,csm . ←֓

toController ,csm) ;

In the “WaitPersons” state we are actually waiting for persons to join the event. If we receive
a JoinEvent message, we check, if there is a seat left. If there is a seat left, we add the
customer and send aJoinEventOkmessage to the controller, otherwise we send aTooMany
message to the controller:

Listing 15: JoinEventEffect activity
/ / add cus tomer t o e v e n t

2 JoinEvent je = (JoinEvent)sig ;
i f (csm .participants .size () <csm .maxparts) {

csm .participants .add (je .phoneNo) ;
System .out .println (" [EventSM] Customer "+je .phoneNo .number+" added t o ←֓

"+csm .eventType+" a t "+csm .eventStartTime) ;
6 / / n o t i f y c o n t r o l l e r

output (new JoinEventOk (je .phoneNo) ,csm .toController ,csm) ;
} e l s e {

System .out .println (" [EventSM] Customer "+je .phoneNo .number+" CANNOT be ←֓
added t o "+csm .eventType+" a t "+csm .eventStartTime) ;

18

10 / / n o t i f y c o n t r o l l e r
output (new JoinEventOk (je .phoneNo) ,csm .toController ,csm) ;

}

When the timer of the event is finished, aTrigEventMessage for each of the customers
that joined the event is sent to the controller. This messagecontains all information which are
important for the further notification of the single customers.

Listing 16: TimerEffect
/ / send t r i g g e r e v e n t messages f o r each p a r t i c i p a n t
ListIterator li=csm .participants .listIterator () ;
wh i l e (li .hasNext ()) {

4 PhoneNo pn = (PhoneNo)li .next () ;
output (new TrigEventMessage(pn ,csm .eventType ,csm .locName ,csm . ←֓

destBusStopID ,csm .destBusStopName) ,csm .toController ,csm) ;
}

Figure 8: Event State Machine

19

2.10 User explanation

A test event will be created right after starting up the system. It will be triggered 30 seconds
after starting the system. The eventType is “tea”, the eventTime is 30000.

There are information for three locations stored in the system: place1, place2 and place3. This
means that all other event locations, that are created during the use of the system will have
the central station as a recommend meeting place (see description of the l ocastion supplier for
further details).

The system can be used on two ways:

1. Using the GUI

2. Using SMS

There are three different types of messages that the user cansend to the Blind Date System:

1. Join message

2. Register message

3. Make event message

Parameters that have to be changed by the user are written italic.

2.11 Using the GUI

Make event message The make event message has the following structure: “stud1 konto
usernamemake-eventType-eventTime-eventLocation,2034,SMSID”. Note that eventTime
in this implementation is the time in milliseconds that has to pass by until the event will
be triggered. It is important to use “-” as a separator - the algorithm within the system
splits the message with the help of this sign. SMSID is provided by PATS. E.g. “stud1
konto florianm make-tea-60000-place3,2034,YourSmsIdHere”

Join message To join an event, send a message with the following structure: “stud1 konto
usernamejoin-eventType-eventTime,2034,SMSID”. username has to be replaced by a real
username. Note that eventType and eventTime are used as unique identifiers for the
single events. This means that these must be exactly the samelike in the ones in the
system. E.g. “stud1 konto florianm join-tea-30000,2034,YourSmsIdHere” within the
first 30 seconds after the start up of the system.

Register message The register message has the following structure: “stud1 konto username
register-me,2034,SMSID”.

20

2.12 Using SMS

All SMSs have to be sent to the number 2034. Only Telenor mobiles can be used.

Join message Send a SMS with the following structure to 2034: stud1 kontousernamejoin-
eventType-eventTime. E.g. “stud1 konto florianm join-tea-30000” within the first30
seconds after the start up of the system.

Register message Send a SMS with the following structure to 2034: stud1 kontousername
register-me

Make event message Send a SMS with the following structure to 2034: stud1 konto user-
name make-eventType-eventTime-eventLocation. E.g. “stud1 konto florianm make-tea-
60000-place3”

2.13 Additional information

The system, as it is modelled and implemented, does not checkif a customer has already
joined an event. The instances ofSessionSM, which handle the communication with the
customer related to a particular event, use the unique SMS identifier to distinguish between the
single instances. By testing our system, we came to the following result: Due to the lack of a
controll mechanism for a ”multiple joining” of a single customer, the system will send multiple
JoinEventOkmessages to a singleSessionSM instance, causing a transition error, which
can also be seen with JFTrace.

21

3 Risk Analysis

3.1 Context identification

22

23

24

3.2 Risk identification

25

3.3 Risk analysis

26

3.4 Risk evaluation

27

3.5 Risk treatment

28

29

4 Refinement proof

In this section we argue that our design may be understood as arefinement of the Drop1 spe-
cification. Since our design does not contain any sequence-diagrams, we must argue that our
state machines satisfy the Drop1 specification. To do this wemust show two things:

1. That our state-machines do not implement any negative trace.

2. That at least one positive trace is implemented (i.e. thatwe have in fact an implementa-
tion of the specification).

Since the Drop1 specification does not define any negative traces, the first proof is trivial.
Hence, in a trivial sense of refinement any state-machine will be a implementation of the Drop1
specification (by making a inconclusive trace positive, which is narrowing). In a less trivial
notion of refinement, one may demand that the state-machinesare in fact an implementation of
the specification, by demanding that at least one positive trace is implemented. This is proven
by the below trace, produced by our system.

30

Figure 9: Complete Positive Trace

31

	Introduction
	Rational Software Modeler

	Executable UML Design
	Class Diagram
	Signals
	Composite Structure: MBDS
	Composite Structure: Controller
	Composite Structure: EventHandler
	Controller State Machine
	Session State Machine
	EventHandler State Machine
	Event State Machine
	User explanation
	Using the GUI
	Using SMS
	Additional information

	Risk Analysis
	Context identification
	Risk identification
	Risk analysis
	Risk evaluation
	Risk treatment

	Refinement proof

