
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

INF5181: Process Improvement
and Agile Methods in Systems
Development
Lecture 02:
Processes and Process
Modeling (Section A)

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no
Fall 2011

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

• Hour 1:
– Introduction into Process Modelling
– Prescriptive Process Models

• Hour 2:
– Process Families/Standards
– Descriptive Process Modelling

• Hour 3:
– Exercises

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Process Taxonomy

• What are
typical
processes in a
software
project?

Non-Engineering Processes

Business
Processes

Social
Processes

Improvement
Processes

Process Modeling
Processes

H. Dieter Rombach, Martin Verlage,
Directions in Software Process Research,
Advances in Computers, Volume 41,
Marvin V. Zelkowitz (Ed.), Pages 1-63,
Academic Press, Boston, MA, 1995.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

What is a (Software Development) Process?

A Process …
• defines Who is doing What, When and How to reach a specific goal.

– In software engineering the goal is to build a software product or
to enhance an existing one

An Effective Process …
• provides guidelines for efficient development of quality software
• reduces risk and increases predictability
• promotes common vision and culture

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Software Process Examples

Waterfall

SCRUM

RUP

V-Model

Spiral

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

What are the Goals of Process Modeling?

• To enable effective understanding
and communication

– At one development site
(developers, teams, ...)

– Between development sites
(distributed development,
outsourcing, contractor-supplier
relations, ...)

• To improve software development
activities

– Improving real processes requires
measurement and measurement
requires defined processes

– Evolving processes

• To support project management
– Transparency, tracking, ...

• To guide the developers
– Incorporating new employees

• To support automatic process
enactment

– Workflow support
– CASE tools

• To support reuse of process
knowledge

– Organsational learning

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

What is a (Software) Process Model?

• “Software Process Model: An abstract
software process description. It can be
more or less formal.” [Lonchamp 93]

• Key elements:

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Characterization of Process Models

A Process Model defines:
• an identifiable activity or a group of

activities
• a hierarchy of activities
• the sequence/order of activities (

control flow)
• the input/output products (artifacts)

of activities (product flow)
• the relations between activities and

techniques, methods, tools, and
roles

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The Role Concept

• Role
– A role is in charge of one or more activities defined in one or more

processes
– A role has defined responsibilities
– Possible relationships between agents and roles

1 : 1
1 : m
n : 1
n : m

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Role Responsibilities

M
od

ul
e

M
od

ul
e

de
ve

lo
pe

r
de

ve
lo

pe
r

M
od

er
at

or
M

od
er

at
or

Q
ua

lit
y

Q
ua

lit
y

as
su

re
r

as
su

re
r

Te
st

er
Te

st
er

ModuleModule
designdesign
ModuleModule
codingcoding
ModuleModule
reviewreview
ModuleModule
testingtesting

Roles

Activities

R = Responsible

A = Approve

S = Support

C = Consult

I = Inform
R

R

R

A

I

SS, R

RASCI Matrix

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Descriptive vs. Prescriptive Process Models

How is it done?

How should it be done?

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Prescriptive vs. Descriptive Process Models

• Prescriptive Models (theoretical)
– “Ideal” Process
– (Assumed) best practice
– Often requires instantiation

and detailing
– Deviations from real

processes are likely
– Examples: waterfall, V-

model, spiral model,
incremental, iterative,
evolutionary, agile process
models

• Descriptive Models (empirical)
– Accurate elicitation of actual,

real processes
– Basis for the revision of

existing (prescriptive)
process models based on
observation and experience

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

• Hour 1:
– Introduction into Process Modelling
– Prescriptive Process Models

• Hour 2:
– Process Families/Standards
– Descriptive Process Modelling

• Hour 3:
– Exercises

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Overview:
Prescriptive
Process Models

Pre-defined process
models like Scrum, EVO,
RUP, XP, Cleanroom...

Organizational
Process model

Project (type) 1
process model Project (type) 2

process model

Project (type) n
process model

Inspires

Process models exist on
3 levels:
family/standard level,
organizational level,
and project level

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Waterfall: Royce Model (1970)

SYSTEM
REQUIREMENTS

TESTING

CODING

PROGRAM
DESIGN

ANALYSIS

PRELIMINARY
PROGRAM

DESIGN

SOFTWARE
REQUIREMENTS

OPERATIONS

PRELIMINARY
DESIGN

ANALYSIS

PROGRAM
DESIGN

CODING

TESTING

USAGE

Idea:
Sequential creation of
products on different
levels of abstraction (e.g.,
precede code by design,
precede design by
requirements) and
integration in reverse
direction
Strictly sequential control
flow can be weakened by
controlled iterations

Prerequisites:
Familiarity with
application domains,
methods, techniques,
tools, engineering
processes
Good understanding of
the requirements
Stable requirements
High capabilities for
effort estimation

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Often Waterfall is Bad

• For many projects, the waterfall
model is a poor choice

– Late risk resolution
• can’t tell requirements or

design risks exist until late in
the life cycle

– Requirements drive functional
decomposition

• exhaustive requirements
make it hard to tell if the
design is viable;

• hard to identify critical
requirements

– Adversarial stakeholder
relationships

• written definitions of
requirements often lead to
extended (and heated)
discussion of their
interpretation

– Focus on documents and
reviews

• fulfilling the letter of a
contract can lead to the
appearance of progress, but
without real communication

– Inflexible!

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Prototyping

‘An iterative process of creating quickly and inexpensively live
and working models to test out requirements and assumptions’
(Sprague and McNurlin)

• Main types:
– ‘throw away’ prototypes
– evolutionary prototypes

• What is being prototyped?
– human-computer interface
– functionality

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Boehm’s
Spiral Model

Project
Start

Project
Start

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Spiral Model Highly Iterative

• The spiral model proposed by Boehm (1988) is an iterative model with
focus on risk resolution:

– Determine objectives and constraints
– Evaluate Alternatives
– Identify risks
– Resolve risks after assigning priorities to risks
– Develop a series of prototypes for the identified risks starting with the

highest risk
– Use a waterfall model for each prototype development (“cycle”)
– If a risk has successfully been resolved, evaluate the results of the

“cycle” and plan the next round
– If a certain risk cannot be resolved, terminate the project immediately

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Types of Prototypes used in the Spiral Model

• Illustrative Prototype
– Develop the user interface with a set of storyboards
– Implement them on a napkin or with a user interface builder (Visual

C++,)
– Good for first dialog with client

• Functional Prototype
– Implement and deliver an operational system with minimum functionality
– Then add more functionality
– Order identified by risk

• Exploratory Prototype ("Hacking")
– Implement part of the system to learn more about the requirements.
– Good for situations in which paradigm discontinuities occur

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Iterative Enhancement (Incremental Delivery)

• Origin: Basili und Turner, 1975
• Idea:

– Split functionality into several increments
– Develop each increment (i.e., a product part that fulfills a subset of

requirements) in a Waterfall style; integrate increment by increment into
the product until delivery

– The focus of the development of an increment might be completion of
functionality or structure, but it can also be refinement and improvement

– Strictly sequential control flow can be weakened by controlled iterations
• Prerequisites:

– Structure of the problem permits incremental development

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Incremental delivery

design build install evaluate

design build install evaluate

design build install evaluate

increment
1

increment
2

increment
3

first incremental delivery

second incremental delivery

third incremental delivery

delivered
system

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Iterative Enhancement (Incremental Delivery)

Advantages:
• Efficient learning during the project;

thus, experience level can be low
• Early availability of a product, with

the essential properties of the final
product.

• Allows for early customer
involvement and feedback

• Applicable when parts of
requirements are unclear or
unstable

• Supports integration testing
• Good applicability in case of fixed

delivery dates (prioritize
requirements with the customer)

Disadvantages:
• Risk that, by ignoring specific

requirements, the product will be
designed in such a way that fulfilling
future requirements becomes
difficult/expensive

– particularly problematic are
non-functional requirements

• Comprehensive version and
configuration management is
necessary

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Unified Process

• Family: Iterative Enhancement
• Origin:

– Ivar Jacobson, James
Rumbaugh, Grady Booch,
1998

• Defines process framework that
is adaptable to

– various application domains
– different organizations
– different competence levels
– different project sizes

• Characteristics:
– use case driven
– architecture-centric

• Provides only rudimentary
instructions

• Refined version:
– Rational Unified Process (Ph.

Kruchten)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Rational Unified Process (RUP)

Phases

Iterations

Process Workflows

Environment
Project Management

Change & Configuration Mgmt

Elaboration TransitionInception Construction

Implementation
Test

Analysis & Design

Deployment

Requirements
Business modeling

Preliminary
Iteration(s)

Iter.
#1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Supporting Workflows

Organization
along
content

Organization along time

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP Phases and Iterations ― The Time
Dimension

• This is the dynamic organization of the process along time.
• The software lifecycle is broken into cycles, each cycle working on a new

generation of the product. The Rational Unified Process divides one
development cycle in four consecutive phases.

– Inception phase
– Elaboration phase
– Construction phase
– Transition phase

• Each phase is concluded with a well-defined milestone--a point in time at
which certain critical decisions must be made, and therefore key goals must
have been achieved.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP Phases – Example: Inception Phase
• During the inception phase: establish the business case for the system and delimit the project scope.
• To accomplish this you must identify all external entities with which the system will interact (actors)

and define the nature of this interaction at a high-level.
• This involves identifying all use cases and describing a few significant ones. The business case

includes success criteria, risk assessment, and estimate of the resources needed, and a phase plan
showing dates of major milestones.

– The outcome of the inception phase is:
– A vision document: a general vision of the core project's requirements, key features, and main constraints.
– An initial use-case model (10%-20% complete).
– An initial project glossary (may optionally be

partially expressed as a domain model).
– An initial business case, which includes business

context, success criteria (revenue projection,
market recognition, and so on), and financial forecast.

– An initial risk assessment.
– A project plan, showing phases and iterations.
– A business model, if necessary.
– One or several prototypes.

At the end of the inception phase is the first major project
milestone: the Lifecycle Objectives Milestone. The evaluation
criteria for the inception phase are:
- Stakeholder concurrence on scope definition and cost/schedule
estimates.

- Requirements understanding as evidenced by the fidelity of the primary
use cases.

- Credibility of the cost/schedule estimates, priorities, risks, and
development process.

- Depth and breadth of any architectural prototype that was developed.

- Actual expenditures versus planned expenditures.

The project may be cancelled or considerably re-thought if it
fails to pass this milestone.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP – Static Process

Static Structure of the Process
• A process describes who is doing

what, how, and when.
• The RIP is represented using

four primary modeling elements:
– Workers (Roles), the "who"
– Activities, the "how"
– Artifacts, the "what"
– Workflows, the "when"

Activities, Artifacts, and Workers

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP – Activities and Artifacts

Activity
• An activity of a specific worker is a unit of work that

an individual in that role may be asked to perform.
• The activity has a clear purpose, usually expressed

in terms of creating or updating some artifacts, such
as a model, a class, a plan.

• Every activity is assigned to a specific worker. The
granularity of an activity is generally a few hours to a
few days, it usually involves one worker, and affects
one or only a small number of artifacts.

• An activity should be usable as an element of
planning and progress; if it is too small, it will be
neglected, and if it is too large, progress would have
to be expressed in terms of an activity's parts.

• Example of activities:
– Plan an iteration, for the Worker: Project Manager
– Find use cases and actors, for the Worker: System

Analyst
– Review the design, for the Worker: Design Reviewer
– Execute performance test, for the Worker:

Performance Tester

Artifact
• An artifact is a piece of information that is

produced, modified, or used by a process.
Artifacts are the tangible products of the
project, the things the project produces or
uses while working towards the final product.

• Artifacts are used as input by workers to
perform an activity, and are the result or
output of such activities. In object-oriented
design terms, as activities are operations on
an active object (the worker), artifacts are the
parameters of these activities.

• Artifacts may take various shapes or forms:
– A model, such as the Use-Case Model or the

Design Model
– A model element, i.e. an element within a

model, such as a class, a use case or a
subsystem

– A document, such as Business Case or
Software Architecture Document

– Source code
– Executables

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP – Resources and Workers (Roles)
• A worker defines the behavior

and responsibilities of an
individual, or a group of
individuals working together as
a team.

• You could regard a worker as
a "hat" an individual can wear
in the project.

• One individual may wear many
different hats. This is an
important distinction because it
is natural to think of a worker
as the individual or team itself,
but in the Unified Process the
worker is more the role
defining how the individuals
should carry out the work.

• The responsibilities we assign
to a worker include both to
perform a certain set of
activities as well as being
owner of a set of artifacts.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP Workflow – Example: Analysis & Design

Workflows
• A mere enumeration of all workers,

activities and artifacts does not quite
constitute a process. We need to
describe meaningful sequences of
activities that produce some valuable
result, and to show interactions between
workers.

• A workflow is a sequence of activities
that produces a result of observable
value.

• In UML terms, a workflow can be
expressed as a sequence diagram, a
collaboration diagram, or an activity
diagram (cf. activity diagram on the left
hand side).

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP Workflow – Example: Analysis & Design

• The goal of the Analysis and Design workflow is to show how the system will be realized in
the implementation phase. You want to build a system that:

– Performs – in a specific implementation environment – the tasks and functions
specified in the use-case descriptions.

– Fulfills all its requirements.
– Is structured to be robust (easy to change if and when its functional requirements

change).
• Analysis and Design results in a design model and optionally an analysis model. The design

model serves as an abstraction of the source code; that is, the design model acts as a
'blueprint' of how the source code is structured and written.

• The design model consists of design classes structured into design packages and design
subsystems with well-defined interfaces, representing what will become components in the
implementation. It also contains descriptions of how objects of these design classes
collaborate to perform use cases.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

MSF (Microsoft Solution Framework)

For details
refer to
the related
White Paper
in the
Reading
Materials

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

MSF-Inspired Process Model (at DNV)

For sub-contractor
management
processes and
agile development
processes
using the
Norwegian
PS2000 process
standard
refer to the related
reports in the
reading
materials

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

• Hour 1:
– Introduction into Process Modelling
– Prescriptive Process Models

• Hour 2:
– Process Families/Standards
– Descriptive Process Modelling

• Hour 3:
– Exercises

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

ISO 12207: Standard for Information
Technology-Software Life Cycle Processes

• This standard officially replaced MIL-STD-498 for the development of
DoD software systems in August 1998

• This standard defines a comprehensive set of processes that cover
the entire life-cycle of a software system – from the time a concept is
made to the retirement of the software

• The standard defines a set of processes, which are in turn defined in
terms of activities. The activities are broken down into a set of tasks.

• The processes are defined in three broad categories:
– Primary Life Cycle Processes
– Supporting Life Cycle Processes
– Organisational Life Cycle Processes

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

ISO 12207 Processes

• Primary life cycle
processes:

– Acquisition
process

– Supply process
– Development

process
– Operation

process
– Maintenance

process

• Organisational
processes:

– Management
process

– Infrastructure
process

– Improvement
process

– Training process

• Supporting life cycle
processes:

– Audit process
– Configuration

Management
– Joint review process
– Documentation process
– Quality assurance process
– Problem solving process
– Verification process
– Validation process

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The software development life-cycle (ISO
12207)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

DOD Standard 2167A

• Required by the Department of Defense for all software contractors in
the 1980-90s

• Waterfall-based model with the software development activities:
• System Requirements Analysis/Design
• Software Requirements Analysis
• Preliminary Design and Detailed Design
• Coding and CSU testing (CSU = Computer Software Unit)
• CSC Integration and Testing (CSC = Computer Software Component,

can be decomposed into CSC's and CSU's)
• CSCI Testing (CSCI = Computer Software Configuration Item)
• System integration and Testing

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

IEEE Std 1074

• Institutional standard (‘least common denominator’) published in
1997

• Process description comparable with V-Modell® XT (on a high
level), but no statements about products, roles

• Offers only little guidance for developers

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

IEEE Std 1074: Standard for Software Lifecycle

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

V-Modell® XT (XT = Extreme Tailoring)

• Published in January 2005
• Predecessor: V-Model (1997) for military authorities in Germany
• Structured in a modular way
• Mandatory for IT projects in public and military domains in Germany
• Goals:

– Enhance support for adaptability, scaleability, changeability, and
expandability of V-Model 97

– Consider state of the art and adapt to current regulations and
standards

– Expand application range considering the complete system lifecycle
of development projects

– Introduce a process of organizational process improvement

Somewhat
Comparable to
the role of
PS 2000 in
Norway

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

V-Model XT – Purpose and Scope

• The V-Model XT is a guideline for the Planning and Management of IT
Development Projects.

• Scope of the V-Model are:
– Improvement of Planning and Tracking of IT Development Projects,
– Minimization of Project Risks,
– Improvement and Quality Assurance,
– Improvement of Communication between Project Stakeholders,
– Containment of Total Costs over the Project and System Life Cycle.

• The V-Model supports different Project Execution Strategies and the Concept of
Decision Points.

• The V-Model can be tailored according to the specific conditions and needs of an
ICT Project

• The V-Model addresses the Customer and the Contractor.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Customer vs. Contractor View

Customer

Auftragnehmer

Decision Points

Requirements
established

Change Plan
established

Project
put out to tender

Project
defined

Project
approved

Project
contracted

Tested for
Acceptance

Project
closed

1 2 3 4 5 6

7

8

Systemelements
realised

Offer
tendered

System
specified

System
drafted

Detailed Design
completed

System
integrated

Delivery
performed

Project
defined

Project
approved

Project
contracted

Change Plan
established

Acceptance
declared

Project
closed

1 2 3 4

5

6

7 8

9

10

11

12

13

Contractor

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

German V-Model: The Big Picture

The German V-Model comprises
four sub-models:
System Development (SD)
Quality Assurance (QA)
Configuration Management (CM)
Project Management (PM)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

German
V-Model

System
Development (SD)
Sub-Model

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

German V-Model:

System
Development (SD)
Sub-Model

SD2:
System
Design

“Handling”
(Refinement)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

V-Model:
System
Development (SD)
Sub-Model

SD2:
System
Design

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

German V-Model: The Big Picture

The German V-Model comprises
four sub-models:
System Development (SD)
Quality Assurance (QA)
Configuration Management (CM)
Project Management (PM)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

V-Model:
Project
Management (PM)
Sub-Model

Activity Types:
• Management-related

– Initialization/Finalization
– Periodically Required

• Placement/Procurement-
related

• Planning-related
• Resource-related

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

V-Model:
Project
Management (PM)
Sub-Model

PM1:
Project
Initialization

“Handling”
(Refinement)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

• Hour 1:
– Introduction into Process Modelling
– Prescriptive Process Models

• Hour 2:
– Process Families/Standards
– Descriptive Process Modelling

• Hour 3:
– Exercises

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Goals of Descriptive Process Modeling

• Understand the process
– Explicit documentation
– Analyses (consistency,

completeness, complexity)
• Communicate (about) the

process
– Find agreement in case of

conflicting opinions
– Propagation of ‘Best

Practices’

• Support measurement
– Describe, who can measure

what and when
– Collect quantitative

information about processes,
products and resources

• Manage the process (and
products)

– Define goals (target values)
and control the adherence to
these goals.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Steps of Descriptive Process Modeling

1. Formulate goals and scope of the task
2. Choose a conceptual schema (meta-model)
3. Choose a process modeling language / notation
4. Select or adapt tools
5. “Elicitation”
6. Create process model
7. Analyze process model
8. Analyze process

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

How to do it?
• Structured interview, 1-2

Hours
• 2 interviewers
• Separated by roles

– no large groups
– clear focus
– manageable process

models
– no mutual interaction

(horizontal and vertical
hierarchic relations)

• Perform interviews one after
another, however not more
than 3 interviews per day

Information Information

Process
model

Role 1 Role n

Process Elicitation

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Scope
Project

Activity Name
Integration-Test (Target)

Responsibility
PL

Input Products

- TSPA
- Customer Data (by Customer Data Delta)
- APS
- Conformance Test Cases
- Regression Test Cases

Entry Criteria

- Possibly Integration Test (Host)
- Input complete
- Hardware available
- APS and Customer Data loaded
- Test time available

Activity Description

- Conduct Integration Test on target according to TSPA
Case A: Old Features (upgrade):

- Regression Test (Tool: A8619 (PORIS) for SSW / USR for ASW)
- Possibly, update of TSPA Test Cases

Case B: New Features:
- Manually conducted TSPA Test Cases
- Recorded with A8619 (Poris) for SSW / USR for ASW

- Conduct Conformance Test according to Standards with test tool K1197
- Defect correction

Output Products
- Test Protocol (Part of TSPA)
- Regression Test Cases (updated)

Exit Criteria
- Feature runs correctly on host
- No more test time available (Rem. by QM: this

criterium is not permitted!!)

Resources
- Developers
- Support team of TK Systems etc.
- A8619 (PORIS)
- USR für ASW
- K1197
- TK Systems
- CSTA Test tool
- CSTA-Spy

Project, process name, role

Input products and
entry conditions

Output products
and exit conditions

Description of the process/activity

Resources

Example Form for Structured Interview

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Rules for Process Elicitation (1/3)

• Obtain information about
– the organization
– the software domain

• Analyze existing documents and products
• Observe the relation between developers and quality assurance
• Ask whether an ongoing or upcoming organizational restructuring

impacts the process
• Make sure that the interview partner is selected according to your

instructions / guidelines
• Begin the interviews with a quality manager or project manager

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Rules for Process Elicitation (2/3)

• Opening of Interview
– Summary
– Explain goal and purpose
– Stress confidentiality
– General questions about the

process, and existence of
variants

• Main part of Interview
– Behave neutral
– At first ask about the products
– Then ask about processes
– What are typical (known)

deviations from the prescribed
processes?

– Which other roles participate in
the processes? (Cross-Check)

– Always be precise
– Try to identify process variants

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Rules for Process Elicitation (3/3)

• Closing of Interview
– Explain future steps
– Agree on time for the review
– Thank your interview partner

• Ask questions even when a
noticed ambiguity seems to be
small, often big problems are
hidden behind it

• Don't try to solve all ambiguities
and conflicts (during the
interview) – but follow-up on
observed inconsistencies
afterwards

• After the interview: give a quick
feedback to the interview-partner
about what you did with his/her
information

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Example:
Process Analysis

process

30 Processes
66 Products
42 Resources

• The number of products is higher
(approx. twice as high) than the
number of processes.

• The complexity of product flow
interfaces of processes is relatively
high (most of the processes access
more then a dozen of products).

• Most of processes are undertaken by
several roles (partly over five roles).

• Most of roles are involved in
execution of more then a third of the
whole process.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Modeling Languages (suitable for PM)

• Flowchart is a schematic representation of an algorithm or a stepwise
process,

• IDEF is a family of modeling languages, the most notable of which
include IDEF0 for functional modeling, IDEF1X for information
modeling, and IDEF5 for modeling ontologies.

• Business Process Modeling Notation (BPMN, and the XML form
BPML) is an example of a Process Modeling language.

• Extended Enterprise Modeling Language (EEML) is commonly used
for business process modeling across a number of layers.

• Unified Modeling Language (UML) is a general modeling language to
describe software both structurally and behaviorally. It has a graphical
notation and allows for extension with a Profile (UML).

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Process Modeling Tools

• Commercial tools not dedicated
to process modeling

– E.g., UML tools, ABC
Flowcharter, Microsoft Visio,
Statemate

• Workflow Management Systems
– E.g., ARIS Toolset (event-

driven process chains, EPC)
• Research prototypes

– E.g., Spearmint

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Example SPM Tool SpearmintTM

• SPEARMINTTM – Software Process Elicitation, Analysis,

Review, and Management in an inTegrated Environment
• Assists a process engineer in creating and maintaining complex

process models.
• Allows for efficient modeling of different views of the process

model
• Generates EPG (Electronic Process Guide)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Views

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Entire Process Model

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Views

Spearmint supports efficient
modeling by supporting
different views

• A view is a part of the process model
– Spearmint describes not the whole process, but only parts of it in pre-defined and

user-defined views.

• A view highlights certain aspects
– Working with views reduces the complexity of the process model.
– Only those aspects of a model are contained, which are relevant for specific tasks.

• SPEARMINT checks consistency of all views
– Process elements in a certain view always reference to the whole process model.

Entire process
model

view
view

view

view

view

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Views

Artifacts view

Activities view

Process view

Properties and Attributes views

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Product-Flow View

Refinement

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Control-Flow View

Join/Split symbols:
AND (x), OR (+), XOR(⊕)
nil (empty).

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Process View

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Attributes View

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Generation of Hypertext View (EPG)

Feedback, e.g. via
annotations

P
ro

ce
ss

-e
ng

in
ee

r
P

rocess-user
(e.g. developer)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Hypertext-View (EPG)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Annotations

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Consistency Checking

• Process models should be complete and correct
representations of reality

• Consistency checking has been partly automated in
SPEARMINTTM

• Methodological prerequisites:
– Process meta-model
– Consistency rules

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

• Hour 1:
– Introduction into Process Modelling
– Prescriptive Process Models

• Hour 2:
– Process Families/Standards
– Descriptive Process Modelling

• Hour 3:
– Exercises

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exercise 1

Process Model representations:
• Using product-flow notation

• Using table notation
Activity
Name

Input
Artifact

Output
Artifact

Roles Methods
/ Tools

…

Activity Artifact Role

Method /
Tool

Implement

Design

Code

Program
mer

Java
Development
Environment

uses

uses
consumes

produces

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exercise 1 (cont’d)

• Model the following process:
“Based on input from Marketing and from Customers, the Product Owner sets up
the product backlog. The Product Owner is also in charge of planning sprints.
He/she does this based on a prioritization of the user stories contained in the
product backlog, and on effort estimates for each user story received from the
Team. The Team does their effort estimates based on a refinement of user stories
into tasks. Once a sprint has been defined, the Team develops the software
related to a sprint. The Team does this by working on the previously identified
tasks. To monitor their work, a burn-down chart is maintained. The burn-down
chart shows how much of a task has been completed and how much effort is still
to be used. During the development of a sprint, the Scrum Master supports the
Team by helping them overcome obstacles and by guiding them through the agile
methodology. Once a sprint is complete, a sprint review meeting will be performed.
Everybody is invited to attend this meeting.”

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exercise 2

• Work in pairs
• Task 1:

– Decide who will be the “process performer” (role P) and who will be the
process modeller (role M)

– P think about a process (related to software development) and explains
it to M.

– M models the process (as in Exercise 1)
• Task 2:

– Take turns (i.e., switch roles) and repeat task 1.
• Task 3:

– Show your process models to someone else (not in your pair) and let
that person explain the process to P.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exercise 3 – Homework

• Task:
– Model the process of surveying “Customer Satisfaction” using the

Kano-Model
– Specify activities, artifacts, roles, tools/techniques/methods
– Use either the graphical or the table notation

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The Kano-Model
Five dimensions of quality:
• ”Basic quality” – satisfies basic “must-

have” needs which probably do not
even need to be specified.

• ”Competitive quality” - satisfies
expressed needs (usually in
requirement specification).

• ”Excitement quality” - satisfies latent
needs, needs which are there but which
the user hasn’t expressed and/or is
himself/herself aware of

• ”Indifference quality” - needs which are
covered but which user is indifferent to

• ”Reverse quality” - qualities which the
customer do not want

Customer
Satisfaction

Performance

high

high

Excitement
(Differentiation)

Linear
(Competitive)

Basic
(Cost of Entry)

Time

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The Kano-Model – Surveying Users

• To assess whether a feature is basic,
linear, or exciting we can:

– Sometimes guess
– Survey a small set of users (20-30)

• We ask two questions:
– A functional question:

How do you feel if a feature is
present?

– A dysfunctional question:
How do you feel if that feature is
absent?

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Functional and Dysfunctional Forms

If your editor
includes a

voice recognition
function, how do

you feel?

I like it that way X
I expect it to be that way
I am neutral
I can live with it that way
I dislike it that way

If your editor
does not include a
voice recognition
function, how do

you feel?

Functional form
of question

Dysfunctional form
of question

I like it that way
I expect it to be that way X
I am neutral
I can live with it that way
I dislike it that way

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Categorizing an Answer Pair

B: Basic (Mandatory)
L: Linear
E: Excitement
R: Reverse
I: Indifferent
Q: Questionable

Like
Expect
Neutral
Live with
Dislike

Li
ke

E
xp

ec
t

N
eu

tra
l

Li
ve

 w
ith

D
is

lik
e

Q
R

R

R
R

E
I

R

I
I

E
I

R

I
I

E
I

R

I
I

L
B

Q

B
B

Dysfunctional
Question

Fu
nc

tio
na

l
Q

ue
st

io
n

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Next Lecture

• Topic: Processes and Process Modeling (Section B)

• For you to do:
– Do the homework
– Continue thinking about your project (topic &

presentation)

