INF-5150 Obligatory excercise 2

“Survival of the SMSest”

November 2007

GROUP 2:
Jonas Winje, Aida Omerovic,
Christian Rudfoss, Shaozhi Yang

Table of Contents

INF-5150 ODligatOry EXCEICISE 2....eeiuieeuiieiieeiiertieeteeriiesteeteessaeesseessseenseessseeseessseeseesseessnsseeessssseeeans 1
“SUrvIval 0f the SIMISESt” ...ttt et sttt e e et e e e abeeeens 1
L. INSEIUCEIONS FOT TUSE...cuutiutiiiiiitieiteiteeit ettt ettt et b et s bttt et sat e bt et e ebteesateeenbaeens 3
2. System design: StrucCture dIaGIamS.cueeeruvieerieeeeiiieeeiieeeieeeereeerteeetteeeteeesteeeeeesssnsaeeeeeesnsnssneaeens 5
3. System design: Use case and SeqUence diagrams...........c.ceceeeiieriierieenienieenieeseeesieesaeeneesneesseennes 8
R B RS 1] £S5 g 10 B)) 0 PO RS UUPUUPSPRR 9
3.2 ANNOUNCE GAIMIC. ...cceuurieruireeriireeritteenteeeuteeeauteesatteesseeesnsteesaseeesaseeassseeessseesnsseesnsseesnssessseesnseennn 10
3.3 RegIStering fOT @ GAMEC.......ccviieiiieeiiieeiiee et e et e ette e et e e s aee e aeeessaeeesaaeeessaeesssaeesnsaaeeesennnnsnees 11
3.4 STArtING @ GAMC....cecuieeiieiieetieciieetee et e et ee st e et e e te e beeeate e seessbeenseessbeenseessseenseesansseeeansaeeeensseeas 13
3.5 Setting UP @ SHICIA....cc.vviiiieeiie e ettt e e e e earaeeeeens 14
3.6 LRt UP PLAYCTS. ...eeeiieiieeiieeiie ettt ettt ettt et e st e et e e ssaeeabeesaaeensbeeeensaeeeensseeas 16
3.7 SHIIKING @ PLAYCT .. eeieiiiieeeiie ettt ettt ee e et e e sttt eestteeessaeeensaeesssaaesssaeessseeensseeensseeeeeans 18
R IR € e AN 21 1L T 1<) 0 0] o PO SR PP 21
3.9 WIIte KIMLATI1€...ceeieiieeeeee ettt ettt et et e et et e et eeneee e 22
310 Gt POSTEION.ieetieeeiieeiieette et etteete et testte e bt e e tteeseesabeesseeeaseeseessseenseaesseeseesnseenseesnseensaeennseeas 22
4. System design: State machine diagrams and S1gNAlS...........cccceeeriiieriiieeriie e 24
5. “Survival of the SMSest” - Security Risk ANalysSis........cccoevieeiiiniiiiiieiieeerie e 34
5. 1 Target AESCIIPTION. .. ccccuiieeiiieeiiee ettt e et e e eteeeeteeesteeetaeeesaaeeesaeessseeessseeessseesasseeensseeasseesnsseeeans 34
5.2 ASSEt IENTITICATION. 1..eeutieiiitiiierite ettt ettt ettt e et e e 34
5.3 Risk identification and eStIMATION.ccc.eeiuiiiiiiiiiieiieeie ettt e e e 38
5.4 RISK @VAIUATION. ..c.utiiiiiiiiiieitieteet ettt sttt et sttt et e bt e et eebee e 40
5.5 RISK OVETVIEW ...ttt ettt et ettt ettt e sat e et e e entteeeensaeeas 42
5.6 RISK tIEAtMENL.otiiiiiiiiitieteeese ettt et st b et nbe et et e e e e 43

RETEIEIICES. .. oo e e e e e e e et e re e e e e e e eeanaeeeanaaaee 46

1. Instructions for use

When interacting with the system SMSes are exchanged according to a predefined template, "PXIFI
KONTO <phonenumber> <message>" where <message> is the text specifying the commands
below.

Players

To register for the system, send "register <username>" where <username> is your prefered
nickname. You'll get a reply letting you know if the registration was successful. You can only
register once, and you must register for the system before joining a game.

You'll be invited to a game when the admin announces a game. To join the game, you must send
"joingame" before the admin starts the game. You will get a reply if you have successfully join the
game.

When the admin starts a game you've joined, you will get a message letting you know the game has
started along with one with status (points, shield strength and duration).

When you're in a game, you can send the messages "getstatus", "shield", "lightup" and "strike".
Send "getstatus" to get a reply with your current status.

Send "shield <force> <duration>" to attempt to set up a shield. <force> is the strength of the shield
and <duration> is the duration of the shield in minutes. The shield strength will decrease whenever
another player strikes you and the shield will dissappear after <duration> minutes. The shield costs
<force> x <duration> points, and if you cannot afford the shield you're trying to set up, you will
recieve a message letting you know how many points you have left. If you already have an active
shield, you will get a message with the old shield's strength and duration and you will have to reply
with "throw" to throw the old shield away and use the new one or "keep" to keep using the old
shield.

Send "lightup <range>" to get a list of players within "a range", where <range> indicates the
number of hundreds of meters away. Lightup costs <range>"2 points. Players spotted in a lightup
will get a message telling them they've been spotted, but not who has spotted them.

Send "strike <target> <force> <range>" where <target> is the nickname of another player, <force>
is the strength of the strike and <range> is the striking distance in hundreds of meters. Strike costs
<force> x <range> points. If the player you're trying to strike is within range you will hit them, and
you will get a message confirming the hit. That player's shield strength is then reduced by <force>.
If this reduces the shield strength to below zero, or the player has no active shield, the player is hit,
and you will get a message confirming this. You will then recieve that players points. After
attempting to strike a player or recieving a player's points you will get a message with your status.

If you are hit or killed by another player, you will recieve a message letting you know of this and a
message with your status. You will not know which player hit or killed you.

Admin

Note that the system has only been tested properly with FakePATS and that the static ID used for
the admin is currently «adminy (this can be changed in the model).

To start a new game, the admin must first announce the game by sending "announce". Players
registered in the system will then be invited to the game.

After sending "announce" the admin can start the game by sending "start". If more than one player
has joined the game the game starts and the players that have joined the game will get a message
saying the game has started and a message with their status. If one or no players have joined the
game the game will end and the admin will have to announce a new game.

When a game is running the admin can send "kml" to make the system write all the player positions
to a file, file "players.kml", that can be viewed in GoogleEarth.

2. System design: Structure diagrams

wComposites
(3 SystemClass
sh: SmsHancller
cdh : DataHandller
gh : GameHandler
pproc : PlayerProcess
ok PaositioningHancler
o player : Player

oo ooao

@ Player

o name : String
1 Integer
1 String

hielclcluration : Integer
hielciforce © Integer

o systemClass : SystemClass
o smsHancller @ SmsHancler

o dataHandler : DataHandler
o ge : GoogleEarth

Figure 2.1

«signals
oM JoinedGame

@ PlayerPos
o fime : long
>y ¢ couble

o ¥ couble

> name : Sting
o statid : String
o lastrequest : long

signals asignals
o Sendsms oM AllPos
o statid : String o statid : String
signals: asignals
o InternalSignal oM KML
o statid : String
wsignals
o SendsMs
o statid : String
wgignals
wsigrials 5™ QlelShield
S Winner ;
o> o force!: Integer

o duration : Integer

wsignals asignals | wsignals
oM NoPlayer o AlreadyInGame o AlreadyRegistered
o name : String

wsignals wsignals “signal
o Invalidiame " NotRegistered o NotEnoughPoints
o pame : String o points : Integer

wsignals signals
o LightUpList o) GameStartec

o liststring @ String

Figure 2.2

“signals
o Shieldho

wsignals
o) GetStatus

signals
o Strike
o strilingstatic

o force : Integer

Figure 2.3

«signals

o Internalsignal
o statid : String
“signals “s5ignEls “signals
o Shieldes o Shield

o force : Integer
duration | Integer

signal» wsignals:
o Lightlp o0 NumberofPlayers

o range : Integer o number : Integer

o Terminate

asignals
o AnnounceGame

asignaly
o& RegisterForGame

o statid : String
signals

o JoinGame

static : String

o ingame : String

signals
o' StartGame

“signals
o StartPoints

o points @ Integer

asignals
o' RemovePlayer

o name : String

wsignals
o GameOver

wsignals
o' Spotterd

o name : String

signals
o' Redistered

o name : String

signals
o InvitePlayer

signals:
o StiikePlayer

o targetname : String

o targetstatic : String

«signals «signals
o GivePoints o' Pos
String o name : String o name : String
o points : Integer o ¥ double
oy double

o vyalic : Boolean

o force ; Integer
o range : Integer

«signals
o Sendstatus

o player : Player
ssignals

o PlayerHit

o name : String

o strikingstatid : String
o striledstatid : String

wsignals

o Playerkilled
o name : String

o strikingstatid : String
o strilecstatid : String

signals:
o GetPotentialPlayers

«signals
o RegisterPlayer

o name : String
o statid : String
signals

o) GetPlayers

wsignals
o PlayerList
o playerlist : LinkeclList
wgignals
o Playeriame
o statid : String
o name : String

signals:
o Playerssent

SMEinn

to_gh
sh : SmsHandler e dh : DataHancler
) in to_lsh
lediator = ARGS[0], ARGS[0] smsout M i
tﬂjh tﬂ_d'
to_gh
to_sh
te_gh in
3 . i
S 1 ¢ positioningHandler ™
teph gl ; GameHandler
to_pprec @ StatIPRouter
to_all_pproc
to. ph to_sh to_gh
in
pproc : PlayerProcess [*] ta_gh in
tqjhgﬁ : GoogleEarth
Figure 2.4

create table Player (
statid varchar (8) not null,
username varchar (20),
inGame varchar (1),
primary key (statid)

)

Figure 2.5

to_dh

The system uses a database with a «player» table (as shown in figure 2.5) for a list of players
registered for the system, and keeps track of which game, if any, each player is in (the system
currently supports only one game at a time). Playerdata for the players in the game (points, and
shield strength and duration) is not kept in the database, but in objects in player processes.

Only registered players are eligible to join a game. Static ID is the unique identifier of a player, and
nicknames can always be traced back to the player's static ID. Intergrity is ensured by storing the
user date in a databaes which only the system administrator has access to. Messages sent to players
never contain static IDs.

The admin functions are initiated by sending SMSes to the system. The system currently supports
having one admin, and the static ID of the admin is hardcoded. The admin is not able to register for
the system or join games.

The system creates one process for every player in the game when a game starts. Each of these
player processes terminate when its player is killed or the game is over. No processes are created
while the game is running. This means that each player can only perform one action at a time. If a
player does a lightup, and then immediately tries to strike another player, the strike action won't be
performed until the lightup is done. The player process always takes care of other players striking
its player and the timer signals at once, so a player can't avoid taking damage or delay the shield
running out by being in the middle of actions. Since our strike action does not have a duration, no
player action will ever take too long to complete, and it shouldn't be a problem that a player can't do
everything at the same time. If strike had had a duration, depending on how long durations we
supported and how risky we wanted striking to be, it might have been meaningful to support several
strikes from one player at once. This could be done by using a new strike statemachine that we
could create instances of whenever someone tried to strike.

The system checks incoming messages and lets the sender know when they are not syntactically
correct. Messages sent when they shouldn't be ('strike' when there is no game running and the likes)
are handled corectly by the system (ignored, that is), but in such cases the senders do not get any
messages back.

3. System design: Use case and sequence diagrams

1

lnnnuunce Register for system

1 *
1 #
j Start game Register for game
*
1 L *
#*
1 #
Administrator Player
write kml-file Get status 1
1
Set up shield
*
Strike

Light up players

The figure above is a use case diagram, and shows the relation between the roles and actions for the
system. An administrator may announce a game, start a game or write a kml-file. A player may
register for the system, register for a game, get his/her status in the game, set up a shield while
playing, strike another player while playing, and light up other players while playing.

The use case above is more closely described by the following sequence diagrams. Each sequence
diagram has two levels, which also means that they are decomposed in the same way. It is the
lifeline “SystemClass” that is decomposed into all, or some of these lifelines: “SmsHandler”,
GameHandler”, “PlayerProcess”, “PositioningHandler”. For the sake of clarity we will show all the
sequence diagrams at both levels.

3.1 Register for system

This sequence diagram shows how to register for the system. A player can not register for a system
if he/she already is registered, or if the username is taken. Figure 3.1.1 is a high level representation
of this functionality.

=d RegSystem |

syskemClass | SystemiClass

Player : Player ref SywstemPegsSystem

| |
| amsi"atudl konko plaver reqister regiame”, 2034, STAT-ID) |
| |
I I

T

alt I
Sn{.ﬁj"cu:uru;|ralzuIatiu:unJ wou are now registered in syskem as "+csm.usernan‘l5]l
| Sms(fou are already reqgiskered™) |
| |
| ams"The username is already taken™) |
T 1
| |
I I
Figure 3.1.1

Lifeline SystemClass refers to SystemRegSystem. Below is the next level of this sequence diagram
(figure 3.1.2). It shows what happens inside SystemClass when it gets a message. When a player
sends a message to the system, the receiver is SmsHandler. It is always the SmsHandler that is the
receiver, which can be seen at the rest of the sequence diagrams. In this case, SmsHandler
communicates with Datahandler.

sd SyskemReqdystem J

sh 1 SmsHandler dh : DataHandler

ams"studl konko plaver reqgister reaiame”, 2034, 5TAT-I0

ReqisterPlayverefei

Reqisterad

amsi"Congratulation, wau are now regiskered in syskem™)

| |
i !
——
| |

Irvalidiarne

Sms{'The username is already taken™ |
|

Figure 3.1.2

3.2 Announce game

Administrator sends a command to the system, telling it to send an invitation to all players that are
registered for the system containing that they are invited to play a game.
sd Announce

systemClass | SyskemClass
ref SwstemAnnounce

admin ; Adminiskrator otherplaver : Player

Sms"Stud] konko admin announce”, 2034, STAT-IDY

alk

|
|
§
[
|
|
[oop
| B
|
|
|
|
|
|
|

ms("You are inviked ko a game!")

Figure 3.2.1

What happens inside SystemClass is shown by figure 3.2.2 at level 2:

sd SystemAnnounce J

sh 1 SmsHandler gh 1 GameHandler dh : DataHandler

Sms("studl konto admin announce”, 2034, STAT-ID)

Announceiane

PokentialPlayers

|
|
|
| GetPotentialPlayers
|
|
|

InvikePlayer |

Sms{+'1"u:-u are invited to a game!")

Figure 3.2.2

Gamehandler gets all the potential players from DataHandler. A potential player is a player that is
registered for the system.

3.3 Registering for a game

After a player gets an invitation he/she can join a game by registering for it. A player cannot register
if he/she already has registered for a game, or if he is not registered for the system. The sequence
diagram at high level is shown below in figure 3.3.1

=d RegEame |

plaver : Plaver

sms('studl konto <username = joingame", 2034, 5TAT-I0)

syskemiClass ;| SyskemiClass
ref SystemRegGame

|

alt l
| amsi"fou are not regiskered in the syskem™)
I
| smst you are already registered for game") |
| amsi"ou are now registered For game!™) |
I !
| |
| |
1 1

Figure 3.3.1

The decomposition of the lifeline SystemClass is like the one shown by figure 3.3.2:

sd SystemRegEame

sh ¢ SmsHandler

Sms("stud] konko <username: joingame”, 2034, STAT-ID

gh : GameHandler

|
Reqisterzame |
|

JoinGame

dh : DataHandler

Sms("fou are nok regiskered in the system'™)

NntRegistLred

,
|
|
|
|
|

Sms("you are now regiskered For game!")

Figure 3.3.2

3.4 Starting a game

To start a game, administrator sends a message to the system containing a message that a game shall
start. Thereafrer, every player that has registered for a game will receive a message which tells them
that at game has started. See high level diagram in figure 3.4.1.

sd SkarkGame

systemClass | SystemClass
ref SwstemstartGame

Sms"stud] konko admin startgame"J2034,5T.ﬁ.T-IDl|

admin : Adminiskrator otherplayer : Player

M Sms("The game is on!™)

Figure 3.4.1

The sequence diagram SystemStartGame is shown by figure 3.4.2. It shows that when a game is
starting, a PlayerProcess is created for each player. It controls everything a player does during a
game.

5d Systematartaame

sh ¢ SmsHandler gh': GameHandier

Sms("Stud! konto admin start”, 2034, STF\T-ID)J

dh ; DataHandler

ph : PositioningHandier

ge : GoogleEarth

StartGame

)

lncp

|
|
GetPlavers |
|
|

Playerhlame

Playeriame
— ¢ rreates
pprac ; PlaverProcess —‘ ————— —‘
|

ol b
L= =l LY

StartPoints

Flaversent

—

zametarted

Sendatatus

Sms{"The game &5 onl")

Sms{"four statusis:

N T T R A 2

Figure 3.4.2

3.5 Setting up a shield

When a player is playing a game he/she can set up a shield. This shield has strength and duration.
You can set up a shield only if you have enough points. If you already are using a shield you have
two options. First you get information about the one you are using. Then you choose whether you
want to throw it away and use the new one, or keep the old shield. The high level sequence diagram
has the name SetShield (see figure 3.5.1). A player always gets a message consisting of what he/her
did choose by a status report.

=d Setshield

syskemiClass ;| SyskemiClass

player : Player ref System3etshicld

|
alt |
amsi"¥ou can't afford that, You have <paints= poinks [eFt")

Jms{"studl konto <username = shigld <force= <duration=",2034,5TAT-ID
[
|

ale i Sms(our skatus:....")

I o

|
[
; T Sms{"Feep/Throw the ofd shield?. ... :
I I
|
|
I
1

E3

Figure 3.5.1

Figure 3.5.2 shows what is happening inside the lifeline SystemClass, which is decomposed into
sequence diagram with the name “SystemSetShield”.

5d Syskemaet Shicld

sh 1 SmsHandler

gh : GameHandler

Smpsf"stud] konko <username > shield <force <duratinn>"J2034JST.ﬁ.T-I[tJ)

pproc : PlaverProcess

, Shield ,
| | hield \
aU | NutEnanhPuints |
] sms{"fou can't afford that, You have <poinks points left") | | ‘
]
alt | Senddtatus |
——J Sms("Vour skatus: : | ‘
| Oldfl;ld |
ams(KeepiThrow the old shigld?....") [[|
]] |
] | | |
sl "studl konka<username = keep”, 2034, 5TAT-ID) | | ‘
| ShigldMao | ‘
I 1
| | Shildho |
: Sendifatus :
Sms("Your skatus: | | |
T ST Eerrame s Traw 0R,STAn —] — — — — — — — e e
Shieldes
Shigldes

|
|
Senthatus

Figure 3.5.2

The lifeline pproc:PlayerProcess is handling every action a player does during the game. Every
player has a relation to their own PlayerProcess.

3.6 Light up players

While playing a game you can light up players within a chosen range. You can only do this if you
have enough points. If there are other players in this range you will get a list of them. These players
will then get a message containing information that they have been spotted, see figure 2.6.1.

=d LightUp

syskemiClass ;| Systemlass

ref SystemLightLp otherplawer : Plaver

plaver : Plaver

amsiSkudl konto <username = lightup <range=",2034,5TAT-ID

RequestPas

|
|
PosResLlk |
|

| Smsi"four status:,,,") [pos=invalid]
| : I
loop | |
| PosRequest |
I 1
| | PosResult |
! ams("Players in range "+{playerlist}) ! I
I | |
| | |

Figure 3.6.1

SystemClass is a decomposed lifeline which contains five other lifelines at level 2. This is shown by
figure 3.6.2

sd SyskemLightlp

sh ¢ SmsHandler

gh : GameHandler

pprac : PlayerProcess

pproc : PlaverProcess

ph : PositioningHandler

Sms("Players in range: {plavernamest")

F3

snfs(*stud] konka <username: ohtup <ranges",2034,5TAT-ID ‘ ‘ ‘ |
e | | | |
| |
a,l,:tH;J | NotEnopghPaints | ‘ |
Hae(o cannot afford that, You have <points: points left"y I 1
At i e
ref
zetPosition
| | AFos | | |
‘ ‘ MumberOFPlayers ‘ ‘ |
| | | | I
T T T T T
|DEJ . s ; ; ;
B ref
GetPosition
! ! Spotted ! ! i
! ! Sm;|("‘\’0u've been spotted") ! |
| | | | I
| | | |
[[[[
| LighiUpList ‘ |
[[
| | |

Figure 3.6.2

The figure above contains two PlayerProcess lifelines. The one to the left has a relation to the player
who lights up other players. The PlayerProcess to the right has relations to all other players to show
where the signals go. GetPosition refers to a sequence diagram that fetches a position for a player.
This works as a function, and does the same each time. Figure 3.10.1 in chapter “3.10 Get position”
shows the corresponding diagram. The last GetPosition is performed until every player in the game

is positioned.

3.7 Striking a player

In a game it is possible to strike another player if you have enough points. You will get an error
message if you are trying to strike someone who is not registered for the game. If the one you are
striking does not have a shield, he/she will be “killed”. When a player gets status “dead”, he/she
will automatically be excluded as a part of the game. Figure 3.7.1 is a high level representation of

this functionality.

=d Skrike

plaver ; Plaver

syskemiClass ;| SyskemiClass
ref Systemstrike

otherplawver : Plaver

SnIs{"Stul:Il konto <username:= skrike <wickim:> ::Fnrce:b"JEDSJrJSTP.T-IID}

alt I I amsi Mo plaver named <plavername > in the game") I

——— T——-

alt

< Ams("fou can't afford that. You have <paints = paints left") ! I
| | |
1 I I
par I I
PosR.equest | |

!
PosResult | |

1

T = 7 PosREquest — [|

PosResul:

1 1

I I

S | |

| | sms(you're hit,") |

Smsf"fou'e hit <vickim =" [|

| | ams"our skatus:,, . |

Sms"™our skatus:.,.) I 1

I | |

| |

| ; ams"fou are dead") j

| Srns"fou killed <vickin=") I i
I I

I I I

T T T

| | |

I I I

I I I

Figure 3.7.1

SystemStrike is decomposed into five lifelines, see figure 3.7.2.

sd SystemStrike

sh : SmsHandler gh: GameHandler | | pproc : PlaverProcess | | pproc : PlaverProcess || ph : PositioningHandler

Bms(; Stud! konto <username> strike <victin> <farce", 2034, 3TAT-I0),

I !
_a_J MoPlayer
ams("No playver named <playermname: in the game")

SR rrreaaisie FPP T PP PP

| | | |

| StrikePlayer ‘ ‘ | ‘
| | | |

| | |

1
Sl four status:...)
T

| I |
aU ; U ctrkePlayer ! :
! NatEnaughPaints : | ‘
Sms{"fou can't afford that, You have <points: paints left") | | | | ‘
o) | | | | |
ref
{3etPosition
I I I I I
T e e e e e e
ref
GetPasition
| |
! !
DEJ L ke !
| Strke
! FlayerHit !
| |
| Spmsi"foulre hit, "
amslfou've hit <wickim=") | [
| Sendstatus |
1
|
T

sendchatus

amsl"our status:,,.)

|
|
‘ PIaya‘rKllled

Plaverkiled

RemovePlayer

Sms{"fou kiled <victim:=")

|
|
S u are dead”)
1
|
|
[
|
|

Figure 3.7.2

The PlayerProcess to the left represents the player who is striking. The PlayerProcess to the right
represents the player who gets struck. If the player who is supposed to get struck is out of range,
nothing happens. If you hit a player, both players will get a message whether they hit, or were hit.
They will also get a status report. If you at the same time kill him/her, you get a message containing
this information.

3.8 Get status report

A player may, whenever he/she wants, get a status report for themselves while playing a game, by
sending a message “getstatus” to the system, see figure 3.8.1.

sd 3etSkatus

systemiClass | SyskemClass

player : Player ref SystemGetstatus

| Smsi"Stud] konto <username > getskatus",2034,5TAT-ID)

|
I
|
|
1
amst your skatus:,, ") |
|
|
|

Figure 3.8.1

Figure 3.8.2 shows what is happening inside the decomposed lifeline SystemGetStatus.

sd Systemigetstatus J

sh 1 SmsHandler gh : GameHandler pptoc ; PlayerProcess

Sms("Studl konto <username > gebstatus", 2034, STAT-IDY

u:uth

Getstatus

GekSkatus

Senl:IStaI:us

|
|
1
T
|
[
|
amns(™our skatus:,,,") |
|
|
|
|
I

Figure 3.8.2

The PlayerProcess has all information about the related player.

3.9 Write KML-file

The administrator may at any time request the system to write an kml-file, containing positions to
all players. The sequence diagram at high level is called “WriteKml” and is shown in figure 3.9.1.

sd Writekml

syskemClass | SyskemClass

ref Swstemitritekiml player : Player

admin ¢ Administrator

Sms"Stud] konko admin kenl", 2034, STAT-ID)

loop |

PosRequest

amsi ML waritben'™)

| |
| |
| |
| PosResult |
| |
| |
I I

Figure 3.9.1

After the system has performed administrators command, it sends a message to the administrator to
confirm that it is done. Figure 3.9.2 shows what happens inside the system.

sd SystemtWritekml J

sh 1 SmsHandler e : GoogleEarth gh 1 GameHandler | | pproc : PlaverPracess | | ph PositioningHandler

sms("Studl konto admin k', 2034,5TAT-I0) | \ | | \
: KL ;
| | AllPas | | ‘
‘ ‘ MumberQFPlayers | | ‘
o EJ — | | | | |
GetPosition
kML

Sms kML writken™)

Figure 2.9.2

The kml-file is created by ge:GoogleEarth. GetPosition is performed in a loop until every player in
the game is positioned.
3.10 Get position

Figure 3.10.1 shows a sequence diagram which is being referred to in some other sequence
diagrams.

zd GetPaosikion

sh : SmsHandler gh ; GameHandler pproc @ PlaverProcess ph ; PositioningHandler

PLsRequest
|
I
1
|
|
1
|
|
|
1

Pos

Dth

PosResult

PosResult

Pos

| | |
| | i
i	

Figure 3.10.1

A PlayerProcess sends a message to PositionHandler. There is an opt-operator which covers the
PosRequest and PosResult. This is mainly because we use a list with positions of all the players and
the respective timestamps. The positioning is valid for a pre-defined period of time, and the
positioning function will not need to be recalled for this player during that time interval.

4. System design: State machine diagrams and signals

[else]

@2 output(new Sms("Fatal lethal deaclly error”, csm.staticld, "2024"), csm.smsout, csm);

[csm.command,.equals(“getstatus")]
I outputinew Getstatus(csm.staticld], csm.to_gh, csm);

[csm.commancd.equals("lightup”)]

@aLightUp to gameHancller

[esm.command.equals("strike")]

@ stikePlayer to GameHandler

[csm.command.equals(“shield")]
@ashield to GameHandler

[esm.command. equals("throw")]
coautputinew shisldves(canstaticld), camito_gh, ©=m);

[csm.command.equals(“leep”)]
@ output(new ShieldNo(csm.staticld), csm.to_ah, csm);
[csm.command.equals(“joingame”)]

GO RegisterForGame to GameHandler

@ csmiadminstatid = "admin”; [esm.command.equals("register")]

@ RegisterPlayer to DataHandler

ML
@ Ide @output{new Sms(KML wiitten”, csm.adminstatid, "2034"), csm.smsout, csm);
SendsMs
[else]
@0 Send SMS A)])
Sms [esm.valicl && lesm.staticld. equals (csm.adminstatic)]

&2 ParseSms
SendStatus

@2 Send SMS
[csm.valic &8 csm staticld. equals{csm.adminstatid)]
[else]
Flayerkiled
@ output(new sms("Fatal lethal deacly error”, csm.staticld, "2034"), csm.smsout, csm);
@9 Send SMS
PosResult
PlayerHit
@2 output(sig, csm.to_ph, csm);
@2 Send SMS [csm.command.equals("start")]

@ output(new StartGame(), csm.to_gh, csm);

[esm.commancd.equals("lml")]

@ output(new KML(), csm.to_ge, csm); [csm.command. equais(“announce”)]

@ output(new AnnounceGame(), csm.to_gh, csm);

Figure 4.1

The SMSHandler statemachine (shown by figure 4.1) handles incoming SMSes and sends signals to
the other StateMachines. It recieves signals from the other statemachines and sends SMSes to users
and the admin. It forwards PosResult signals to the PositioningHandler statemachine.

JoinGame [else]
@ Adled player to game Cooutput{new AlreadyRedisterad{csm, staticl), csm.to_sh, csm);

[csm. valiclstatic && lesm, validname]
@ Idle

P p @ outputinew InvalidMame(csm username, csm.statid), csm.to_sh, csm);
@ Initialize things put(((! cl), _sh, csm);
RegisterPlayer

&9 CheckUsers
GetPotentialPlayers

@ Male list of players
GameOver

@ Set ingame flags to 0

GetPlayers) .)
[csm.valiclstaticl && cam valichame]
@ Make playerlist -
@ Register player

Figure 4.2

The DataHandler statemachine (shown by figure 4.2) handles the database containing the registered
users. When users register for the system, their static IDs and usernames are added to the database.
The DataHandler sends a list of potential players to GameHandler when a game is announced and
sends all the static IDs and usernames of all the players registered for the game when the game
starts. The DataHandler is not used for anything once a game is running, except for new users
registering for the system.

@3 WaitingForPlayerlist

AnnounceGame
@ Get playerlist
@ Idle PlayeiList

@2 Send invitations

@ WaitingforPlayers
RedisterForGame

@ output(new JoinGame(sig.statid, "1"), csm.to_dh, csm);

[csm.players.size() == 1]
G2 End the game

i [else]
AllPos - .
@ Terminate playerprocess StartGame
& Ask: Positioninghandler for all positions
Playerkillec
@ output(new GetPlayers(), csm.to_dh, csm);
@3 Remove player from list
[else]
@0 WaitingForPlayersInGame
&2 Playing [csm.players.size() = 1] PlayersSent
Spotted @3 Start game

@3 5end to SMSHancler

~ [sig instanceof Pos R sig.statid.equals("acimin"}]
InternalSignal

&9 output (sig, csm.to_ge, csm); PlayerName
[else] @ Create new state machine

@2 Send signal to a PlayerProcess

TimerMsg

@2 output(sig, csm.to_all_pproc, csm); csm.timer.startTimer();

Figure 4.3

The GameHandler statemachine (shown by figure 4.3) keeps track of what stage of the game the
system is in. It gets playerdata from GameHandler when the game is announced or started.

When the game is being played GameHandler routes InternalSignals to correct PlayerProcess
processes (it sets the targetstatid of the StrikePlayer signal before forwarding it, and certain Pos
signals are sent to GoogleEarth instead). It sends Pos signals to PositioningHandler when it recieves
the AllPos signal (for lightup or kml). It recieves Spotted signal, it sets its statid attribute and
forwards it to SMSHandler. It handler the timer and forwards TimerMsg signals to all the
PlayerProcess processes. it keeps track of how many players are left in the game and ends the game
when only one player is left.

TimerMsg
Gameover @2 Chedk: for outdated PosReqguests
@ csmaplayers = new HashMap(); RemovePlayer

@3 Remove player from hashmap
@ csm.players = new HashMap();

— - - &2 InGame
E2WaitingForGames...

PlayersSent

@0 Initialize

PosFesult

@ Store and send position
Pos

Playertame @2 Get player's position
@0 Add player to hashmap

Figure 4.4

The PositioningHandler statemachine (shown by figure 4.4) recieves Pos signals, sets the x and y
values of the signal and sends them to GameHandler which will route it to the right player process
or the GoogleEarth machine. It keeps a hashmap with player positions so that it doesn't need to send
several PosRequest signals when the same position is asked for more than once at quite the same
time. PositioningHandler takes care of timeouts on PosRequests, and if a PosRequest times out, the
player being positioned is removed from the game or the PosResult signal isn't valid,
PositioningHandler won't set the valid attribute of the signal to true, but still send it to
GameHandler. It's up to the PlayerProcess or GoogleEarth machine to handle invalid Pos signals.
As long as a PosResult is recieved for every PosRequest signal, one Pos signal will be sent from
PositioningHandler for every one recieved.

2 WaitingForGameStart

StartGame

e

GameCver

i KWL
=2 Start writing kml
w2 write end of fle

[esmunumber == cam.numbercfplayers]
&2 WaitingForiumberOfPlayers o Write end of file
Deref KML i--q
GameCiver TE—
Smelver MumberDPlayers

@2 csm.numberofiplayvers = signumber; csm.number = 0;

2 WiTtinglkML

T ElSE
i Deref kML l—| [else]

Pos
caWrite player to file

Figure 4.5

The GoogleEarth statemachine (shown by figure 4.5) gets the positions of all the players in the
game and writes them to a .kml file to be viewed by GoogleEarth.

s lightup:LiohtUp Terminate

[csm.p.shielciforce < 0] defer GvePaints, Shield,
Send q , v LightUp, StrikePlaver,
& 5end messages and give points to striing player R
[esm.p.shieldforce < 0]
@ csm.strikingstatid = sigustrikingstatid; P -
csm.strikingstatid = sig,strilingstatic; [E———
[else]
Terminate
Strike eke]
@ Reduce shield force &9 Get clata from signal
atLightlp [esmicost = csm.p.paints]
oty GetStatus & outpuit(new NotEnoughPoints(csm.p.points, csm.p.staticl), csm.to_sh, csm); [hlse]
@ output(new Sendstatus(csm.p), csm.to_sh, csm); I8
e [csm.cast > csm.p.points]
@ Initialize Player object CAMLCC CSML.pe
@ output{ne g Csm.p.p cam.p.statid), csm. csm);
@ WaitingForGameStart output(new NotEnoughPoints (csm.p. |n?\ntsj rsm.\) sht-\ 1), csm.ta_sh, csm);
StartPoints Li Get data from signal
&9 Set points and sendl info oty StrikeFlayer
ot GivePoints
[csm.p.shieldforce == 0 || csm.p.shieldduration == 0] Terminate @3 csim.p.points += sig.poinfs; autput(new SendStatus(csm.p), csm.to_sh, csm);
@ Updlate shield @ Get shieldvalues
oty Shield [esm.cost = camppoints]
Strle [else] o output(naw NotEnoughPoints (csm.p.points, csm.p.statid), csm.to_sh, csm);

@ Reduce shield strength

[else]

@ output (new Cldshield{csm.p.shieldforce, csm.p.shieldduration, csm.p.statid), csm.to_sh, csm);
[else]
@9 WaitingForAnswer

ShieldVes TimerMsg
o csm,reduceDuration();
&9 Updlate shield

Terminate Shieldo

2 output(new SendStatusicsm.p), csm.to_sh, csm);
Timerisg
@ csm.reduceDuration();

defer GivePoints, Shield,
LightUp, StrilePlayer,
GetStatus

Figure 4.6

Each PlayerProcess statemachine (shown by figures 4.6-4.8) keeps track of a player's stats, and
performs the strike, shield and lightup actions for that player. The statemachine's p attribute, a
Player object, holds the player's stats while all the other attributes of the statemachine are used for
temporary variables. Every state in PlayerProcess handles incoming strikes and timer signals.

A player process handles one command from its user at a time. New commands from the user are
only handled in the Idle state (and defered in other states). The timerMsg signal and Strike (that
player is struck by another player) are taken care of in all states.

When recieving StrikePlayer, Shield and LightUp signals, the process will check the cost of the
action and perform it if its player can afford it. If not it sends a message to its player with the
amount of points left.

@ csimstrilingstatic = sig.stikingstatic;

@ Ask: for positions

[else] Strike:
&3 Reduce shield strenath
[csm.pishieldforce < 0] &9 WaitingForPos
TimerMsg
[ele] Pos @ csmureduceburation();
[sig.name. equials (csm. targetname) && sig.valicl] [sig.name enuals(csm.p.name) &R sig.valid]
Strie &0 csm,pos2 = sig; &5 csm.posl = sig;

@ Redure shield strendgth

[csm.p.shieldforce < 0]

Shiike
G Reduce shield strenath

E0 WaitingForTargetPos

[csm.p.shieldforce < 0] & WaitingForOwnPos

TimerMsg

o @ csm.recuceDuration(); Pos
05

[sig.valicl]
[sig.valicl]
@O csmaposl = sig;
3 Csm.pos2 = sig;

@a Strile the target

Figure 4.7

TimerMsg

@ csmureduceDuration();

[else]

[else]

@ csm strilkingstatid = sig.strilingstaticl;

[else]
[else]
[else]
[camja.shieldfarce < 07
Strile
@ Redlues shield strength
@ Error TimerMsg
@ csmireduceDuration();
Pos

@aoutput(new SandStatus(csm.p), csm.to_sh, csm);

In the Strike substatemachine (shown by figure 4.7), the player process gets its player's and the
target's positions. If it recieves two valid positions it pays for the action (note that if the first
position recieved is invalid it waits for the second Pos signal before leaving the substate, to make
sure it won't recieve an additional Pos signal when it's performing some other acion later). It then
checks if the target is withing range and sends a Strike signal to that player's process if it is.

@ output(new Pos(csm.paname, 0, 0, false, csm.p.staticl), csm.to_ph, csm);

2 WaitingForCwnPos

[else]

Strile Pos

E9 Reduce shigld strength @ csm.posl = sig;

Timertsg

- . . - . @ csmureduceDuration();
@ csm.strilkingstaticl = sig.strikingstaticl;
[csm.pushieldforce < 0]

[else]
[csm.pos1.valic]
[esm.p.shigldforce < 0] @ output(new SendStatus(csm.), s oL sh, csm);
@ Get all positions
Strile
@ Reduce shigld strength
@ WaitingForMumberOfPlayers

[else]
TimerMag
[csm.p.shisfdforce < 0] NumberOfPlayers @ csm.reduceDuration(};

@ csm.numberofplayers = sig.umber; csm.number = 0;

Strike
@9 Reduce shield strength &0 WaitingForPos
[else]
Fos TimeiMag
@ Add player to list if within range [else] & csmireduceburation();

[esmunumber == csm.numberofplayers]

@ output(new LightUpList (csmliststring, csm.p.statid), csm.to_sh, csm);

Figure 4.8

In the LightUp substatemachine (shown by figure 4.8) the process first positions its player, before
sending an AllPos signal to the GameHandler machine. The GameHandler will send the number of
players in the game to the player process and send Pos signals to PositioningHandler for it. The
player process will wait for Pos signals until it has recieved as many as the number of players, and
for each player positioned add the player's name to a list and send an SMS letting the player know
he or she is spotted. Once the machine has recieved all the Pos signals it sends an SMS with the list
of playernames to its player and leaves the substate.

Signals (figure 2.1)

The AllPos signal is sent to GameHandler from a player process or the GoogleEarth
machine. GameHandler then sends the number of players back and sends Pos signals for the
player process or GoogleEarth machine.

The AnnounceGame signal is sent from SMSHandler to GameHandler when the admin
announces a game. GameHandler then gets a list of potential players from DataHandler and
invites everyone to the game.

The StartGame signal is sent from SMSHandler to GameHandler when the admin starts the
game and from GameHandler to the GoogleEarth machine and PositioningHandler when the
game starts.

The StartPoints signal is sent from GameHandler to all player processes when the game
starts to give all the players their starting points.

The GameOver signal is sent from GameHandler to PositioningHandler, DataHandler and
GoogleEarth when all but one player in the game has been killed so that those machines can
go back to their pre-game states.

The GetPlayers signal is sent from GameHandler to DataHandler to get the static IDs and
names of players that have joined the game.

The GetPotentialPlayers signal is sent from GameHandler to DataHandler to get a list of
players registered for in the system.

The JoinGame signal is sent from GameHandler to DataHandler when a player joins a game.
The KML signal is sent from SMSHandler to the GoogleEarth machine when the admin
wants a .kml file, and from GoogleEarth to SMSHandler when the file is written.

PlayerHit and PlayerKilled signals are sent to SMSHandler when a player is hit or goes dead
to let the striking and striked player know of it.

The PlayerList signal is sent from DataHandler to GameHandler when a game is announced.
It contains a list of all players registered for the system.

When the game starts, one PlayerName signal is sent from DataHandler to GameHandler for
every player that has joined the game, before a PlayersSent signal is sent.

The RegisterForGame signal is sent from SMSHandler to GameHandler when a player tries
to join a game.

The RegisterPlayer signal is sent from SMSHandler to DataHandler when a player tries to
register for the system.

RemovePlayer is sent from GameHandler to PositionHandler when a player is killed so that
PositioningHandler can update its hashmap of players.

SendStatus is sent from a player process to the SMSHandler to give a player information
about his or her points, shield force and shield duration.

Subclasses of the SendSMS signal (figure 2.2) are all sent to the SMSHandler which will send an
SMS to the statid attribute of the signal, depending on the signal type.

The Registered signal lets a player know he or she has successfully registered for the
system.

The InvalidName signal lets a player know the name he or she is trying to register for the
system is already taken.

The AlreadyRegistered signal lets a player trying to register for the system know that he or
she is already registered.

The InvitePlayer signal invites a player registered for the system to join a game.

The JoinedGame signal lets a player know he or she successfully joined a game.

The NotRegistered signal lets a player trying to join a game know that he or she is not
registered in the system and how to register.

The AlreadylnGame signal lets a player trying to register for a game know that he or she has
already joined a game.

The GameStarted signal lets a player know the game he or she has joined has been started.
The NoPlayer signal lets a player know he or she tried to strike a playername that is not in
the game.

The OldShield signal asks a player trying to set up a new shield if he or she would rather
like to keep the old, still alive shield.

The Spotted signal lets a player know that someone has spotted him or her in a lightup.

The LightUpList signal lets a player know which players he or she has spotted in a lightup.
The NotEnoughPoints signal lets a player know that the shield, lightup or strike he or she is
trying to perform is a bit too costly.

The Winner signal lets the winning player know he or she has won.

Subclasses of the InternalSignal signal (figure 2.3) is routed by the GameHandler machine to the
player process for the signal's statid attribute.

The GetStatus signal is sent from SMSHandler when a player wants to know how many
points he or she has left and the force and duration of his or her shield.

Shield signals are sent from SMSHandler when a player is trying to set up a shield, and
ShieldNo or ShieldYes signals are sent when a player decides to keep or throw his or her old
shield.

LightUp and StrikePlayer signals are sent from SMSHandler when a player is trying to
perform the lightup or strike actions.

Pos signals are sent to PositioningHandler from the player process trying to position
someone, or the GameHandler when positioning all players, and are sent from
PositioningHandler to Gamehandler once the player is positioned. The GameHandler routes
the signal to the correct player process (or sends it to the GoogleEarth machine).

The NumberOfPlayers signal is sent from GameHandler to a player process (or the
GoogleEarth machine) when that player asks for the positions of all players, so that the
player process knows how many Pos signals to wait for.

The Strike is sent from one player process to another. When recieved the player process
reduce its shield force and terminates if shield force is then below zero.

The GivePoints is sent from a terminating player process to the one that striked it dead,
giving the dead player's points to the striking one.

The Terminate signal is sent from GameHandler when there is only one player left in the
game (either because everyone else is killed dead, or because only one player joined the
game).

5. “Survival of the SMSest” - Security Risk Analysis

This part of the report presents the results of the risk security analysis of the “survival of the
SMSest” system. The analysis is based on the Coras method, see [1] and [2] and conducted using
the CORAS tool [3].

5. 1 Target description

For the target description we refer to the system documentation part of the report.

The scope of the analysis is the part of the system developed by the group as a part or the
compulsory exercise within the course. Outside the scope are among others PATS, SMS
sending/receival by the user phones, the cellular phones of the end users and the network for
communication between phones and the parts of the system.

It is assumed that the end users, i.e. that target group is well known by the stakeholder (system
administrator), so that their expectations to the service are well defined. Their economical
capabilities and the value of the service are assumed to be in accordance to the amount charged. It is
also assumed that the hardware supplied is of sufficient quality and capacity. In addition, we assume
that the physical security of the hardware is ensured.

5.2 Asset identification

Table 5.1 below shows the assets identified, from a game administrator’s point of view.

Asset Asset description Importance | Type
Availability of the Availability of the system as a whole 1 Direct
system asset
Correctness of the Correctness of the system’s data 2 Direct
system presentation asset
Scalability of the Scalability of the system in terms of the 3 Direct
system number of users asset
Security of the Security of the system 4 Direct
system asset
Public trust in the Public trust in the system 5 Indirect
system asset

Table 5.1: Asset table

These assets are identified as the ones having most value for the stakeholder in question, and their
importance is assumed to be as shown by the “importance” column. There is one indirect asset,
“Public trust in the system” which is not directly a subject to analysis, but is related to the four
direct assets.

Figure 5.1 below is the corresponding asset diagram displaying the stakeholder, the scope and the
assets. For the purpose of clarity, links from game administrator to the assets are omitted, but
normally such links could have been drawn between the stakeholder and all the assets represented.

\

i

Game Administrator

Public trust in the syskem

Availability is considered to be the most valuable asset, and its consequence scale is proposed to be
as shown by table 2 below. The consequences are categorised by the down time of the system.

Availability of the system

-3

Correctness of the system

T —a

Scaleability of the system

Security af the syskem

Figure 5.1: asset diagram

Consequence value | Description

Catastrophic More than 20 min. per day

Major More than 10 and up to 20 min. per day
Moderate More than 4 and up to 10 minutes per day
Minor More than 1 and up to 4 minutes per day
Insignificant Up to one min per day.

Table 5.2: Consequence scale for "availability of the system” asset

Table 5.3 shows the consequence scale for ”Correctness of the system” asset. The consequences are

categorised according to the percentage of the service degradation.

Consequence value | Description

Catastrophic 80 — 90 % service degradation.
Major 50 - 79 % service degradation

Moderate 20 - 49 % service degradation

Minor 6 - 19 % service degradation

Insignificant

Up to 5 % service degradation

Table 5.3: Consequence scale for "Correctness of the system” asset

Table 5.4 shows the consequence scale for ”Scalability of the system” asset. The consequences are
categorised according to the percentage of the simultaneous users supported at time, by the system.

Consequence value | Description

Catastrophic The system supports less than 70 % of simultaneous users.

Major The system supports between 70 and 84 % of simultaneous users.
Moderate The system supports between 85 and 89 % of simultaneous users.
Minor The system supports between 90 and 98 % of simultaneous users.
Insignificant The system supports between 99 and 100 % of simultaneous users.

Table 5.4: Consequence scale for ”Scalability of the system” asset

Table 5.5 below shows the consequence scale for ” Security of the system” asset. The consequences
are categorised according to the number of intrusions into the system.

Consequence value | Description
Catastrophic 10 or more intrusions
Major 6-10 intrusions
Moderate 3-5 intrusions

Minor 2 intrusions
Insignificant 1 intrusion

Table 5.5: Consequence scale for ”Security of the system” asset

Table 5.6 below shows the likelihood scale. The likelihoods are categorised according to the
number of occurrences per year.

Likelihood value | Description

Certain More than 10 times per year
Likely 5-10 times per year
Possible 2-4 times per year

Unlikely Once a year

Rare Less than once a year

Table 5.6: Likelihood scale

Table 5.7 below shows the risk evaluation matrix for “availability of the system” asset. The
acceptance is decided by considering the ratings of likelihood-consequence combinations for the
asset in question. The acceptable risks are marked with green and the ones that should be evaluated
more closely, are marked with red.

Consequence
Insignifican | Minor Moderate | Major Catastrophi
! c

Rare

Unlikely

Frequency

Possible

Likely

Certain

Table 5.7: Risk evaluation matrix for “availability of the system” asset

Table 5.8 below shows the risk evaluation matrix “Correctness of the system” asset. The
acceptance criteria are different from the ones in the previous asset, and this is, mainly, a result of
the consequence scale definitions and the importance rating of the asset.

Consequence
Insignifican | Minor Moderate | Major Catastrophi
4 c
E Rare
8 | Unlikely
=)
g
& | Possible __
Likely | Acceptable |
Certain | Acceptable |

Table 5.8: Risk evaluation matrix for "Correctness of the system” asset

Table 5.9 below shows the risk evaluation matrix “Scalability of the system” asset. Like in the case
of the previous asset, the criteria are mainly decided upon likelihood and consequence scale
definitions and the importance rating of the asset.

Consequence
Insignifican | Minor Moderate | Major Catastrophi
4 c
2’ Rare
8 | Unlikely
=
=
& | Possible | Acceptable | Acceptabl |
Likely | Acceptable | Acceptabl |

Table 5.9: Risk evaluation matrix for ”Scalability of the system” asset

Table 5.10 below shows the risk evaluation matrix “Security of the system” asset”.

Consequence
Insignifican | Minor Moderate | Major Catastrophi
4 C
Rare Acceptable Acceptable | Acceptable | Acceptable

Unlikely | Acceptable Acceptable | Acceptable

Frequency

Possible | Acceptable Acceptable

Likely Acceptable

Table 5.10: Risk evaluation matrix for ”Security of the system” asset

5.3 Risk identification and estimation

This section covers the risk identification and estimation parts, equivalent to the steps 4 and of the
CORAS method, respectively [1]. One diagram is dedicated to each asset, an abstraction level
which is found to be most manageable.

Figure 5.2 below shows the threat diagram for Availability asset, presented according to the
CORAS graphical notation. Three unwanted incidents, three threat scenarios, two threats and four
weaknesses are identified. The relationship between the threats and the weaknesses are deduced and
shown by the lines connecting them and pointing to the weaknesses. Depending on how the
weaknesses can be utilised, relationship between them and the threat scenarios are drawn.
Thereafter, the unwanted incidents are related to the threat scenarios and the asset. The unwanted
incidents emphasised in this case ate the ones regarding availability of PATS which the system
depends on, access to the database, and communication between the cellular phones and the game
server.

Likelihood values are assigned to each threat scenario and unwanted incident, and consequence
values (according to the definitions above) are assigned to the links between the unwanted incidents
and the asset.

Weaknesses and the threat scenarios presented are the ones assumed to be most likely co cause such
incidents. For example, unplanned upgrades or changes of the system parts without taking into
consideration their dependencies, or network failure.

System weakness

3 A
Hard coded db user and password DE password update
[unlikely]

Low network broaciband

gL

Unaccessabls DB
[possible]

Major
Bacl Mecsage rauting an the NEtwork

Network faiure
[uniieiu]

e

4] =
Major————>((§
Communication between moblle phones A g
land the game server impossible [Unlikely] fwallability of the system
Freguent PATS uparades on game dependentsystem components
Moderate
Operator

PATS upgraded [rare]

e

Unanccessible PATS
[possible]

Figure 5.2: threat diagram for Availability asset

Figure 5.3 below shows the threat diagram for Correctness asset, including risk estimation values.
As shown, there are three unwanted incidents that can directly harm the correctness of the system,
while the weaknesses and the threat scenarios leading to these unwanted incidents can be numerous
and with various likelihoods. Incorrect billing and non-traceable billing information are the
incidents considered to have highest severity.

/N s
- A\ Mo walid procf of game
results or biling
O ti g
perating evironment o i
sceable [unlikel

b
Y
User overcharged Maior

urlikely _\‘—\x_\>

5
Mator
Inproper storage and update routines Iafor

'_1——98 A\ i Correctress of the system
Developer Dats penetration misk User dats mixed up Wrong points status /
[uniikely] > displayed [uniiely]
Moderate
Weak desigr i “ 3

Cost calculated
rcorrectly [possile:
F“———a& A\
Intruder Security hols, User data lost during
un time [kely \
Ay

Wrong coordinates
displayed [rare]
A
Wirong response un
lightup [unliksly]
A

Data compromised
[uniikely]

Wrong interaction betwesn
system and user [possible]

3
Unprecise strike
Tuniikely]

Figure 5.3: threat diagram for Correctness asset

Figure 5.4 below shows the threat diagram and risk estimation related to the Scalability asset.

G Request loss [possible:
Data storage Facilities are limiked

b,
4y
Incorrect or missing
> system response

Developer 71
Game data lost [Tkely]
Moderat:
Weak design For concurrent event handling: loderate
X
Too much request
buffering [urlikel

Major Scaleability of the system

A
System unstable or
requests pending

Intruder

i
Too many autematic requests

Ay

Delays in data retrieval
[possible]

s —21N
System ovetload [rare]

Figure 5.4: threat diagram for Scalability asset

Figure 5.5 below shows the threat diagram and risk estimation related to the Security of the system
asset.

The operational environment is accessible by
unauthaorised [possible]

‘Weak system access policy:

Developer,
User data accessible by .
authorised [unlikel i
2]
tweak design of starage solution Data are campromised
[unilkely] '__———-——_._Ma]m.
Joe Major Security of the system
Zi]
Q = User privacy is
ork. traﬁ;lls sniffed compromised [possible] Major
Weak design of message exchange solution [possible]
S
—"5
Intruder 2] Maijor
|Jser accounts and data
are abused [rare]
Weak authentication mechanisms A —_}Ag
" A
Users use each other's Users are mixed up by
counts [possibl the system [possible]

Figure 5.5: threat diagram for Security of the system asset

5.4 Risk evaluation

This section covers the risk evaluation part, equivalent to the step 6 of the CORAS method [1]. One
table is dedicated to each asset.

The risks are deduced from the threat diagrams above, by taking the unwanted incidents directly
harming the assets. The risks are given the appropriate abbreviations so they can fit in the risk
estimation matrixes. Then, the assigned likelihood-consequence combination of each risk is noted
and according too this, each risk is placed in the evaluation matrix belonging to the right asset. The
colour marking the risk is the one pre-defined for the element location in the matrix, as defined in

the evaluation matrixes in tables 7 through 10.

Accordingly, the risk evaluation concerning the four respective assets result in the risks that either
are acceptable (green) or should be evaluated (red), as shown in tables 11 through 14.

Consequence
Insignifican | Minor Moderat | Major Catastrophi
! e c
2‘ Rare
S | Unlikely .
g Possible UP1
& | Likely
Certain

Table 5.11: Risk evaluation matrix for “availability of the system” asset

Consequence
Insignifican | Minor Moderate | Major Catastrophi
4 c
E’ Rare
8 | Unlikely VP1, UO1
g Possible WI1
& | Likely
Certain

Table 5.12: Risk evaluation matrix for ”Correctness of the system” asset

Consequence
Insignifican | Minor Moderate | Major Catastrophi
! c
2‘ Rare
@ | Unlikely IM1
5 Possible -
2
& | Likely
Certain

Table 5.13: Risk evaluation matrix for ”Scalability of the system” asset

Consequence
Insignifican | Minor Moderat | Major Catastrophi
4 e c
2‘ Rare UC1
g | Unlikely
g Possible
o
Likely
Certain

Table 5.14: Risk evaluation matrix for ”Security of the system” asset

5.5 Risk overview

Risk overview diagrams depict the risks identified, both acceptable and the ones that should be
evaluated, as identified above. The figures 6 through 9 below display the risks with their relations to
the threats and the assets (consistent to the threat diagrams above) with the right abbreviations and
the evaluation result (acceptable/must be treated). This representaton is called threat overview
diagrams [1] and offers a better overview of the risks identified and their relationship to the threats.

System weakness

AN

[UD! Unaccessable DB [unacceptable]

[PM1 Communication between mabile phanes and the game server impassible [unacceptable]|

fuvailsbity of the system

Operator

AN

[UP1 Unanccessible PATS [unacceptable]

Figure 5.6: risk overview diagram for Availability asset

Operating environment:

[P 1 e valid proof of game results or billng [Acceptatle]

Carrectness of the system

Developer

W01 User overcharged [Acceptable]

Intrude
[WI1 Wrong interartion bebween system and user [Accepiable]

Figure 5.7: risk overview diagram for the Correctness asset

[im1 Tcorrect or missing system response [acceptable]|

.

Developer

Scaleability of the system

#3 [EUT System unstable or requests pending [unacceptale]]

Intruder

Figure 5.8: risk overview diagram for the Scalability of the system asset

JAN

1 Data are compromised [unlikeky]|

AN

|UPC1 User privacy is compromised [posslble]‘

/ of the system

U1 User accounts and data are abused [rare]l
Intruder

A\

M1 Users are mixed up by the system [poss\b\e]l

Figure 5.9: risk overview diagram for the Security of the system asset

5.6 Risk treatment

The risks categorised as the ones that must be evaluated (red marked elements in the estimation
tables) are further analysed and the possible treatments are proposed wherever appropriate (on
weaknesses, threat scenarios, unwanted incidents and the consequences), so that the treatments
provide the conditions for the risks to become acceptable.

Treatment diagrams display the risks that must me evaluated only (with their abbreviated names),
the suggested treatments on the appropriate parts — otherwise the diagram is similar to the threat
diagrams with likelihood estimates.

Followed by the treatment diagrams are the treatment overview diagrams including the risks
identified as the ones that must be evaluated, their relationship with the threats and the assets, and
the treatments as shown on the corresponding treatment diagrams, but this time directly pointing to
the risks they are meant to treat regardless of the stage (voulnerability/threat scenario, consequence
or unwanted incident).

Figure 5.10 below presents treatment diagram for Availability asset including the risks evaluated as
the ones that must be evaluated.

Password setting is 3 part of confuguration, Document routings for
not in source code Ss_dh updates

Reducelkelirood ReduceLikelifood

System weakness

DB password update

Hard coded db user and password
[unikely]

I

- | — Unaccessable DB
ReduceLikelihoor . i
Low network broadbana e ; [possible]
Network monitoring
Network falure
[unikey]

Bad message routing on the network

i A
Communication between mabile phones

and the game server impossible [unlikely] fvaglabiliy of the system

Frequent PATS upgrades on game de‘EendEntsystem companents

Gperataor ReduceLikelihood
PATS upgraded [rare]

59

s Unanceessible PATS
Less Fraquent PATS upgrades, with known [possible]
implications

Figure 5.10: treatment diagram for Availability asset

Figure 5.11 below presents treatment overview diagram for Availability asset including the risks
identified as the ones that must be evaluated.

Password setting is a part of confuguration, -
not n source cods
Document routines For db
& updates

ReduceLikelhood

a - _Reducaukellhood
[UDL Unaccessable DB [unacceptable]
Netwark monitoring

Reducel kelinood
B

System weakness

[P Communication between mobile phones and the game server impassible [unacceptable]]

P

Avallabilty of the system

Opstator

-
s ReduceLiveioaP L dnanccessihlz PATS [unacceptable]
Less Frequent PATS upgrades, with known
implications

Figure 5.11: treatment overview diagram for Availability asset

All the risks on the correctness diagram are acceptable, hence no treatment is proposed for them.

Figure 5.12 below presents treatment overview diagram for Scalability asset. Only the SU1 risk is
unacceptable, so that is the only treated risk related to scalability asset.

G Request loss [possible:
Data storage Facilities are limiked

b,
4y
Incorrect or missing
> system response

Developer 71
Game data lost [Tkely]
Weak design for concurrent event handing
X
Too uch request
fuffering [unlikel

i A Sealeabillty of the system
] 01

System Unstable o requests

pending [possible]

Intruder

i
Too many autematic requests

% A
/ Delays in data retrieval
Reducelitelhood (bl
_{ Increase monitoring
Closs ports > 7 ___Reducelikelihood ™™
System overload [rare]

Figure 5.12: treatment diagram for Scalability asset

Figure 5.13 below presents treatment overview diagram for Scalability asset including the risk
identified as the one that must be evaluated.

/—/,/Sm:al;y of the system

[0 System unstable or requests pending
®.

o

Inkruder

Reducelikeihood Reducelikeihood

Figure 5.13: treatment overview diagram for Scalability asset

Figure 5.14 below presents treatment overview diagram for Security asset. In this case three out of
four risks are unacceptable.

Improve access
management

ReduceLikelhood

o

The operational environment is accessible by
unauthaorised [possible]
‘Weak system access policy:
Developer,
User datas accessible by
authaorised [unlike!

ask desion of sorage solion
Reducelikelinood

Secure storage

ReduceLikelihood

ReduceLikelihood
lessage encryption and, g
authentication Moritor netwerk traffic

‘Weak authentication mechanisms

DC1 Data are
compromised [unlikely]

e
s
UPC1 Uset privacy is

compromised [possible] Security of the system

ork trafic is sniffed
[possible]

e
a
UC1 User accounts and
data are abused [rare]

o
o

Weak design of message ext‘h_._anga solution

Intruder

4]
UM1 Users are mixed up by the
system [possible]

Users use each other's
accounts [possible

ReduceLikelihood
.

Personalise user
accounts

Figure 5.14: treatment diagram for Security asset

Figure 5.15 below presents treatment overview diagram for Security of the system asset including
the risks identified as the ones that must be evaluated.

Improve access
rmanagement

\
\

\
v
ReduceLikelihood
N

DCl1
ReduceLikelihood

ReduceLikelihoad
=4 Y /;L;an the system
N T _ReduceLikelihood-==-~"">
lessage encryption and) "
guthentication] uPal
Reducelikelihood

Monitor network traffic
Reduicel kelinood
Personalise user
accounts

Figure 5.15: treatment overview diagram for Security of the system asset

Developer

Intruder

References

[1] Braber, Hogganvik, Lund, Stelen, Vraalsen “Model-based security analysis in seven steps — a

guided tour to the CORAS method” January 2007

[2] Dahl, Hogganvik, Stelen “Structured semantics for the CORAS security risk modelling
language” September 2007-11-22

[3] CORAS modelling language http://coras.sourceforge.net/ (retrieved November 2007)

http://coras.sourceforge.net/

	INF-5150 Obligatory excercise 2
	“Survival of the SMSest”
	1. Instructions for use
	2. System design: Structure diagrams
	3. System design: Use case and sequence diagrams
	3.1 Register for system
	3.2 Announce game
	3.3 Registering for a game
	3.4 Starting a game
	3.5 Setting up a shield
	3.6 Light up players
	3.7 Striking a player
	3.8 Get status report
	3.9 Write KML-file
	3.10 Get position

	4. System design: State machine diagrams and signals
	5. “Survival of the SMSest” - Security Risk Analysis
	5. 1 Target description
	5.2 Asset identification
	5.3 Risk identification and estimation
	5.4 Risk evaluation
	5.5 Risk overview
	5.6 Risk treatment

	References

