INF5181: Process Improvement
and Agile Methods in Systems
Development

Lecture 02:

Processes and Process
Modeling (Section A)

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no
Fall 2011 @

Structure of Lecture 02

* Hour 1:
— Introduction into Process Modelling <
— Prescriptive Process Models
* Hour 2:
— Process Families/Standards
— Descriptive Process Modelling
* Hour 3:
— Exercises

§££9% UNIVERSITETE
¥ 10sL0

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Process Taxonomy

 What are
typical

H. Dieter Rombach, Martin Verlage,
Directions in Software Process Research,
Advances in Computers, Volume 41,
Marvin V. Zelkowitz (Ed.), Pages 1-63,
Academic Press, Boston, MA, 1995.

1

|Non-Engineering Processesl

processes in a
software
project?

Social

P,
Pr

Process Modeling
Processes

| Mg

Improvement
Processes

» UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

7 1 OSLO

]

What is a (Software Development) Process?

A Process ...
« defines Who is doing

— In software engi
to enhance an e

An Effective Process \
« provides guidelines for
 reduces risk and increas®
e promotes common vision al

pach a specific goal.
bftware product or

fuality software

» UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Software Process Examples
RUP ——

s Waterfall s B o B é)
) ‘*-.._._},r.'.' Rosinass modeling [=== .)
) Design e -

Test

Py |'|
et

Devetop- | Requirement
menipian | vahdation

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

What are the Goals of Process Modeling?

e To enable effective understanding ¢ To support project management
and communication — Transparency, tracking, ...
— At one development site To guide the developers
(developers, teams, ...) — Incorporating new employees

— Between development sites .
(distributed development, To support automatic process

outsourcing, contractor-supplier enactment
relations, ...) — Workflow support
+ To improve software development — CASE tools
activities » To support reuse of process
— Improving real processes requires knowledge
measurement and measurement — Organsational learning

requires defined processes
— Evolving processes

INF5181/ Lecture 02 / © Dietmar Pfahl 2011 I10sLO

UNIVERS lTETE'[|

What is a (Software) Process Model?

» “Software Process Model: An abstract

*&f —— software process description. It can be
=t _-11-_"5_':“ more or less formal.” [Lonchamp 93]
[e ———— | » Key elements:
Tool
b
ts composed of
Role P Activity
assumes & conpured by progduces

» UNIVERSITETE
< 1 OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Characterization of Process Models

A Process Model defines:

< an identifiable activity or a group of
activities

« a hierarchy of activities

« the sequence/order of activities (=
control flow)

« the input/output products (artifacts)
of activities (= product flow)

« the relations between activities and
technigues, methods, tools, and
roles

%= UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The Role Concept

* Role

— Avrole is in charge of one or more activities defined in one or more

processes
— Arrole has defined responsibilities

— Possible relationships between agents and roles
1:

1
n:
n

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

UNIVERS[TETE’]1

Role Responsibilities

RASCI Matrix
| o= R = Responsible
Roles 2 o N
20| 8 5 |29 A = Approve
HHERERREY
Activities s3| = 2 lag S = Support
Module R C = Consult
design 2
= Inform
Mod_ule R
coding
Module
review S.R| S A
Module
testing R l
% UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011 1 0sSLO

Descriptive vs. Prescriptive Process Models

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 § & 11

Prescriptive vs. Descriptive Process Models

* Prescriptive Models (theoretical) ¢ Descriptive Models (empirical)

— “ldeal” Process — Accurate elicitation of actual,
— (Assumed) best practice real processes
— Often requires instantiation — Basis for the revision of

and detailing existing (prescriptive)

process models based on
observation and experience

— Deviations from real
processes are likely

— Examples: waterfall, V-
model, spiral model,
incremental, iterative,
evolutionary, agile process
models

UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011 g 1 O0SLO

Structure of Lecture 02

* Hour 1:
— Introduction into Process Modelling
— Prescriptive Process Models <
* Hour 2:
— Process Families/Standards
— Descriptive Process Modelling
* Hour 3:
— Exercises

NIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Overview:
Prescriptive
Process Models

Pre-defined process
models like Scrum, EVQ,
RUP, XP, Cleanroom...

Process models exist on
3 levels:
family/standard level,
organizational level,
and project level

Inspires

Organizational

Process model

Project (type) 1 Project (type) n

process model Project (type) 2 process model
process model

]

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

ldea:

Waterfall: Royce Model (197

REQUIREMENTS
Sequential creation of
products on different
levels of abstraction (e.g.,
precede code by design,
precede design by
requirements) and
integration in reverse
direction

Strictly sequential control
flow can be weakened by
controlled iterations

SOFTWARE
REQUIREMENTS

PROGRAM
DESIGN

PRELIMINARY
DESIGN
PROGRAM
DESIGN

PRELIMINARY

0)

Prerequisites:
Familiarity with
application domains,
methods, techniques,
tools, engineering
processes

Good understanding of
the requirements
Stable requirements
High capabilities for
effort estimation

ANALYSIS

PROGRAM
DESIGN

CODING

TESTING

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Often Waterfall is Bad

For many projects, the waterfall
model is a poor choice

— Late risk resolution
can't tell requirements or
design risks exist until late in
the life cycle
— Requirements drive functional

decomposition

exhaustive requirements
make it hard to tell if the
design is viable;
hard to identify critical
requirements

— Adversarial stakeholder
relationships

written definitions of

requirements often lead to

extended (and heated)

discussion of their

interpretation

— Focus on documents and
reviews

fulfilling the letter of a

contract can lead to the

appearance of progress, but

without real communication

— Inflexible!

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

% UNIVERSITETE

]

Prototyping

‘An iterative process of creating quickly and inexpensively live
and working models to test out requirements and assumptions’

(Sprague and McNurlin)

* Main types:
— ‘throw away’ prototypes
— evolutionary prototypes
* What is being prototyped?
— human-computer interface
— functionality

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

NIVERS lTETE’]1

Boehm'’s
Spiral Model

Project aan
— Evaluate aRematves,
Start Erenpll __—_‘—h—-h_‘_ identify, resohe rsks

“ohjectives,
alternatives,
constraints

analysls

- IHlst-c__r

analys:s Operationzal

R CoemmHtrment Pml.clype 1 Proiotype 2 | Proiotype 3 I| D‘O‘ONDE
v - - —
partiion Requirements plan | _ Semulations. mcﬂr]?ls_ benchmarks
lite-cycle plan Concept o C——
1 aperatan Sottware
require Y
—— mants
Devetop- Reguirements it

ment plan validation

'
egrr | ene vtconen
and test and verification

— plan 1 T

Plan next phase

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 1 0sSLO

¢ wirnrarunsATE

]

Spiral Model - Highly Iterative

» The spiral model proposed by Boehm (1988) is an iterative model with
focus on risk resolution:

— Determine objectives and constraints

— Evaluate Alternatives

— ldentify risks

— Resolve risks after assigning priorities to risks

— Develop a series of prototypes for the identified risks starting with the
highest risk

— Use a waterfall model for each prototype development (“cycle”)

— If arisk has successfully been resolved, evaluate the results of the
“cycle” and plan the next round

— If a certain risk cannot be resolved, terminate the project immediately

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Types of Prototypes used in the Spiral Model

e lllustrative Prototype
— Develop the user interface with a set of storyboards

— Implement them on a napkin or with a user interface builder (Visual
C++, ...)

— Good for first dialog with client
¢ Functional Prototype
— Implement and deliver an operational system with minimum functionality
— Then add more functionality
— Order identified by risk
* Exploratory Prototype ("Hacking")
— Implement part of the system to learn more about the requirements.
— Good for situations in which paradigm discontinuities occur

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Iterative Enhancement (Incremental Delivery)

e Origin: Basili und Turner, 1975
e ldea:
— Split functionality into several increments

— Develop each increment (i.e., a product part that fulfills a subset of
requirements) in a Waterfall style; integrate increment by increment into

the product until delivery
— The focus of the development of an increment might be completion of
functionality or structure, but it can also be refinement and improvement

— Strictly sequential control flow can be weakened by controlled iterations
¢ Prerequisites:
— Structure of the problem permits incremental development

I 0SLO

UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Incremental delivery delivered

system

first incremental delivery

second incremental delivery

third incremental delivery

UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Iterative Enhancement (Incremental Delivery)

Advantages:

« Efficient learning during the project;
thus, experience level can be low

 Early availability of a product, with
the essential properties of the final
product.

¢ Allows for early customer
involvement and feedback

« Applicable when parts of
requirements are unclear or
unstable

e Supports integration testing

* Good applicability in case of fixed
delivery dates (= prioritize
requirements with the customer)

Disadvantages:

Risk that, by ignoring specific
requirements, the product will be
designed in such a way that fulfilling
future requirements becomes
difficult/expensive
— particularly problematic are
non-functional requirements
Comprehensive version and
configuration management is
necessary

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

NIVERSITETE’]1

Unified Process

e Family: Iterative Enhancement
 Origin:
— lIvar Jacobson, James

Rumbaugh, Grady Booch,
1998

» Defines process framework that
is adaptable to

— various application domains
— different organizations
— different competence levels
— different project sizes

Characteristics:
— use case driven
— architecture-centric

Provides only rudimentary
instructions

Refined version:

— Rational Unified Process (Ph.
Kruchten)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

NIVERSITETE

]

Rational Unified Process (RUP)

Organization along time

A 4

Phaceg

Process Workflows L
Inception | Elaboration Construction Transition
A . :
Business modeling : =
Requirements ——
o Analysis & Design e E—
Organization Implementation
along Test
Deployment
content Ploy
Supporting Workflows
Change & Configuration Mgmt — B —
Project Management
Environment
Preliminary | Iter. Iter.l Iter. Iter. Iter.I Iter. ‘ Iter.
Iteration(s) #1 #2 #n #n+l | #n+2 #m #m+1
v

Iteratlons

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

RUP Phases and lterations — The Time
Dimension

« This is the dynamic organization of the process along time.

» The software lifecycle is broken into cycles, each cycle working on a new
generation of the product. The Rational Unified Process divides one
development cycle in four consecutive phases.

Inception phase Ma]ur Milestones
Elaboration phase \ \

Incep‘tlon| Elaboratlon Construction | Transmon

Construction phase
Transition phase

» Each phase is concluded with a well-defined milestone--a point in time at
which certain critical decisions must be made, and therefore key goals must
have been achieved.

trme'_

% UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

N

RUP Phases — Example: Inception Phase

During the inception phase: establish the business case for the system and delimit the project scope.

To accomplish this you must identify all external entities with which the system will interact (actors)
and define the nature of this interaction at a high-level.

This involves identifying all use cases and describing a few significant ones. The business case
includes success criteria, risk assessment, and estimate of the resources needed, and a phase plan
showing dates of major milestones.

— The outcome of the inception phase is:

— Avision document: a general vision of the core project's requirements, key features, and main constraints.

— Aninitial use-case model (10%-20% complete). At the end of the inception phase is the first major project

An initial proiect g v (m tionally b milestone: the Lifecycle Objectives Milestone. The evaluation
- initial project glossary (may optionally be criteria for the inception phase are:

partlally expressed as a domain mOdeI)' - Stakeholder concurrence on scope definition and cost/schedule
— Aninitial business case, which includes business estimates.
context, success criteria (revenue projection - Requirements understanding as evidenced by the fidelity of the primary
’ ! use cases.
market recognition, and so on), and financial forecast. Credibility of the cost/schedule estimates, priorities, risks, and
— Aninitial risk assessment. development process.
- A project p|an showing phases and iterations - Depth and breadth of any architectural prototype that was developed.
— A business model, if necessary.

— One or several prototypes.

- Actual expenditures versus planned expenditures.

The project may be cancelled or considerably re-thought if it

fails to pass this milestone.
“% UNIVERS[TETE’]1

oY

B

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 1 0sSLO

RUP - Static Process

Static Structure of the Process

« A process describes who is doing
what, how, and when.

» The RIP is represented using

Activities, Artifacts, and Workers

H H Wiorker Activitien
four primary modeling elements: -, oy
e 9O '
— Workers (Roles), the "who B D D
— ACt|V|t|eS, the "how" Deslguer Use-Care daaisk Uze-Case Des kg
— Artifacts, the "what" Artifact reapanuibls or

Workflows, the "when"

Uze Cage Realton

5 1 0SLO

UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

RUP - Activities and Artifacts

Activity

» An activity of a specific worker is a unit of work that
an individual in that role may be asked to perform.

* The activity has a clear purpose, usually expressed
in terms of creating or updating some artifacts, such
as a model, a class, a plan.

+ Every activity is assigned to a specific worker. The

ranularity of an activity is generally a few hours to a
ew days, it usually involves one worker, and affects
one or only a small number of artifacts.

» An activity should be usable as an element of
planning and progress; if it is too small, it will be
neglected, and if it is too large, progress would have
to be expressed in terms of an activity's parts.

« Example of activities:

— Plan an iteration, for the Worker: Project Manager

— Find use cases and actors, for the Worker: System
Analyst

— Review the design, for the Worker: Design Reviewer

— Execute performance test, for the Worker:
Performance Tester

Artifact

An artifact is a piece of information that is
produced, modified, or used by a process.
Artifacts are the tangible products of the
project, the things the project produces or
uses while working towards the final product.
Artifacts are used as input by workers to
perform an activity, and are the result or
output of such activities. In object-oriented
design terms, as activities are operations on
an active object (the worker), artifacts are the
parameters of these activities.
Artifacts may take various shapes or forms:
— A model, such as the Use-Case Model or the
Design Model
— A model element, i.e. an element within a
model, such as a class, a use case or a
subsystem
— Adocument, such as Business Case or
Software Architecture Document
— Source code
— Executables

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

UNIVERSITETE’]1

RUP - Resources and Workers (Roles)

P » A worker defines the behavior
_— D and responsibilities of an
Resource Worker /__/' Activities individual, ora g_roup of
Bl Designar Object Design | individuals working together as
[ateam.
Mary Use Case Authar betaila Use Case | * You could regard a worker as
s a "hat" an individual can wear
o Uge Cape Designer Uge Came Degign | n the pr.OJ.eCt'
| + One individual may wear many
S Design R eviewer Review the Design | _dlfferent hatSTh|S IS an .
important distinction because it
- - - is natural to think of a worker
sesn Arshitsst totar Destn | as the individual or team itself,
but in the Unified Process the

worker is more the role
defining how the individuals
should carry out the work.

* The responsibilities we assign

to a worker include both to
perform a certain set of
activities as well as being
owner of a set of artifacts.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

s 1 OSLO

Cl '?a UNIVERSITETE

]

RUP Workflow — Example: Analysis & Design

Workflows

* A mere enumeration of all workers,
activities and artifacts does not quite
constitute a process. We need to
describe meaningful sequences of
activities that produce some valuable
result, and to show interactions between
workers.

» A workflow is a sequence of activities
that produces a result of observable
value.

e In UML terms, a workflow can be
expressed as a sequence diagram, a
collaboration diagram, or an activity
diagram (cf. activity diagram on the left
hand side).

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

UNIVERSITETE’]1

RUP Workflow — Example: Analysis & Design

The goal of the Analysis and Design workflow is to show how the system will be realized in
the implementation phase. You want to build a system that:

— Performs — in a specific implementation environment — the tasks and functions
specified in the use-case descriptions.

— Fulfills all its requirements.
— Is structured to be robust (easy to change if and when its functional requirements
change).
Analysis and Design results in a design model and optionally an analysis model. The design
model serves as an abstraction of the source code; that is, the design model acts as a
‘blueprint' of how the source code is structured and written.

The design model consists of design classes structured into design packages and design
subsystems with well-defined interfaces, representing what will become components in the
implementation. It also contains descriptions of how objects of these design classes
collaborate to perform use cases.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

UNIVERSITETE’]1

MSF (Microsoft Solution Framework)

For details
refer to

the related
White Paper
in the
Reading
Materials

Deployment
complete

'

Yisionfscope
approved

Deploying
Phase o
Release EE;Ls;onmg
readiness
approved & 4
o
Stabilizing Planning
Phase Phase
(j Developing D’
Phase
Scope Project plans
complete

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

approved
B (7

univerarielE

I OSLO

]

MSF-Inspired Process Model (at DNV)

For sub-contractor
management
processes and
agile development
processes

using the
Norwegian
PS2000 process
standard

refer to the related
reports in the
reading

materials

DP1 DP2 DP3 DP4 DP5
Mandate V&S Plan Scope Project
Signed Approved Approved, Complste, Release

Project
Complete

Software
Development
Project

Change Management

Esla!:llsh Vision

Project
Mandate CIEICEL

Planning

Stabilising]—% i';:‘:‘

Project Managament

l

Project iteration cycle S

Up One
Level
k=

Project Follow-up

> SoFa Roles
ks Main Documeant Flow
ks Recommended Iterations

> Quality Assurance

Legend:

[Line Organisation activities

[Development Praject activities

i Pu\iclei

— Indicales a logical sequen

Means information flow

ce of aclivities

* Work Products

DP1..0Pn Means Decision Point 1..n

(C) Copyright DNV Software

werer e ITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

]

Structure of Lecture 02

* Hour 1:
— Introduction into Process Modelling
— Prescriptive Process Models

* Hour 2:

— Process Families/Standards <«
— Descriptive Process Modelling

e Hour 3:
— Exercises

NIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

ISO 12207: Standard for Information
Technology-Software Life Cycle Processes

« This standard officially replaced MIL-STD-498 for the development of
DoD software systems in August 1998

« This standard defines a comprehensive set of processes that cover
the entire life-cycle of a software system — from the time a concept is
made to the retirement of the software

« The standard defines a set of processes, which are in turn defined in
terms of activities. The activities are broken down into a set of tasks.

* The processes are defined in three broad categories:
— Primary Life Cycle Processes
— Supporting Life Cycle Processes
— Organisational Life Cycle Processes

% UNIVERSITETE
§ 10SLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

ISO 12207 Processes

e Primary life cycle
processes:

Acquisition
process

Supply process

Development
process

Operation
process

Maintenance
process

e Supporting life cycle

processes:

Audit process

Configuration
Management

Joint review process
Documentation process
Quality assurance process
Problem solving process
Verification process
Validation process

e Organisational

processes:

Management
process

Infrastructure
process

Improvement
process

Training process

NIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

The software development life-cycle (ISO
12207)

_system

1 Requirements analysis

Architecture design

sjuawainbay

Architecture design
Requirements analysis

ufisaq

software

system

Requirements analysis

153) pue ape

_software

Installation
Acceptance support

woddns
asueidaze
Juore|elsu|

uoneusajdw) s533084

UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

]

DOD Standard 2167A

* Required by the Department of Defense for all software contractors in
the 1980-90s
» Waterfall-based model with the software development activities:
« System Requirements Analysis/Design
« Software Requirements Analysis
< Preliminary Design and Detailed Design
e Coding and CSU testing (CSU = Computer Software Unit)

e CSC Integration and Testing (CSC = Computer Software Component,
can be decomposed into CSC's and CSU's)

e CSCI Testing (CSCI = Computer Software Configuration Item)
e System integration and Testing

]

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

IEEE Std 1074

* Institutional standard (‘least common denominator’) published in
1997

* Process description comparable with V-Modell® XT (on a high
level), but no statements about products, roles

» Offers only little guidance for developers

9% UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011 /

IEEE Std 1074: Standard for Software Lifecycle

IEEE Std 1074

Project Pre- Develop- Posi- b Clross- t
Management Development ment Development evelopmen
(Integral Processes)

> Concept > Requirements
Exploration

= System
Allocation

> Installation *V&Y
>Operation & |> Configuration

Support Management
> Maintenance |>Documen-
> Retrement tation
> Training

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

V-Modell® XT (XT = Extreme Tailoring)

RF = . published in January 2005

X7 * Predecessor: V-Model (1997) for military authorities in Germany

e Structured in a modular way

» Mandatory for IT projects in public and military domains in Germany

e Goals:

— Enhance support for adaptability, scaleability, changeability, and

expandability of V-Model 97

Somewhat

Comparable to — Consider state of the art and adapt to current regulations and

the role of standards

PS 2000 in — Expand application range considering the complete system lifecycle
Norway of development projects

— Introduce a process of organizational process improvement

% UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

V-Model XT — Purpose and Scope

* The V-Model XT is a guideline for the Planning and Management of IT
Development Projects.

e Scope of the V-Model are:
— Improvement of Planning and Tracking of IT Development Projects,
— Minimization of Project Risks,
— Improvement and Quality Assurance,
— Improvement of Communication between Project Stakeholders,
— Containment of Total Costs over the Project and System Life Cycle.

» The V-Model supports different Project Execution Strategies and the Concept of
Decision Points.

« The V-Model can be tailored according to the specific conditions and needs of an
ICT Project

* The V-Model addresses the Customer and the Contractor.

UNIVERS lTETE'[|

INF5181/ Lecture 02 / © Dietmar Pfahl 2011 I10sLO

Customer vs. Contractor View

- Decision Points

1 2 3 4 5 6 8
7
12
Change Plan
2 3 4 established 1 13
Prolect Offer Project Project Acceptance Project
approved lendered contracted defined declared closed
System Delivery
_ g = E-
6 System System

rafted |ntegrated 9

Retalled De5|g HSystemelement
completel realised z

UNIVERS lTETE'[|

INF5181/ Lecture 02 / © Dietmar Pfahl 2011 I10sLO

The German V-Model comprises
four sub-models:

P> System Development (SD)
Quality Assurance (QA)
Configuration Management (CI\/I)
Project Management (PM)

Planning and
Controlling

Specification
of QA
Requirements

Product
Assessment

i

German V-Model: The Big Picture

Setting up Prerequisites
and .Hvallahlllty of Software

Development

Q4 Requirernert

Configuration Structure

t (SDE)

Envir

Planning
Product
Structure

Administration of
Products/
Rights

*

Froduct

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

UNIVERSITETE
I OSLO Tl

German
V-Model

System
Development (SD) |°
Sub-Model

E 1R

Extetnal
Spechicatis

SD1
—+ System Require-
ments Analysic

" Produt
|<equ||ementi Irioration

Symm De

Marginal protocal
Gangltions |
fd

Tender
Evslt

B o
(instelled and
in operation)
T
sD 9
[=2] Transition to System
2 Utilization Level
SHIMN Coneept

CostBenelit
n_|Analysis

Operafonaliformation Sy nstlebie)

spg
—, Sy

System
Level

ments Analysis

Informaton

Inertace
Oneruiew

Daa 5
Dictionary Design

i [@ B =
Interface Uuelemunal Technical Syotem
Metven ae: foimgion - Reqgiren, frchtectre mplemertedon o n Parts sw Uit
+ Dacs. (SW Ui
4 sD3
SWMHW Require-

HW Unit

SW Units/

HW Units
SD7-SW Level
Oueralional Technical anwem SW Integration
SD 4-SW — W
Preliminary SW Component
Design
Level
il il Al £
Inferface Operalionsl SH IMPETEMEO Datopase
Destilpy Informeion Arctactre MnﬂE\cé[fD{iithajEJ i SW Module
SD5-SW e
Detailed SW SW Modulef
Design Database
Level

W Operational Infarrnation

SDE - SW

W
Implementation Legend

—_—
Assessment Activities

(See Q)
UNIVERSITETE
INF5181/ Lecture 02 / © Dietmar Pfahl 2011 I10sLO

German V-Model:

System
Development (SD)
Sub-Model

SD2:
System
Design

/User Reqwemems E

GostlBeneﬁtnnast Pmdumninrmam mre, Eua]uamn

sD2.1]« 5023'.._,
echnical System Design Investigation of Feasibilly Realization of Efficiency Analysis
/ \ Y
sp2.4]

Allocetion of User Requirements

l Imerfaj:e Uuerulew

Iz
Systemn drchitecture
Technical Requiremer /

Interface Descripton
¥

i

[E—
“ ¥

“Handling”
(Refinement)

Specticalion of System Infegration

4./ \4

e) o
UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011 I OSLO 11
V-Model:
e e I

System
Development (SD)
Sub-Model

SD2:
System
Design

| Al Product Informarion
egied| AL Offer Evaluaiion (1
accepred| Al [CosuBensftAmlvsis |
accept ed Existing MM

Existing System Architecmre

Existing [Technicnl Requirements | SD3 being proc.pp o o

[Operational Information:
[User Manual

Diaznosis Mamual .
(Operator Mamal 05 fosing proc.

{Other Application
Infarmation

Existing

Eisting Interfacs Overview

C\“ D eing proc. DED

Esisting Interface Descrintion

Existing [uzzration Plen

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

German V-Model: The Big Picture

The German V-Model comprises
four sub-models:

System Development (SD)
Quality Assurance (QA)
Configuration Management (CM)
P> Project Management (PM)

Planning and Setting up Prerequisites
Controlling and Availability of Software
the Project Develof t Envir t (SDE)

Agtual

Specification
of QA
Requirements

Planning
Product
Structure

Product
Development
Product Q4 Requirement Mr;::::ﬁfn of
) Assessment ConfigurationStructure Rights

N Product

INF5181/ Lecture 02 / © Dietmar Pfahl 2011 I10sLO

UNIVERS lTETE'[|

frmen] E 1§]
V-Model: 1- % gmlmnn?mm:: |J‘m oo i 1o E i
. ik e PM 2 & —oemovecr
Project o B T
™S
ub- AR AR FE
R E e
PM7 PME f r
""T:"M m Mananement
Activity Types: il ot v
+ Management-related Ile%_ml, Wg% B oy
4 iy oy rvice,
— Initialization/Finalization F Vi e, " T AT
— Periodically Required
» Placement/Procurement-
related || prawwsc
* Planning-related e
» Resource-related
nurm amaen | .w.‘

INF5181/ Lecture 02 / © Dietmar Pfahl 2011 I10sLO

UNIVERS lTETE'[|

V-Model:

project E\ “Handling”
Management (PM) (Refinement)
Sub-Model st

¥
Definition of Praject Criteria.

)

P M 1 dDEuEIUDIEnlShaigy/

Project o
Initialization

Spectfic V-hodel

Toolset managernent

4

Project danual

¥

Generation of Prefiminary Plan

1

Project Plan

NIVERSITETE
OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Structure of Lecture 02

* Hour 1:
— Introduction into Process Modelling
— Prescriptive Process Models
* Hour 2:
— Process Families/Standards
— Descriptive Process Modelling <
* Hour 3:
— Exercises

NIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Goals of Descriptive Process Modeling

— Explicit documentation — Describe, who can measure
— Analyses (consistency, what and when
completeness, complexity) — Collect quantitative

information about processes,
products and resources

Find agreement in case of
conflicting opinions

— Propagation of ‘Best — Define goals (target values)
Practices’ and control the adherence to
these goals.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 &/ 1 0sSLO

UNIVERSITETE’]1

Steps of Descriptive Process Modeling

. Formulate goals and scope of the task

. Choose a conceptual schema (meta-model)

. Choose a process modeling language / notation
. Select or adapt tools

. “Elicitation”

. Create process model

. Analyze process model

. Analyze process

0o NOoO o WDN B

UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Process Elicitation

Information Information

e

Process
model

How to do it?

* Structured interview, 1-2
Hours

e 2 interviewers

e Separated by roles
no large groups
— clear focus

— manageable process
models

— no mutual interaction
(horizontal and vertical
hierarchic relations)

¢ Perform interviews one after
another, however not more
than 3 interviews per day

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

s 1 OSLO

UNIVERS lTETE’]1

Example Form for Structured Interview

Sepe
Project

Topu rodics ey Griera
- ossily ntegaton Tes (Hos)
- Input comy

- Hardware avml ble

- APS and Customer Data loaded
- Test time available

-TSPA
- Customer Data (by Customer Data Delta)
APS

- Conformance Test Cases
- Regression Test Cases

‘Activity Description

- Conduct ntegration Teston target according fo TSPA
Old Features (upgrade):
Regresion Test (Todl AB619 {PORIS) for SSW / USR for ASW)

Possibly, pdte of TSPA Test Cases
Case B: New Feal

- Mar nuaHy Conducted TSPA TestC
 Recorded with ABBI9 (Pori) for SSW / USR for ASW

- Conduct Conformance Test according to Standards with test tool K1197

- Defect correction

~ Feature runs correctly on ost
- No more test time available (Rem. by QM: this
criterium is not permitted!!)

O g
~Test Protocol (Partof TSPA)
 Regression Test Cases (updated)

- Developers
- Support team of TK Systems etc.
A8619 (PORIS)
JsRfir
s
- CSFA et ool
-Spy

Project, process name, role

Input products and
entry conditions

Description of the process/activity

Output products
and exit conditions

Resources UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

]

Rules for Process Elicitation (1/3)

» Obtain information about
— the organization
— the software domain
« Analyze existing documents and products
* Observe the relation between developers and quality assurance

« Ask whether an ongoing or upcoming organizational restructuring
impacts the process

« Make sure that the interview partner is selected according to your
instructions / guidelines

< Begin the interviews with a quality manager or project manager

% UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011 bl 10SLO

]

Rules for Process Elicitation (2/3)

* Opening of Interview * Main part of Interview
— Summary — Behave neutral
— Explain goal and purpose — At first ask about the products
— Stress confidentiality — Then ask about processes
— General questions about the — What are typical (known)
process, and existence of deviations from the prescribed
variants processes?

— Which other roles participate in
the processes? (Cross-Check)

— Always be precise
— Try to identify process variants

% UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Rules for Process Elicitation (3/3)

 Closing of Interview .
— Explain future steps
— Agree on time for the review
— Thank your interview partner

Ask questions even when a
noticed ambiguity seems to be
small, often big problems are
hidden behind it

Don't try to solve all ambiguities
and conflicts (during the
interview) — but follow-up on
observed inconsistencies
afterwards

After the interview: give a quick
feedback to the interview-partner
about what you did with his/her
information

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

UNIVERS lTETE’]1

Example:
Process Analysis

The number of products is higher
(approx. twice as high) than the
number of processes.

The complexity of product flow
interfaces of processes is relatively
high (most of the processes access
more then a dozen of products).

Most of processes are undertaken by
several roles (partly over five roles).

Most of roles are involved in
execution of more then a third of the

whole process.
30 Processes

66 Products
42 Resources

Objects in the left column represent
products. boxes in the middle column
represent processes, and the right column
lists the resoure . tools and roles). The
lines represent relationships (i.e.. product
flow and performing}

Figure 1: Model of a Real Software
process

& Ff|% UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

]

Modeling Languages (suitable for PM)

« Flowchart is a schematic representation of an algorithm or a stepwise
process,

« |IDEF is a family of modeling languages, the most notable of which
include IDEFO for functional modeling, IDEF1X for information
modeling, and IDEF5 for modeling ontologies.

e Business Process Modeling Notation (BPMN, and the XML form
BPML) is an example of a Process Modeling language.

« Extended Enterprise Modeling Language (EEML) is commonly used
for business process modeling across a number of layers.

e Unified Modeling Language (UML) is a general modeling language to

describe software both structurally and behaviorally. It has a graphical
notation and allows for extension with a Profile (UML).

% UNIVERSITETE
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Process Modeling Tools

« Commercial tools not dedicated
to process modeling

— E.g., UML tools, ABC
Flowcharter, Microsoft Visio,
Statemate

* Workflow Management Systems
— E.g., ARIS Toolset (event- .t -
driven process chains, EPC)) ‘ i @
* Research prototypes '
— E.g., Spearmint

Tt el

2 UNIVERSITETE
< 1 OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Example SPM Tool Spearmint™

« SPEARMINT™ — Software Process Elicitation, Analysis,

Review, and Management in an in T egrated Environment
» Assists a process engineer in creating and maintaining complex

process models.

» Allows for efficient modeling of different views of the process

model
» Generates EPG (Electronic Process Guide)

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Views
-k BT .
Spearmint supports efficient O = Q?%F,
modeling by supporting
. . view [m} D%)
different views PR Qe O -
; '[/O model M

e Aview is a part of the process model
— Spearmint describes not the whole process, but only parts of it in pre-defined and
user-defined views.
« Aview highlights certain aspects
— Working with views reduces the complexity of the process model.
— Only those aspects of a model are contained, which are relevant for specific tasks.

e SPEARMINT checks consistency of all views
— Process elements in a certain view always reference to the whole process model.

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 _

Views

23 Spearmint 3.0
File Window Tools Help

Properties and Attributes views

Bl (o]

£

=) demo - Properties View
r-8 | Gonorar [mtes |
o0 prn General

SE:wmodel-artifacts i o 7 [E

DP_Segment

] Integration_Plan
Integratior_Plan_1
Integration_Flan_2

Refineme Class & Activity
A o M
vmodel-re fl Name [Technical_Systern_Design

B sw

System_Architerture

Description ‘Sugggstiuns far possible system structures into Sub-System and] System_Reguirements
i

SOSE: pfSE1 7

[E] SE: vmodet-refinement o ' [

@ ¢ Technical_System_Design

[~ 2zla = - ppa e

& DP_Integration

¢ SW_Integration
¢ Preliminary_Design
& Threat_and_Risk_#AnalysisOLD
& Investigation_of_Feasibility

@ 5 Refinement_of_System_Des
& systern_Requirements_analysis
& specification_of_Systern_Intears

DP_Requirements_Analysis_an

® Allocation_of_Systern_Requirer

Artifacts view

I Activities view

Process view

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I 0SLO

UNIVERSITETE

]

Product-Flow View

—T]

Initiste Projes

Desnain " T-a
Fnwtidge e

-

Croats System
o Fequinemaonts

N

[

Requinements . Wakdaty Eystem

Documantation .

1
[llElo »|

Pl
= ity

|i Refinement

Fa @)

Sraen -
Ermroment

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

[
Feguirements

-0

ety e

Lo gReurements

[——— = ey e e L

I 0SLO

UNIVERSITETE

]

Control-Flow View

o & B

™ Do-it-Process: Create System Requirements 7

Parent: Create System Requirements | & |1nn 5

| |2 Al [|ie = o0 &

:

ele »|

Creste Custormer Create Developer
Reguirements NIL pirements
OR
XOR

o)

Create
Traceahility Matrix

Create Test
Cases

Werify Systern
Reguiraments

Join/Split symbols:
AND (x), OR (+), XOR(®)
nil (empty).

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Process View

@0 Do.it-Process: Role

@ =

sale

g @ [100

-] [PlAd o [fr)F] thlE [

Hame e

i)

b

/Cre ate Bystem
Desigh

¥

Customer

Designer

O g - Conventions
; - -
Requirements Create System ~~. -

——| Engineer Requirements N P

% Requirements

ﬁ Documentation

=

—
—|4

UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

I OSLO

]

Attributes View

I < Properties View

status

Name

i | status

he status describes the actual state of the document.

Add Remaove g

UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 I OSLO 11
Generation of Hypertext View (EPG)
5]
£ 5D
n 32
& 3 c

Feedback, e.g. via

annotations

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

UNIVERS lTETE’]1

Hypertext-View (EPG)

3 & O ®

7=} =] 7 s Pkt

|

5 it G G gln.-c) setiien 1 Wi
Activity: Create System Requirements

Productfow

antifats
These arufasts are sed by e astrety

ieder @

+ B L]
Npdied astitarts
These aradacts are modiied by de sty

c) & descprnen of the
Subactivities s eepekon

activiey s Sartbser rafed s (e |{EPMEmEDEs The decumment
The activity o Sarthy Srnd s th e ok Widcw

by whaeks correlatma wittn e
FYRET PEErements e made
phte Furtbermore the

yright by Fraunhafir
Cemersied Ao Sep

343 58 G o0

UNIVERSITETE
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Annotations

o

.f., iten
Y Pocgle 4 ek Pages 5 Domritind W) Cabrctn 3§ Chiarents
Description -

@

“The *5W Architechare® (prefiminary design) contsns suggestions for possible SW
Aurchetestures (section) and the chosen decomposition of the SWCT they e
organized dysamically i ndivedual processes (section 3

N fesie o*" Trinin o[EERE] seectrion vy Petes
.
susaee [
l |
=
Productflow ..-°
P .
..
The falowing are the activities that do consume!
Produring activities: K
* Temglate (WORDY) .
Prolmary Drog @ .
Clane g _l;!
Subartifacts h ..'ﬁl._._] .
| T

Please send comments to
spaffinge fhe de weens [)

Cowveroht by Prounhorer 2o =Ml P e
! (gl kerceaonDsiay Vet Toithe Mo 0 [0 nf |

UNIVERSITETE
I OSLO

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Consistency Checking

» Process models should be complete and correct
representations of reality

» Consistency checking has been partly automated in
SPEARMINT™
» Methodological prerequisites:
— Process meta-model
— Consistency rules

7K UNIVERS[TETE’]1

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 7 1 OSLO

Structure of Lecture 02

* Hour 1:
— Introduction into Process Modelling
— Prescriptive Process Models

* Hour 2:
— Process Families/Standards
— Descriptive Process Modelling

* Hour 3:
— Exercises <

F % UNIVERS lTETE’]1

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 7 1 OSLO

Java
Development
Environment

consumes

Exercise 1

Program
mer

uses Implement

Process Model representations:
* Using product-flow notation

Activity
produces
Method / 0
« Using table notation Tool

Activity Input Output Roles Methods
Name Artifact Artifact / Tools

» UNIVERS lTETE’]1

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 1 0sSLO

Exercise 1 (cont’d)

* Model the following process:

“Based on input from Marketing and from Customers, the Product Owner sets up
the product backlog. The Product Owner is also in charge of planning sprints.
He/she does this based on a prioritization of the user stories contained in the
product backlog, and on effort estimates for each user story received from the
Team. The Team does their effort estimates based on a refinement of user stories
into tasks. Once a sprint has been defined, the Team develops the software
related to a sprint. The Team does this by working on the previously identified
tasks. To monitor their work, a burn-down chart is maintained. The burn-down
chart shows how much of a task has been completed and how much effort is still
to be used. During the development of a sprint, the Scrum Master supports the
Team by helping them overcome obstacles and by guiding them through the agile
methodology. Once a sprint is complete, a sprint review meeting will be performed.
Everybody is invited to attend this meeting.”

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Exercise 2

» Work in pairs
e Task 1:

— Decide who will be the “process performer” (role P) and who will be the
process modeller (role M)

— P think about a process (related to software development) and explains
itto M.

— M models the process (as in Exercise 1)
» Task 2:

— Take turns (i.e., switch roles) and repeat task 1.
e Task 3:

— Show your process models to someone else (not in your pair) and let
that person explain the process to P.

% UNIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 1 0SLO 11
Exercise 3 — Homework
e Task:
— Model the process of surveying “Customer Satisfaction” using the
Kano-Model

— Specify activities, artifacts, roles, tools/techniques/methods
— Use either the graphical or the table notation

NIVERSITETE

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

The Kano-Model

Five dimensions of quality:

high .
Customer N Excitement » "Basic quality” — satisfies basic “must-
Satisfaction (Differentiation) have” needs which probably do not
even need to be specified.
Linear ° Competitive quality” - satl_sfles
. expressed needs (usually in
(Competitive) requirement specification).
/ < "Excitement quality” - satisfies latent
Performance needs, needs which are there but which
high the user hasn't expressed and/or is
/ himself/herself aware of
Basic < "Indifference quality” - needs which are
/ (Cost of Entry) covered but which user is indifferent to
» "Reverse quality” - qualities which the

customer do not want

I 0SLO

UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

The Kano-Model — Surveying Users

* To assess whether a feature is basic,
linear, or exciting we can:

— Sometimes guess

Linear — Survey a small set of users (20-30)
SO . We ask two questions:
— A functional question:

Hen Excitement
(Differentiation)

Customer
Setisfactian

Performance] .
high How do you feel if a feature is
present?
Basic — A dysfunctional question:
HECRI AL How do you feel if that feature is
absent?

I 0SLO

UNIVERSITETE
INF5181 / Lecture 02 / © Dietmar Pfahl 2011

Functional and Dysfunctional Forms

If your editor

Functional form includes a
. voice recognltlon
of question function, how do
you feel?

| like it that way

| expect it to be that way

| am neutral

| can live with it that way

| dislike it that way

If your editor

Dysfunctional form does not include a
. voice recognition
of question function, how do
you feel?

| like it that way

| expect it to be that way

| am neutral

| can live with it that way

| dislike it that way

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Categorizing an Answer Pair

Dysfunctional
Question
=
o 2 = i = B: Basic (Mandatory)
%2} .
fl:%’ 213 L: Linear
_ | Like E)EE L E.. Excitement
£§Expect R 1|1 1B R: Reverse
g § Neutral R 1 | 1B I: Indifferent
5& LivewithR I || 1 B Q: Questionable
Dislike R/R/RIRQ

INF5181 / Lecture 02 / © Dietmar Pfahl 2011

]

Next Lecture

» Topic: Processes and Process Modeling (Section B)

» For you to do:
— Do the homework

— Continue thinking about your project (topic &
presentation)

UNIVERS[TETE’]1

INF5181 / Lecture 02 / © Dietmar Pfahl 2011 ¥y 10SLO

