INF5181: Process Improvement
and Agile Methods in Systems
Development

Lecture 02:

Processes and Process
Modeling (Section A)

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no
Fall 2011

Structure of Lecture 02

e Hour 1:
— Introduction into Process Modelling w——————————
— Prescriptive Process Models
e Hour 2:
— Process Families/Standards
— Descriptive Process Modelling
e Hour 3:
— EXxercises

§ £9% UNIVERSITETET
205 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

H. Dieter Rombach, Martin Verlage,
Directions in Software Process Research,
Advances in Computers, Volume 41,
Marvin V. Zelkowitz (Ed.), Pages 1-63,
Academic Press, Boston, MA, 1995.

Process Taxonomy

Processes
|

« What are | |

Englneering Processee Non-Engineering Processes

typical | | | A —

p rocesses In a Product-Englineering Process-Englneering Business Social
Processes Processes Processes Processes
software |
iect? o
p rOJ eCt . Technlcal Managerlal Process Modeling
Processes Processes
Development Project Mgmt Measurement
Processes Processes Processes
Malntenance Guality Mgmt
Processes Processes Improvement
Processes
Product Line Conf Mgmt
Processes Processes

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

What is a (Software Development) Process?

A Process ...
» defines Who is doing

— In software engi
to enhance an e

pach a specific goal.
oftware product or

An Effective Process |
« provides guidelines for
* reduces risk and increas®
e promotes common vision arm

Jjuality software

S £4% UNIVERSITETET

= [| =
INF5181 / Lecture 02 / © Dietmar Pfahl 2011 iy 5 1 OSLO

Software Process Examples

DEIGH -
-

& __ 1[4

Business modeling
Requirements
Analysis & Design
Implementation
Test

Deployment

Change & Configuration Mgmt
Project Management
Enviranment

systermn
ginstalled and

T

Exterral TA=rginal ot =i
Specihcotians Conditions Pi ol in aperstian)
i b
Sp1 SD &
— Swsbtem Require— Transition to System
ments Analysi Hilization Lewel

SWhdkd Goncept

Falg] Pl

[l

User Frodu Tender | Cost/Banefit >
i Operational Information Syghern finstallabls]
Requirsrnent; Information Evelustion | Anslysis o o g
sp2 sp 8 System
¥ ig v Integration Level

5

L=t ——————
Integrafion B
Irberfac Il

e Operadional Technical Syste

Irterface

Ovel

Implernertstion

——

£

X i irern. ATChitech Mo—IT-Farts
view Descri. Informahion Redyirern. AT re BoE S Unit HYW Linit
13 SD 3
SW/HW Require— y
ments Analysi SW Units/
HW Units
=S SD 7 - SW Lewvel
Ooerefionel Technical Requirem SW Integradion
Inforrpation + !
SD 4 - SW T SW
=0 ary SW Component
Lewel
It Ipierface. Dperstions! ER ImpTern
e s ocs
escrip Infarmation Ancitscne U L
SD 5 - SW —
il = SW Module/
Design Database
SDE_ SW Lewvel
e [t sw
- o e ey W Operstions Information Implementation Legend

.
Diclianary Design

[

—_—
Assessment Activities
(See G

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP

Inceptiong Elabeorati Construction] Transition
H H
‘_.-._____‘__
— @
H e New functionality
Is demonstrated
-’ Selactan at end of sprint
‘oduc!
e
o
e — Product Backiog
Emerging, prioritized
requirements
Preliminary | Iter.[lter Iter. Iter. | Iter. Iter.
Iteration(s) #+1 |[#n+2 | #m E :
vision
Anticipated ROI,
Releases, Milestones
- P ——,
Spiral e
' Progress.
throwgh
Hhesgas
_— Evaluata ahesmatves,
JDetarmans _—_'_“———______ identify, resolve reks
~ “abjectives, —
alernatives, e —_———______‘_
constrainks "
-
N Rk
analysis
—_—
f Risk | =
[*analysis Operational
Commitrment | i | Prototype 1 [Prototype :3'| prototype
Hanmea - * === - -
parition — =g -

Requirerments plan
lite-cycle plan 1 Concept ol

‘operation Software

—— i T

Drervebop- Aequirements
ment plan walidation
'
Integraton Design valdation
Eﬂﬂ‘;El:' and verification /
o
Plan nest phase T— T

What are the Goals of Process Modeling?

 To enable effective understanding
and communication

— At one development site
(developers, teams, ...)

— Between development sites
(distributed development,
outsourcing, contractor-supplier
relations, ...)

e To improve software development
activities
— Improving real processes requires

measurement and measurement
requires defined processes

— Evolving processes

To support project management
— Transparency, tracking, ...

To guide the developers
— Incorporating new employees

To support automatic process
enactment

— Workflow support
— CASE tools

To support reuse of process
knowledge

— Organsational learning

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

What is a (Software) Process Model?

o
ments Analysis ilization
ﬁ swwc pt
AE_JE] g -
R qulr:r;ents \nfn Em ETaI:n 5 YHB eﬁt Dpelaﬁunallri\)rmaﬁun Sy;tem(mstallanle)
$D2 sDg System
Syetem Design » ‘S' 5}“"!"‘ Integration Level
Integration Fls ‘—r_L
= [i Rf 188
IMetare Interface Operfional Technicl System g a— I
COverview Descrip, imetion Reguirem. J(re Ec mentadi l_?ﬂ Ho \T Parts S Unit HW Unit
SW Units/
HY Units
SD7-SW Level
SW Integralion
S
Component
Level
- +
Detailed SW —— S¥ Module/
Dezign Database
SDE- SW Level
O O i
‘Dela. SW Operational Inormeion | Implementation Legend
Dictionary Deﬂ '
Assessment Activi
[See QA)

“Software Process Model: An abstract
software process description. It can be

more or less formal.”
Key elements:

'Lonchamp 93]

Tool

Role

assumey

J is composed of

_| is composed of

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Characterization of Process Models

== A Process Model defines:
— an identifiable activity or a group of
@E activities

g B M « a hierarchy of activities

» the sequence/order of activities (=2
control flow)

» the input/output products (artifacts)
of activities (= product flow)

T | | B, 1 T the relations between activities and
; ey techniques, methods, tools, and
D S e roles

P89 UNIVERSITETET
2 I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The Role Concept

e Role

— Arole is in charge of one or more activities defined in one or more
processes

— A role has defined responsibilities
— Possible relationships between agents and roles

1:1 Tool
1:m
s
n:1
is composed of
n:m Role Pecorms Antivity c
ASSIUHES ir cormumed by produces
Artefaot
= S
P89 UNIVERSITETET
2 I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Role Responsibilities

RASCI Matrix

developer
Moderator

Module

Activities

Tester

Quality

assurer

Module
design

Moc!ule R
coding

Module
review

Module
testing

R = Responsible

A = Approve
S = Support
C = Consult
| = Inform

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

' l."'-? % UNIVERSITETET

I OSLO

Descriptive vs. Prescriptive Process Models

Systern

I | s

kdarginal p otocol in operation
Specrﬁcanons Con fions pe T P !

SD 9
— S!me Hequire- Transition to System
mentz Analysis ¥ Utilization Lewel

SWhN Concept

g 181

Llser Produrt Tendar Cost!Benefit
Requlrememi Infou_ﬂamon Euaiuamon Mnalysis

Operational In‘f'olmadion System (lnstallahle)

SD2 * sSD 8 System
5 Sysotem Design ¥ Integration Level

N

Integration Plan T +
Interface In‘herfaj:e Dneramonaj Tecnmcaj Systern - -
Owerview Descrip, Irrfumlahun Flequlrern. architecture Irnplernentstion Mo—IT-Parts S Unit HW Unit
-+ Dos. (S L‘Irnlt:l T T
4 SD 3
SWHW Requlre— .
ments A& SYW Units/
HY Units
= SD 7 - SW Level
Operational Technical Requirer SW Integration
Irfarrnation + -+
I e—- SD 41- SW - SW
r Pr ary S Component
Design
Level
Iomerfa:e Ilrjvberface Operational B Imglem(emﬂhnn Database =
weryiew . i i =3
es_cnp+ Irrforrgamon ArcIlrIEcmre hodule, Dagabase] T S kdodule
+ SD5 - SW +—
Detailed SW — SYW Module/
Desaign Database
SDE- SW Level
ﬁ sW

Dperanonaj Irforrmagion Implementation Legend
chhonaly Design

P
Assessment Activities
[See G4

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Prescriptive vs. Descriptive Process Models

* Prescriptive Models (theoretical) ¢ Descriptive Models (empirical)

— “Ideal” Process — Accurate elicitation of actual,
— (Assumed) best practice real processes
— Often requires instantiation — Basis for the revision of

and detailing existing (prescriptive)

process models based on
observation and experience

— Deviations from real
processes are likely

— Examples: waterfall, V-
model, spiral model,
Incremental, iterative,
evolutionary, agile process
models

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 “ex s 1 0SLO

Structure of Lecture 02

e Hour 1:

— Introduction into Process Modelling

— Prescriptive Process Models < —
e Hour 2:

— Process Families/Standards

— Descriptive Process Modelling
e Hour 3:

— EXxercises

§ £9% UNIVERSITETET
26¥ 5 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Overview:
Prescriptive
Process Models

Pre-defined process
models like Scrum, EVQ
RUP, XP, Cleanroom...

Process models exist on
3 levels:
family/standard level,
organizational level,
and project level

Inspires

Organizational

Process model

Project (type) 1 Project (type) n

process model Project (type) 2 process model
process model

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Waterfall: Royce Model (1970) Prerequisites:

Familiarity with
application domains,

SYSTEM methods, techniques,
|dea: REQUIREMENTS _\v tools, engineering

Sequential creation of k SOFTWARE processes
products on different REGUIREMENTS _\v Good understanding of
levels of abstraction (e.g., PRELIINARY the requirements
precede code by design, | oesion _\ Stable requirements
precede design by & High capabilities for
requirements) and AR

* &_W effort estimation

PROGRAM

integration in reverse
direction

Strictly sequential control
flow can be weakened by
controlled iterations

DESIGN

CODING
ANALYSIS ‘
PROGRAM k
TESTING —\

DESIGN
OPERATIONS

DESIGN
PRELIMINARY # *

CODING

TESTING

USAGE

UNIVERSITETET
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Often Waterfall is Bad

For many projects, the waterfall — Adversarial stakeholder
model is a poor choice relationships
— Late risk resolution written definitions of
e can't tell requirements or requirements often lead to
design risks exist until late in extended (and heated)
the life cycle discussion of their
— Requirements drive functional interpretation
decomposition — Focus on documents and
: . reviews
« exhaustive requirements -
make it hard to tell if the » fuffilling the letter of a
design is viable; contract can lead to the

appearance of progress, but
without real communication

— Inflexible!

* hard to identify critical
requirements

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Prototyping

‘An iterative process of creating quickly and inexpensively live
and working models to test out requirements and assumptions’

(Sprague and McNurlin)

e Main types:
— ‘throw away’ prototypes
— evolutionary prototypes
 What is being prototyped?
— human-computer interface
— functionality

§ £9% UNIVERSITETET
205 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Boehm’s
Spiral Model

Cumasiativa
cost

Progress
throwgh
steps

Evaluata alesnmatwes,
. Detarmane _‘_'__——‘—-—-—______ identity, resolve nsks
~ -objectives,
alarnatives,

Constrainks

Rizk |
“analysis
| Frototype 1

Chperaticonal
Protofype 2 | Prolotype 3 | Bfolobype

- — Semulations, models. benchrmarks

Hawngw

parision -

Requirerments plan | -

lite-cycle plan Loacep Ol e = e
operakon Sottwarne

requine Software
ments

Design waldation
arsd wenficalion

Plan nesl phase

LWA ¥ EJARLFE & ETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 OSLO

Spiral Model - Highly Iterative

* The spiral model proposed by Boehm (1988) is an iterative model with
focus on risk resolution:

— Determine objectives and constraints

— Evaluate Alternatives

— ldentify risks

— Resolve risks after assigning priorities to risks

— Develop a series of prototypes for the identified risks starting with the
highest risk

— Use a waterfall model for each prototype development (“cycle”)

— If arisk has successfully been resolved, evaluate the results of the
“cycle” and plan the next round

— If a certain risk cannot be resolved, terminate the project immediately

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

A

Types of Prototypes used in the Spiral Model

 lllustrative Prototype
— Develop the user interface with a set of storyboards

— Implement them on a napkin or with a user interface builder (Visual
C++,)

— Good for first dialog with client
 Functional Prototype
— Implement and deliver an operational system with minimum functionality
— Then add more functionality
— Order identified by risk
 Exploratory Prototype ("Hacking")
— Implement part of the system to learn more about the requirements.
— Good for situations in which paradigm discontinuities occur

" £4% UNIVERSITETET
“¥¥ 5 108LO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Iterative Enhancement (Incremental Delivery)

* Origin: Basili und Turner, 1975
e lIdea:

Split functionality into several increments

Develop each increment (i.e., a product part that fulfills a subset of
requirements) in a Waterfall style; integrate increment by increment into
the product until delivery

The focus of the development of an increment might be completion of
functionality or structure, but it can also be refinement and improvement

Strictly sequential control flow can be weakened by controlled iterations

* Prerequisites:

Structure of the problem permits incremental development

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Ny, 7 1 OSLO

Incremental delivery

first incremental delivery

second incremental delivery

third incremental delivery

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

delivered
system

increment
1

increment
2

Iterative Enhancement (Incremental Delivery)

Adva_n_tages: | | | Disadvantages:
- Efficient learning during the project; | i that, by ignoring specific

thus, experience level can be low _ < Suctwill b
« Early availability of a product, with requirements, the proauct will be

the essential properties of the final designed in such a way that fulfilling
product. future requirements becomes
» Allows for early customer difficult/expensive

involvement and feedback

 Applicable when parts of
requirements are unclear or

— particularly problematic are
non-functional requirements

unstable Comprehensive version and
» Supports integration testing configuration management is
» Good applicability in case of fixed necessary

delivery dates (> prioritize
requirements with the customer)

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 “ex s 1 0SLO

Unified Process

« Family: Iterative Enhancement
e Origin:

Ivar Jacobson, James
Rumbaugh, Grady Booch,
1998

» Defines process framework that
IS adaptable to

various application domains
different organizations
different competence levels
different project sizes

Characteristics:
— use case driven

— architecture-centric

Provides only rudimentary
instructions

Refined version:

— Rational Unified Process (Ph.
Kruchten)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

" £4% UNIVERSITETET
“0% 5 10sLO

Rational Unified Process (RUP)

Organization along time

Ph
Process Workflows ASa
Inception = Elaboration Construction . Transition
Business modeling e ———
Requirements :

. Analysis & Design R
Orgamzatlon Implementation / . .
along Test m—

: : e
content Deployment :

Supporting Workflows
Change & Configuration Mgmt

Project Management W)/\ /
Environment : P

Preliminary Iter.| Iter. I Iter. Iter. | Iter. I Iter. Iter.
Iteration(s) #1 #2 #n #n+1l | #n+2 #m #m+1
Iteratio
e
UNIVERSITETET
INF5181 / Lecture 02 / © Dietmar Pfahl 2011 | I OSLO

RUP Phases and lterations — The Time
Dimension

* This is the dynamic organization of the process along time.

» The software lifecycle is broken into cycles, each cycle working on a new
generation of the product. The Rational Unified Process divides one
development cycle in four consecutive phases.

— Inception phase Major Milestones
— Elaboration phase ./ \\

Ime eption | Haboration Construction Transition |

— Construction phase

— Transition phase

« Each phase is concluded with a well-defined milestone--a point in time at
which certain critical decisions must be made, and therefore key goals must
have been achieved.

ting e

>

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

A

RUP Phases — Example: Inception Phase

During the inception phase: establish the business case for the system and delimit the project scope.

To accomplish this you must identify all external entities with which the system will interact (actors)
and define the nature of this interaction at a high-level.

This involves identifying all use cases and describing a few significant ones. The business case
includes success criteria, risk assessment, and estimate of the resources needed, and a phase plan
showing dates of major milestones.

The outcome of the inception phase is:

A vision document: a general vision of the core project's requirements, key features, and main constraints.

An initial use-case model (10%-20% complete).

An initial project glossary (may optionally be

partially expressed as a domain model).

An initial business case, which includes business
context, success criteria (revenue projection,

market recognition, and so on), and financial forecast.
An initial risk assessment.

A project plan, showing phases and iterations.

A business model, if necessary.

One or several prototypes.

At the end of the inception phase is the first major project
milestone: the Lifecycle Objectives Milestone. The evaluation
criteria for the inception phase are:

- Stakeholder concurrence on scope definition and cost/schedule
estimates.

- Requirements understanding as evidenced by the fidelity of the primary
use cases.

- Credibility of the cost/schedule estimates, priorities, risks, and
development process.

- Depth and breadth of any architectural prototype that was developed.
- Actual expenditures versus planned expenditures.

The project may be cancelled or considerably re-thought if it
fails to pass this milestone.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

- UNIVERSITETET
'¥ 5 10sLO
Fige

RUP - Static Process

Static Structure of the Process

» A process describes who is doing
what, how, and when.

 The RIP Is represented using

Activities, Artifacts, and Workers

- . Wlorkear Actisvities
four primary modeling elements: O P
ﬂx rd k'ﬂ
— Workers (Roles), the "who" B
rkers (Roles) £l >
— ACt|V|t|eS, the "how" Desiguer Uge-Cage Saaysk Use-Cage Design
— Artifacts, the "what" arifact | retpeniibis br
— Workflows, the "when" :

Uge C3age Realzaton

" £4% UNIVERSITETET
“¥¥ 5 108LO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP - Activities and Artifacts

AcC

tivity
An activity of a specific worker is a unit of work that
an individual in that role may be asked to perform.

The activity has a clear purpose, usually expressed
in terms of creating or updating some artifacts, such
as a model, a class, a plan.

Every activity is assigned to a specific worker. The
granularity of an activity is generally a few hours to a
few days, it usually involves one worker, and affects
one or only a small number of artifacts.

An activity should be usable as an element of
planning and progress; if it is too small, it will be
neglected, and if it is too large, progress would have
to be expressed in terms of an activity's parts.
Example of activities:

— Plan an iteration, for the Worker: Project Manager

— Find use cases and actors, for the Worker: System
Analyst

— Review the design, for the Worker: Design Reviewer

— Execute performance test, for the Worker:
Performance Tester

Artifact

An artifact is a piece of information that is
produced, modified, or used by a process.
Artifacts are the tangible products of the
project, the things the project produces or
uses while working towards the final product.

Artifacts are used as input by workers to
perform an activity, and are the result or
output of such activities. In object-oriented
design terms, as activities are operations on
an active object (the worker), artifacts are the
parameters of these activities.

Artifacts may take various shapes or forms:

— A model, such as the Use-Case Model or the
Design Model

— A model element, i.e. an element within a
model, such as a class, a use case or a
subsystem

— A document, such as Business Case or
Software Architecture Document

— Source code
— Executables

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP — Resources and Workers (Roles)

Resource

Faul

o
Worker /:"

Activities r

//4 Cexigrer

Objct Dexign

M=y

* Uee Czea Author

Detail 2 Use C=oe

Jio=

E Uze Caxe Des igner

Uze Caee Design

Svhiis

SEfan

+De&ign R ewiewnar

Fewiewy the Dresign

T Az hites:t

Archilectura Anaby s i
Archilectura Dezign

A worker defines the behavior
and responsibilities of an
individual, or a group of
individuals working together as
a team.

You could regard a worker as
a "hat" an individual can wear
in the project.

One individual may wear many
different hats. This is an
important distinction because it
is natural to think of a worker
as the individual or team itself,
but in the Unified Process the
worker is more the role
defining how the individuals
should carry out the work.

The responsibilities we assign
to a worker include both to
perform a certain set of
activities as well as being
owner of a set of artifacts.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP Workflow — Example: Analysis & Design

Fevizunrthe
Architecture

Workflows

A mere enumeration of all workers,
activities and artifacts does not quite
constitute a process. We need to
describe meaningful sequences of
activities that produce some valuable
result, and to show interactions between
workers.

A workflow is a sequence of activities
that produces a result of observable
value.

In UML terms, a workflow can be
expressed as a sequence diagram, a
collaboration diagram, or an activity
diagram (cf. activity diagram on the left
hand side).

UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

A

RUP Workflow — Example: Analysis & Design

* The goal of the Analysis and Design workflow is to show how the system will be realized in
the implementation phase. You want to build a system that:

— Performs — in a specific implementation environment — the tasks and functions
specified in the use-case descriptions.

— Fulfills all its requirements.

— Is structured to be robust (easy to change if and when its functional requirements
change).
* Analysis and Design results in a design model and optionally an analysis model. The design
model serves as an abstraction of the source code; that is, the design model acts as a
‘blueprint' of how the source code is structured and written.

* The design model consists of design classes structured into design packages and design
subsystems with well-defined interfaces, representing what will become components in the
implementation. It also contains descriptions of how objects of these design classes
collaborate to perform use cases.

UNIVERSITETET
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

MSF (Microsoft Solution Framework)

Deplulrment
For details complete
refer to v
the related
. o

White Paper Deploying -
. - o
IN the_ Release A Pg;gﬂnmgﬁ :Iljspl?.‘;'u::’:gnpe
Reading approved
Materials 4

Stabilizing Planning

Phase Phase

'(:I Developing D

Phase

SCope Project plans

complete approved
s umnvavenraie1 ET

“¥¥ 5 10sLO

1.[-!'1_{{4 5

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

MSF-Inspired Process Model (at DNV)

DP1 DP2 DP3 DP4 DP5 Project
Mandate VES Flan Scope Project Complate
For sub-contractor Signed Approved pproved Complete Release

management coftware
processes and e Shememi),
agile development e e _ _ - .
processes gt e G H o
using the
Norwegian | e J]
PS2000 process =
standard Es Project Followup |
refer to the related -
reports in the + soFaRoles O
readin.g ’ Main Document F'“’"’_ —— | Development Project activities |
materials - Recommended lieratons ‘ —» Indicates a logical sequence of activities
= Quality Assurance Maans information flow
= Work Products DP1..DPn Means Decision Point 1..n

@ Copyright DMNY Software

—e2a» = ITETET
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

 Hour 1:
— Introduction into Process Modelling
— Prescriptive Process Models
e Hour 2:
— Process Families/Standards @ ———————————
— Descriptive Process Modelling
e Hour 3:
— EXxercises

§ £9% UNIVERSITETET
26¥ 5 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

ISO 12207: Standard for Information
Technology-Software Life Cycle Processes

This standard officially replaced for the development of
software systems in August 1998

This standard defines a comprehensive set of processes that cover
the entire life-cycle of a — from the time a concept is
made to the retirement of the software

The standard defines a set of processes, which are in turn defined in
terms of activities. The activities are broken down into a set of tasks.

The processes are defined in three broad categories:
— Primary Life Cycle Processes
— Supporting Life Cycle Processes
— QOrganisational Life Cycle Processes

§ £9% UNIVERSITETET
205 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

ISO 12207 Processes

* Primary life cycle e Supporting life cycle Organisational
processes. processes. processes.
— Acquisition — Audit process — Management
process — Configuration Process
_ Supply process Ma.mager.nent — Infrastructure
— Joint review process process
— Development — Documentation process — Improvement
process — Quality assurance process Process
— Operation — Problem solving process — Training process
Process — Verification process
— Maintenance — Validation process
process

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The software development life-cycle (ISO
12207)

F'y By - v
c | Requirements analysis | &
L =
vy . . el
o| | Architecture design | g
v m
F 3 =3
| Requirements analysis] a
| Architecture design |]
2.
. o ee]
‘ Requirements analysis | =]
v
a
| Detailed design | ™
o A
1= —_—
g 3
£ | Code and test | 2
(=]
wy Q %
| Integration | o =1
o =
2| |8
[Qualification test ‘ o
v -
F 3 -
= | Integration |
z
v
v [Qualification test]
v =
v c oz
S | Installation | % §]
&£ AEE
2 | Acceptance support | a =]
—

UNIVERSITETET
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

DOD Standard 2167A

* Required by the Department of Defense for all software contractors in
the 1980-90s

« Waterfall-based model with the software development activities:

System Requirements Analysis/Design

Software Requirements Analysis

Preliminary Design and Detailed Design

Coding and CSU testing (CSU = Computer Software Unit)

CSC Integration and Testing (CSC = Computer Software Component,
can be decomposed into CSC's and CSU's)

CSCI Testing (CSCI = Computer Software Configuration ltem)
System integration and Testing

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

2W¥ 5 1 0SLO

IEEE Std 1074

 [nstitutional standard (‘least common denominator’) published in
1997

e Process description comparable with V-Modell® XT (on a high
level), but no statements about products, roles

« Offers only little guidance for developers

§ £9% UNIVERSITETET
205 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

IEEE Std 1074: Standard for Software Lifecycle

IEEE Std 1074

Cross-

Project Pre- Develop- Post-

Maunagemenl Development ment Development Development

(Integral Processes)

> Project Initiation » Concept > Requirements | >Installadon (V&Y
>~Project Monitoring Exploration Analysis >0Operation & |> Configuration
&Control > System = Design Support Management
> Software Quality Allocation > Implemen- > Mainterance | > Documen-

Management tation > Retlrement tatian
> Tralning

£9% UNIVERSITETET
“0¥ 5 108LO

V-Modell® XT (XT = Extreme Tailoring)

R - . Published in January 2005
X7 e Predecessor: V-Model (1997) for military authorities in Germany
e Structured in a modular way
« Mandatory for IT projects in public and military domains in Germany
« Goals:

— Enhance support for adaptability, scaleability, changeability, and
expandability of V-Model 97

Somewhat

Comparable to — Consider state of the art and adapt to current regulations and

the role of standards

PS 2000 in — Expand application range considering the complete system lifecycle
Norway of development projects

— Introduce a process of organizational process improvement

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

V-Model XT — Purpose and Scope

The V-Model XT is a guideline for the Planning and Management of IT
Development Projects.

Scope of the V-Model are:
— Improvement of Planning and Tracking of IT Development Projects,
— Minimization of Project Risks,
— Improvement and Quality Assurance,
— Improvement of Communication between Project Stakeholders,
— Containment of Total Costs over the Project and System Life Cycle.

The V-Model supports different Project Execution Strategies and the Concept of
Decision Points.

The V-Model can be tailored according to the specific conditions and needs of an
ICT Project

The V-Model addresses the Customer and the Contractor.

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 “YE s 10SLO

Customer vs. Contractor View

- Decision Points

1 2 3 4 5 6 8

12

\Change Plan
established

4
\ PrOJect A Offer Pro ect Prog'ect /Acceptance H PrOJect /
approved tendered contracted defined declared closed

S stem Dellvery
6\ S stem / Sy stem /9
rafted mtegrated

7Retalled Design ystemelement
complete realised /g,

=c
Z
=
-
bxd
-}
e
=]
]
o)
-]
o]
]

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

German V-Model: The Big Picture

The German V-Model comprises

: Planning and Setting up Prerequisites
four sub-models: Controlling and Availability of Software
> System Deve|opment (S D) the Project Development Environment {SDE)

Quality Assurance (QA)
Configuration Management (CM)
Project Management (PM)

Flar
Data

Actual
Product
Development

(14 Requirerment Product

Actual

Planning
Product
Structure

Specification
of QA
Requirements

Product
Asspssment

Administration of

2,
Result

ConfigurationStructure

¢ Procuct

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

German
V-Model

System
Development (
Sub-Model

SD

dy =] [Em— 5
da dy a0 ystern
= ks Shy /E‘ {installed and
External Marginal protocal S i operation
Specifications Conditions i o T P !
- -~
SD 1 * SD 9
—— System Require- Earig Transition to System
ments Analysis Ml * LHilizadion Level
y = y = SiMkARA Concept T
Ly Ly
d d proe %
o 5 Erd ", O —
User Product Tender Cost!Benefit)) —
i Infarmnati Evaluati Analysi Operational Information Systern (installable)
Requirements Inforfnation Evajustion | Arvalysis + 3
SD2 N SD 8 System
——— System Design Ry p System Integration Level
N
- =1] Integration Plan |—' 3 ‘—r_|_
EEE EEE ; p— o
.] .] .] :) } ; 5‘ Q: . T i
Interface Imterface Operational Technical Spstemn -
Overviess Descrip, Infornlaﬁnn Requirern. Architecture Irmplementation Mo |T Parts S Unit HW Unit
+ + Docs. (314 Unrt] T
SD 3 i
SWHW Require- |7 .
I » ments Analysis |—J—» SW Units/
HW Units
N N SD1-SW Level
Operational Technical Requirem. SW Integration
Irfarration + -
L
SD 1- SW HEl SwW
Preliminary SW Component
N Degign
» Level
& ‘F_l_
s
ft o M ik ' ﬁ
Elterfa;e IEterfa_J:e Operational SW Imglemenbatnn Daia,ha,se T
NETUIEY . 5 I
ES!I"F'J' Inforriahun Arcllrtecb.lre Module, itabise SIA hdodule
¥ SD5 - SW —
Detailed SW — S¥ Module/
Deszign Databasze
+
= = SDE - SW Level
iy iy iy W
S Operational Infarmation Implementation Legend

Diata
Dictionary Design

Asgsessment Activities
[See ClA)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

UNIVERSITETET
I OSLO

E=H

German V-Model:

Svstem K/< Y
y v N

Development (SD) l »biile iz
Sub-Model A AR J

l Interface Querview Allocagion of Liser Requirernents

S

S D 2 " : Systern Architechure
" Technical Requuemer /

System

Design Km"f S
4 /

\ Specification of Systern Integraﬁnn H an d I I n g ”
" OE (Refinement)

™ ™
Operational Inforrmation Irtearation Plan

:::::i'

Interfs;:e Description

§ £9% UNIVERSITETET
59¥ 5 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

V-Model:
System

Development (SD)
Sub-Model

SD2:
System
Design

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

 From | Prodmct | to |
Activity State [Chapter] Tifle | Activity State | E—

|[Exterpal| - [A |[Prodoct bfommeto | - | - | | |
PM1 laccepred| Al DfferEvamanen@ | - -
PMS |acceped| All [CostBepefit Analvsis - -
SDL |.a|:n:e:.1|:gd Existing [User Requirements - -
A
COM
sjpeal CEC
503 ER.
- Existing 2vamm Architecirs SD4-5W | submirted
PM3 ODIAG
Tliy
5M
| oM
- L . o . EC
- Existing Technical mrements | 503 [being proc. ODIAG
M
Operational Information:
User hMazual
.. Diagrosis Manual S
Existing Oiperator Mamual D2 bemg proc.
Oither Application
Information
. COM
Existing [nterface Overview S?’.;IS-‘I-“ being proc. DEM
T E5M
ACC
COM
503 DVER
Existing [necface Description SD4-5W being proc.
EM4 M
5M
TMO
. BAR
Existing Intezration Plan %be;ngpm{_m

T

German V-Model: The Big Picture

The German V-Model comprises

four sub-models:

System Development (SD)

Quality Assurance (QA)

Configuration Management (CM)
P Project Management (PM)

setting up Prerequisites
and Awvailability of Software
Development Environment (3DE)

Actual Actual
Product AR
Development

Product
(14 Requirerment Product

Planning and
Controlling

the Project

Flar
Data

Specification
of QA
Requirements

Product
Asspssment

Structure

Administration of

2,
Result

ConfigurationStructure

¢ Procuct

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

i ¥ L * =
13 V-Model * a9 > 13
= d o o I
- Project Order Contract T Tender Docurnents — Offer from and to Extemal
=ivioQel. , t ! t
PM 1.1 Project Initialization l 1,
- Phi1.1 Setting up the Project PM 2 i PROJECT
P Pt 1.2 Def. of Project Criteria and Report
rOJ e Ct Dewveloprment Strateqy Placement / Documents
P13 seneration of Project-Specific W -tdodel Procument E
Pt 1.4 Toolset Management

Management (PM)

=5 Project Manual F'mjec’t Plan l l
)

S u b - M O d e I d Project F'm|eu:1 Offer
o F'iaﬂ iﬂual Evaluation

Project F'm|e Project F'm|ect SD OA,

HlSTUﬁ' F'Ian F'Jan Manual Chd PM 3
PM7 PM2 Emdms Contractor
Risk Project Mananemant
Management Control |, il
ACtIVIty Types i l ‘ v Feport Documents

« Management-related Pus
F'm|ect F'rmect S;.'stem DocUMments gy SCM Sl‘lervf?ce."ﬁepmting

Initialization/Finalization = Majuau i G T At

Periodically Required s || Pws][e
Prnje_ct Cost/ Be_neﬁt ;él:rai:;
e Placement/Procurement- Planning [|~ Analysis

Proiect Products Project Project Cost/Beneft Project

related ENE i ‘ "sECTON

1 tanual (planned) | Pl Manual Analysi hanual
« Planning-related e M AL T o
+ L — SECTION

- PM 10 PM 11 PM 12 PM 13

* Resource related Training/ Supplying Allocation of = =1 Staff
Ingtructinn Resources Work Orders | wirkOrder | Training
PM 14 from G [¥55] Project History

N Project [:
Final Project Repatt Completion +| Repart Documents +—

%% UNIVERSITETET
oY 5 1 0SLO

V-Model:
Project

Management (PM)
Sub-Model

PM1:
Project
nitialization

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

iy
]
o]

e “Handling”
/ k (Refinement)

etting up the Project

.

Diefinition of Project Criteria
d Developrnent Strateqy

i

Generation of Projec-
Specific Y-hdadel

'

Toalset rnanagernent

ST e

L3
Ly V-Modal
Ly

\ Project MEJ:I.IEJ
\i

Generation of Prelirinary Plan

sz

iy
Praject Plan

" £4% UNIVERSITETET
“0% 5 10sLO

Structure of Lecture 02

e Hour 1:

— Introduction into Process Modelling

— Prescriptive Process Models
e Hour 2:

— Process Families/Standards

— Descriptive Process Modelling wE—————
e Hour 3:

— EXxercises

§ £9% UNIVERSITETET
205 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Goals of Descriptive Process Modeling

— Explicit documentation — Describe, who can measure
— Analyses (consistency, what and when
completeness, complexity) — Collect quantitative

Information about processes,
products and resources

— Find agreement in case of
conflicting opinions

— Propagation of ‘Best — Define goals (target values)
Practices’ and control the adherence to
these goals.

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 “iyy 10SLO

Steps of Descriptive Process Modeling

. Formulate goals and scope of the task

. Choose a conceptual schema (meta-model)
Choose a process modeling language / notation
. Select or adapt tools

. “Elicitation”

. Create process model

. Analyze process model

. Analyze process

© N o oA wN R

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Process Elicitation

How to do it?

e Structured interview, 1-2
Hours

e 2 interviewers

« Separated by roles
— no large groups
— clear focus

— manageable process
models

— no mutual interaction
(horizontal and vertical
hierarchic relations)

 Perform interviews one after
Process another, however not more
model than 3 interviews per day

Role 1 Role n

Information Information

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Example Form for Structured Interview

chpe
Project

Integration-Test (Target)

Activity Name

Responsibility
PL

Input Products

- TSPA
- Customer Data (by Customer Data Delta)
- APS

- Conformance Test Cases
- Regression Test Cases

Entry Criteria

- Possibly Integration Test (Host)
- Input complete

- Hardware available

- APS and Customer Data loaded
- Test time available

Case A: Old Features (upgrade):

Case B: New Features:

- Defect correction

Activity Description

- Conduct Integration Test on target according to TSPA

- Regression Test (Tool: A8619 (PORIS) for SSW / USR for ASW)
- Possibly, update of TSPA Test Cases

- Manually conducted TSPA Test Cases
- Recorded with A8619 (Poris) for SSW / USR for ASW
- Conduct Conformance Test according to Standards with test tool K1197

Output Products
- Test Protocol (Part of TSPA)
- Regression Test Cases (updated)

Exit Criteria
- Feature runs correctly on host
- No more test time available (Rem. by QM: this
criterium is not permitted!!)

- Developers

- Support team of TK Systems etc.
- A8619 (PORIS)

- USR fiir ASW

- K1197

- TK Systems

- CSTA Test tool

- CSTA-Spy

Resources

Project, process name, role

Input products and
entry conditions

Description of the process/activity

Output products
and exit conditions

Resources

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Rules for Process Elicitation (1/3)

Obtain information about
— the organization
— the software domain
Analyze existing documents and products
Observe the relation between developers and quality assurance

Ask whether an ongoing or upcoming organizational restructuring
Impacts the process

Make sure that the interview partner is selected according to your
Instructions / guidelines

Begin the interviews with a quality manager or project manager

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 “ex s 1 0SLO

Rules for Process Elicitation (2/3)

* Opening of Interview
— Summary
— Explain goal and purpose
— Stress confidentiality

— General questions about the
process, and existence of
variants

e Main part of Interview

Behave neutral
At first ask about the products
Then ask about processes

What are typical (known)
deviations from the prescribed
processes?

Which other roles participate in
the processes? (Cross-Check)

Always be precise
Try to identify process variants

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Rules for Process Elicitation (3/3)

e Closing of Interview
— Explain future steps
— Agree on time for the review
— Thank your interview partner

Ask guestions even when a
noticed ambiguity seems to be
small, often big problems are
hidden behind it

Don't try to solve all ambiguities
and conflicts (during the
Interview) — but follow-up on
observed inconsistencies
afterwards

After the interview: give a quick
feedback to the interview-partner
about what you did with his/her
Information

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Example:
Process Analysis

The number of products is higher
(approx. twice as high) than the
number of processes.

The complexity of product flow
iInterfaces of processes is relatively
high (most of the processes access
more then a dozen of products).

Most of processes are undertaken by
several roles (partly over five roles).

Most of roles are involved in
execution of more then a third of the

whole process.
30 Processes

66 Products

42 Resources

v
¢
Ak)

[
3
s

!
o)
Al
o
\

e

\

o
;

II ::I...I"'. 4 ‘ d .'I
10
T ..*

-

i
i

/

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Objects in the left colomn represent
products, boxes in the middle column
represent processes, and the right column
fists the resources (i.e., tools and rolesy, The
hnes represent relationships (e prodoct
flow and performing).

Figure 1: Model of a Real Software
process

UNIVERSITETET
I OSLO

Modeling Languages (suitable for PM)

Flowchart is a schematic representation of an algorithm or a stepwise
process,

IDEF is a family of modeling languages, the most notable of which
include |IDEFO for functional modeling, IDEF1X for information
modeling, and |IDEF5 for modeling ontologies.

Business Process Modeling Notation (BPMN, and the XIVIL form
BPML) is an example of a Process Modeling language.

Extended Enterprise Modeling Language (EEML) iIs commonly used
for business process modeling across a number of layers.

Unified Modeling Language (UML) is a general modeling language to
describe software both structurally and behaviorally. It has a graphical
notation and allows for extension with a Profile (UML).

S % UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 @V 5 1 OSLO

Process Modeling Tools

« Commercial tools not dedicated Y -
to process modeling s
— E.g., UML tools, ABC : 75V A— 1
Flowcharter, Microsoft Visio, J— |
Statemate DI o ||
 Workflow Management Systems ey i
— E.g., ARIS Toolset (event- _j
driven process chains, EPC) o ﬁm

e Research prototypes
— E.g., Spearmint

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Example SPM Tool Spearmint™

SPEARMINT™ — Software Process Elicitation, Analysis,

Review, and Management in an in T egrated Environment

Assists a process engineer in creating and maintaining complex
process models.

Allows for efficient modeling of different views of the process
model

Generates EPG (Electronic Process Guide)

§ £9% UNIVERSITETET
205 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Views

Spearmint supports efficient
modeling by supporting
different views

« Aview is a part of the process model

e vchE
Entire process E&) view
model Oii o

O

— Spearmint describes not the whole process, but only parts of it in pre-defined and

user-defined views.

A view highlights certain aspects
— Working with views reduces the complexity of the process model.

— Only those aspects of a model are contained, which are relevant for specific tasks.

« SPEARMINT checks consistency of all views

— Process elements in a certain view always reference to the whole process model.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

' l."'-? % UNIVERSITETET

I OSLO

Views

Properties and Attributes views

neaq 1 108 =
File Window Tools Help

=1 = IRE:: AR

= demo || <& Properties view

SE:wmodel-artifacts & o @ [

M 3 [General |Attributes |l : :
ASLI o O DPseament Artifacts view
4l 3 . |
Refineme - Class & Activity Integration_Flan_1
vmodel-a Aff 1D 34 Integration_Plan_2

SW_Architecture
Systerm_Architecture
Systerm_Requirements

wrnodel-re Name [Technical_System_Design

Description [Suggestions for possible system structures into Sub-Systern and

it

SOSE: pfSE

o @ [E ||| =] SE: vmodelrefinement 2~ &' [=]

- @ " Technical_System_Design
2 | Q| | S| 4% ﬂ ﬁjuﬁﬂﬂ %{:} @ 5| Refinement_of_Svstern_Des

(:) System_Requirements_Analysis

(:) Specification_of_System_Integrs
O DP_Reqguirements_Analysis_an

‘w‘m‘oﬂ%

Sy stem_Requirements

" DP_Integration
(:) Allacation_of_Systerm_Requirerr
& SW_integration G

" Preliminary_Design
O Threat_and_Rizsk_AnalysisOLD
ﬁ) Investigation_of_Feasibility

|EE|: demo

Activities view

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Product-Flow View

[* Do-it-Process: General View

noparent | & | oo |~ | | 2] Rl 8] [0/ o] B [*2]

-
Y O~ Iﬁ Refinement
- " ! 1
T Initiate Project | " ———
O . e : _—— pun nuns® ™| Do-it-Process: Create System Requirements ol |
] gpuunn _
= | Domain — I gmun gpunn |Parent: Create System Requirements | & |1l]l]% | v| |,@||,e||£ﬁ| |ﬁ"'¢|‘| |‘|]'|]'||::5.-'| |D'D'|]|| .}'l
Knowledge . guuunt® =
~® | X
"l 1
— 1
= prmrastaeSvstern Y e L g™ el - - —————————— | o
Creatn_e Systern : wE O I-O e |
—_— {Reqmrements 1 - Systern - Create Customery Requirements
- -
L * : . Enviroment ‘\H A Reguirements T Specification
P , * | B N T ~.
- - - -
L : ’JI //z | ==t} ‘», \.‘\ A -
i ' R 4 -7 = TN e
- ' L . L — _____\ _______ -.O - . Customer
E P * A v - -7 Requirernents
- - ®________ [T Reference ® Create Developer ~~~_ .~
Marne * Knowledge- \\ Reguirements //7 T ‘A..
. - Requirements * Yalidate System . *, e
Conventiong "~) '3 N N -
™ Docurnentation * (.‘ ‘ " " - - Developer
s ‘ I " \
ks s |
- \ Requirements
. S e,
.. 1 fr * | . \ - “-/— —— h—
. : . * | .\ MName v Create
Y
. .' ,, * ! \ Conventions \Tr\quablllw Matrix // .- %ceabllltiy
‘ ‘I‘ \ . T /,’ PPt Matrix...
O [v 4
Create System Software System : . B B R
Cesign Cocumentation | : Werify Systern
(T ecutable = 4 i Ere\‘:’nents Werification
/,’ -7 : Corgronent (R H Docurnent
e T - ! * r 7
» e . L
- 2 S
- “ v o | E
——————————— --O = ————————————————— - E - -~ g —————— P Create Test validation
! o] D t
Developement Create System SW Compaonent " : : ases peHmen
Guidelines Components Docurmentation * : b s

-

[¥

UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

Control-Flow View

] Do-it-Process: Create System Requirements - JOln/Sp“t sym bols:
Parent: Create System Requirements & |1I]l]% | v| |,®||,e||£ﬁ| |ﬁ||.|‘_r"|.| |.|].|].|||::5"| ﬁ]’l\l([;rglxgiy())R (+)1 XOR(@)

@) -2 -
Create Custamer - Create Developer
Requirements HIL Hirements
OR

Y XOR
@ O

Create Test

unelo ~

Create
Cages Traceability Matrix

:

O

Wearify System
Fequirements

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Process View

&0 po-it-Process: Role Allocation

<2 | +or | @ S| 100% | -

eI

N

4]

_-77 Mame T
O % P Conventions ~ i g
| o ~y_ ,J-'o

E Requirements Create Systern - _ =~ iZreate System Designer
—— || Engineer Requirements . ks Desigh
i Fequirements

ﬁ Cocumentation %

— Customer

—

| ¥

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Attributes View

< Properties View

[General | Attributes |

status Hame

| |status

Walue

| Inon-existent
“|lincomplete
complete

| werified

Description
§§ The status describes the actual state ofthe document.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Generation of Hypertext View (EPG)

File Window Tools Help

B w[A @]]

| Description

S

Q

GC) E; gn\jmueu LVModeR: SE a8 m

'S g 2z ele|[s| = AR o o -
c I~ g

P 55 ;5;

(7)) .

n oo

Q

O | Artifacts
(@) :

L

R = x

v\/

Feedback, e.g. via
annotations

The: Viodell 57 ciescrives 3 521 of actvies 1o be performed, i st of arfacts i be procuced. and 3 e f mie

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

~—~
(@
©
Q.
@
<
@
o
o
®
-

19SN-SSad01d

Hypertext-View (EPG)

Activity Create System Requirements - Metscape

File Edit Wiew Go Communicator Help

< » d N 2 W S & B g

Back Forward Reload Home Search Metscape Eritat Security Shop Shop;

w‘ " Bookmarks \& Location IfiIE /Cl/app/speamint51 /EPG/EPG/ activities/2_Create®2B System® 2B Requirementshd ain. html LI @lvwhat's Related

ﬁlnslanlMEssagE tembers wfebbdail Connections Bizloumal Smartlpdate tkiplace

Do-it-Process i’
Bl Activities
i Create Systern Compone
- Create System Design

- Create Systern Reguirem
-« Initiate Project
- Integrate System
- Walidate Systemn

Artifacts

- Roles

[E— _>l;I

Activity: Create

P » 4
“,-I

L

Productflow
Subactivities
Raoles

yyvyy

Tools

Please send comments to:

epi@icse. fhe de

Copyright by Fraushofer
IESE - Generated Mon Sep
24 00:42: 58 GMTHO2: 00
2008

Activity: Create System Requirements

Productflow

Input artifacts
These artifacts are used by the activity:

+ Domain Knowledse @
+ Mame Conventions G

Modified artifacts
These artifacts are modified by the activity:

+ Requirements Documentation @

This document compnses a
description of problems as well

Subactivities as a descprition of the

customer's and designer's

L . requirernents. The document
The activity is further refined into the P g p——
by which correlations wathin the
system regquiremnents are made
explicit. Furthermore the
requirements documentation b
contains documents for
verification activities on the
system requiremnents level and
documents of validation
activities.
Productflow Refinemen

+ Create Customer Requirementd
Create Developer Requirement]
Create Test Cases (D

Create Traceability Matrix (D
Verify Systern Requirements Gl

For a detailed wiew of the productflow Refinement for this activity, please click on the thumbnail
image below:

[== [file: C1/ appspearmintE1 /E PG/E PG AGlassan hmil25

UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

Annotations

Artifact Window [5W_Architecture] - Hetzcape

File Edit “iew Go Communicator Help
w w» A &4 = =5 & B 8
Eachk Eamwand FReload Home Seach Metzcape Erirat: Security Shop Stop
w‘ T Bookmarks \!‘ Location: Ifile: APl fevervonedlouises/epgdemosShw_architecturebd ain. il ;I ﬁ]' wihat's Related
&% Instant Meszage wfebbd ail R adio People Yellow Pages D' ovinload Calendar |"_|" Channels

Description —

- System_Requirements
-+ Swi_Archite cture

i System_Architecture Aonotate: A | e |

- DP_Segment

-+ Integration_Flan

The "SW Architecture” (preliminary design) contains suggestions for possible SW

Architectures (section 23 and the chozen decomposition of the SWCI theg®are

organized. dynamically n ndividual processes (section 3
Components, Modules, and Databases (section 4). The ® o]

processes, Components, Modules and Databases will be o® This is E'I:Iv Annatation by Peters

_l_l allocation to the requirements will be done {section 5). °
»

L)
o Subject: I

Such a product exists for each SWCL ot
KN I—) L
: =
I— L]
A Productflow .
.
Artifact: SV Architecture senotate: [| e | ‘.,
L]
+ Description e
+ Productflow The followmg are the actrnties that do Cunsmne,.pr.udut
+ Subartifacts L
Producing activities: L
+ Template (WORD) °.
* Preliminary Desizn @ L
Close | ®e ¥
LI ®e - B

.
. ® ok| © I
Subartifacts -, Lok [eancei] &
Pleasze send comments ta: ElUnsigned Java Applet Window
epg@iese. the de sonorate: | A | [|
Copvricht v Fraunhofer JIESE = L o =
E|$| |&pplet AnnotationDisplay killed = B = B Y |

UNIVERSITETET
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Consistency Checking

Process models should be complete and correct
representations of reality

Consistency checking has been partly automated in
SPEARMINT™

Methodological prerequisites:
— Process meta-model
— Consistency rules

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

 Hour 1:
— Introduction into Process Modelling
— Prescriptive Process Models
e Hour 2:
— Process Families/Standards
— Descriptive Process Modelling
e Hour 3:

§ £9% UNIVERSITETET
26¥ 5 10sLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exe rCise 1 < Environment >

Design
uses
Process Model representations: / Program [BPMSHIMES
* Using product-flow notation uses \ [implement

ACthlty Role
produces
< Method / > @
« Using table notation Tool

Activity Input Output Roles Methods
Name Artifact Artifact / Tools

"4¥ % UNIVERSITETET
“¥¥ 5 108LO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exercise 1 (cont’d)

 Model the following process:

“Based on input from Marketing and from Customers, the Product Owner sets up
the product backlog. The Product Owner is also in charge of planning sprints.
He/she does this based on a prioritization of the user stories contained in the
product backlog, and on effort estimates for each user story received from the
Team. The Team does their effort estimates based on a refinement of user stories
into tasks. Once a sprint has been defined, the Team develops the software
related to a sprint. The Team does this by working on the previously identified
tasks. To monitor their work, a burn-down chart is maintained. The burn-down
chart shows how much of a task has been completed and how much effort is still
to be used. During the development of a sprint, the Scrum Master supports the
Team by helping them overcome obstacles and by guiding them through the agile
methodology. Once a sprint is complete, a sprint review meeting will be performed.
Everybody is invited to attend this meeting.”

P89 UNIVERSITETET
2 I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exercise 2

Work in pairs
Task 1:

— Decide who will be the “process performer” (role P) and who will be the
process modeller (role M)

— P think about a process (related to software development) and explains
it to M.

— M models the process (as in Exercise 1)
Task 2:

— Take turns (i.e., switch roles) and repeat task 1.
Task 3:

— Show your process models to someone else (not in your pair) and let
that person explain the process to P.

"4¥ % UNIVERSITETET
“¥¥ 5 108LO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Exercise 3 — Homework

e Task:

— Model the process of surveying “Customer Satisfaction” using the
Kano-Model

— Specify activities, artifacts, roles, tools/techniques/methods
— Use either the graphical or the table notation

P89 UNIVERSITETET

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 “YE s 10SLO

The Kano-Model

high
Customer
Satisfaction

/

Excitement
(Differentiation)

Linear

(Competitive)

Performance

/

high

(Cost of Entry)

Five dimensions of quality:

"Basic quality” — satisfies basic “must-
have” needs which probably do not
even need to be specified.
"Competitive quality” - satisfies
expressed needs (usually in
requirement specification).

"Excitement quality” - satisfies latent
needs, needs which are there but which
the user hasn’t expressed and/or is
himself/herself aware of

"Indifference quality” - needs which are
covered but which user is indifferent to

"Reverse gquality” - qualities which the
customer do not want

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The Kano-Model — Surveying Users

e To assess whether a feature is basic,
linear, or exciting we can:

— Sometimes guess

Linear — Survey a small set of users (20-30)
Seu el \We ask two questions:
— A functional question:

high

Excitement
(Differentiation)

Customer
watisfaction

Performance _ _
high How do you feel if a feature is
present?
Basic — A dysfunctional question:
ASEOEY How do you feel if that feature is
absent?

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Functional and Dysfunctional Forms

Functional form
of question

Dysfunctional form
of question

If your editor
includes a
voice recognition
function, how do
you feel?

| like it that way

| expect it to be that way

| am neutral

| can live with it that way

| dislike it that way

If your editor

does not include a

voice recognition
function, how do
you feel?

| like it that way

| expect it to be that way

| am neutral

| can live with it that way

| dislike it that way

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Categorizing an Answer Pair

Dysfunctional
Question

Like

Like

Expect

Neutral

Functional
Question

Live with

Dislike

1
E
I
I
I
R

O — — — m|Neutral
A —|— —m|Live with

O |0 W r|Dislike

PUAP VAP VEPY

B: Basic (Mandatory)
L: Linear

E: Excitement

R: Reverse

|: Indifferent

Q: Questionable

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

S % UNIVERSITETET

%oy 5 1 0SLO

Next Lecture

e Topic: Processes and Process Modeling (Section B)

e For you to do:
— Do the homework

— Continue thinking about your project (topic &
presentation)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

