
INF5181 / Lecture 03 / © Dietmar Pfahl 2011

INF5181: Process Improvement
and Agile Methods in Systems
Development
Lecture 03:
Processes and Process
Modeling (Section B)

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no
Fall 2011

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Structure of Lecture 03

• Hour 1:
– Light-weight (agile) processes / Evolutionary development
– XP, Crystal and Scrum

• Hour 2:
– Scrum (cont’d)
– Choosing the right process (model)

• Hour 3:
– Homework exercise
– Question/answer session about project

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Requirements and Customers

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

The Agile Manifesto

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

http://www.agilemanifesto.org/

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Structure of Lecture 03

• Hour 1:
– Light-weight (agile) processes / Evolutionary development
– XP, Crystal and Scrum

• Hour 2:
– Scrum (cont’d)
– Choosing the right process (model)

• Hour 3:
– Homework exercise
– Question/answer session about project

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Extreme Programming

• Origin: Kent Beck, Ward Cunningham, Ron Jeffries (end of 1990s)
• Idea: “light weight” process model, agile process
• Characteristic:

– “Minimum” of accompanying measures (documentation, modeling
, …)

– Team orientation (e.g., common responsibility for all development
artifacts)

– Small teams (12-14 persons)
– Involvement of user/client at an early stage
– Social orientation

• Scope: Prototype projects, small projects, low criticality of the results

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

XP – Rules and Practices

Planning
User stories are written (by the customer!).
Release planning creates the schedule.
Make frequent small releases.
The Project Velocity is measured.
The project is divided into iterations.
Iteration planning starts each iteration.
Move people around.
A stand-up meeting starts each day.
Fix XP when it breaks.

Designing
Simplicity.
Choose a system metaphor.
Use CRC* cards for design sessions.
Create spike solutions to reduce risk.
No functionality is added early.
Refactor whenever and wherever possible.

Coding
The customer is always available.
Code must be written to agreed standards.
Code the unit test first.
All production code is pair programmed.
Only one pair integrates code at a time.
Integrate often.
Use collective code ownership.
Leave optimization till last.
No overtime.

Testing
All code must have unit tests.
All code must pass all unit tests before it
can be released.
When a bug is found (acceptance) tests are
created.
Acceptance tests are run often and the score
is published.

http://www.extremeprogramming.org/rules.html

* CRC = Class Responsibility Collaborator

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

• User stories (something like use
cases) are written by the customer.

• Complex stories are broken down
into simpler ones (like a WBS).

• Stories are used to estimate the
required amount of work.

• Stories are used to create
acceptance tests.

• A release plan is devised that
determines which stories will be
available in which release.

• Don’t hesitate to
change what doesn’t work.

Extreme Programming – Overview

Planning

Iterative Phase

http://www.extremeprogramming.org/rules.html

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Extreme Programming – Planning

• Each release is preceded by
a release planning
meeting.

• Each day begins with a
stand-up meeting to share
problems and concerns.

• CRC cards are used for
design. [XP and CRC were
created by the same person,
Kent Beck.]

• Spike solutions are done to
assess risks.

• The customer is always
available.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

• All code must pass unit
tests, which are coded
before the code being
tested (test-driven
design).

• Refactoring is done
constantly.

• Integration is done by
one pair.

• Integration is done
frequently.

• Optimization is done last.
• Acceptance tests are run

often.

Extreme Programming – Iterative Phase

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Requirements vs. User Stories

Traditional requirement – “shall”
statements:
“The system shall provide a user
configurable interface for all user
and system manager functions”
“The user interface shall be
configurable in the areas of:

Screen layout
Font
Background and text color

Corresponding “User Story”:
“As a system user or system
manager, …
… I want be able to configure the
user interface for screen layout,
font, background color, and text
color, …
… So that I can use the system in
the most efficient manner”

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

From Requirement to User Story – Functional
Requirements

Requirement:
The system shall provide the
capability for making hotel
reservations.

User Story 1:
As a premiere member, I want to
search for available discounted
rooms.

User Story 2:
As a vacationer, I want to search for
available rooms.

User Story 3:
As a vacationer, I want to save my
selections.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

From Requirement to User Story – Non-Functional
Requirements

Requirement:
The system shall …

User Story 4:
As a vacationer and user of the hotel website,
I want the system to be available 99.99% of
the time.

User Story 5:
As a vacationer, I want web-pages to
download in <4 seconds.

User Story 6:
As the hotel website owner, I want 10,000
concurrent users to be able to access the site
at the same time with no impact to
performance.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Use Case Model: Use Case Diagrams and
Descriptions

Use Case Description:
• Name of Use Case
• Actors associated with Use Case
• Pre-conditions
• Post-conditions
• Normal Flow of Events (Basic

Scenario)
• Alternative Flow of Events

(Alternative Scenarios)
• …

Use-Case Descriptions

...

Use Case Model

Actors

Use Cases

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Caller

Customer
Billing Manager

Callee

Bill CustomerBill Customer

Text MessageText Message

Place CallPlace Call

A model of what the system is supposed to do (use case), the system’s
surroundings (actors), and their associations.

Use Case Model – Example

Cell-phone System

Non-network Provider

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Use Case: Place Call

Actors: Caller, Callee, Network
Provider

Pre-conditions: A caller wants to
make a call to a callee. The
cell phone is switched on
and connected to a cell
phone network. The phone
is idle.

Post-conditions: On successful
completion, the phone is
idle. The caller has been
connected to the callee for
voice communication.

Basic Scenario:
• The caller activates the “call” option.

(this may be by opening the phone or
selecting some UI element.)

• The system displays a blank list of digits
and indicates it is in “call” mode.

• The user enters digits (ALT 1).
• The system displays the entered digits.
• The user selects the “dial” option (ALT

2).
• The system sends the sequence of

digits to the network provider.
• The network provider accesses the

network and makes a connection (ALT
3, ALT 4).

• The callee answers (ALT 5).
• The network provider completes the

voice connection.
• The caller and callee engage in voice

communications.
• The caller hangs up (ALT 6).
• The system returns to idle mode.
• End of Use Case.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Use Case: Place Call

Actors: Caller, Callee, Network
Provider

Pre-conditions: A caller wants to
make a call to a callee. The
cell phone is on and
connected to a cell phone
network. The phone is idle.

Post-conditions: On successful
completion, the phone is
idle. The caller has been
connected to the callee for
voice communication.

Alternative Scenarios:

ALT 1: The user uses speed dial.
• A1-1: The user enters a single digit and

selects “dial”.
• A1-2: The system accesses the phone

number associated with the digit (ALT 1.1).
• A1-3: Use case continues at step 6.

ALT 1.1: No speed dial number is associated with
the entered digit.

• A1.1-1: The system ignores the “dial”
command and displays the digit.

• A1.1-2: Use case continues at step 4.

ALT 2: The user cancels the operation.
• A2-1: Use case continues at step 12.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

CRC Card

• CRC = Class-
Responsibility-
Collaboration

• Used in OOA to
identify classes, their
responsibilities, and
their collaborations

• Format:

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 19

CRC Cards for a ‘Clock’

• We want to design a clock.
• The clock should:

– Have a way to set the current time
– Display the time in hours, minutes, and seconds in

different formats
– Update the time to keep it current

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 20

Scenario 1: The Ticker Ticks

• The SecondsTicker pulses the
Clock

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 21

Scenario 1: The Ticker Ticks

• The SecondsTicker pulses the
Clock

• The Clock updates Time

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 22

Scenario 1: The Ticker Ticks

• The SecondsTicker pulses the
Clock

• The Clock updates Time
• Time updates itself

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 23

Scenario 1: The Ticker Ticks

• The SecondsTicker pulses the
Clock

• The Clock updates Time
• Time updates itself

End of Scenario

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 24

Scenario 2: Clock Responds with the Time

• Display the time

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 25

Scenario 2: Clock Responds with the Time

• Display the time
• Collaborator: Return hours,

minutes, & seconds

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 26

Scenario 2: Clock Responds with the Time

• Display the time
• Collaborator: Return hours,

minutes, & seconds
• Translate the time into the

display format

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 27

Scenario 2: Clock Responds with the Time

• Display the time
• Collaborator: Return hours,

minutes, & seconds
• Translate the time into the

display format

End of Scenario

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 28

OOA for a Clock

INF5181 / Lecture 03 / © Dietmar Pfahl 2011 29

Why CRC Cards?

• Forces you to think in “objects”
• Help you identify objects and their responsibilities
• Help you understand how the objects interact
• Cards form a useful record of design activity
• Cards work well in group situations and are

understandable by non-technical stakeholders.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Planning Poker /1

• Participants in planning poker include all of the
developers on the team

• Step 1: Give each estimator a deck of cards
• Step 2: Moderator reads description of User

Story to be estimated.
• Step 3: Product owner answers any question the

estimators may have about the User Story.
• Step 4: Each estimator privately selects a card

representing his or her estimate. Cards are not
shown until each estimator has made a
selection.

• …

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Planning Poker /2

• Step 5: When everyone has made an estimate,
the cards are simultaneously turned over.

• Step 6: If estimates differ, the highest and lowest
estimates are explained by the estimators -
otherwise the estimation is completed for this
User Story.

• Step 7: The group can discuss the story and
their estimates for a few more minutes. The
moderator can take any notes he/she thinks will
be helpful when this story is being programmed
and tested. After the discussion, each estimator
re-estimates by selecting a card.

Go to Step 5. Note: In many cases, the estimates will already converge by the second round. But if they
have not, continue to repeat the process. The goal is for the estimators to converge on a
single estimate that can be used for the story. It rarely takes more than three rounds, but
continue the process as long as estimates are moving closer together.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Refactoring

• Refactoring is a disciplined technique for restructuring an
existing body of code, altering its internal structure without
changing its external behavior. (Invented by Martin Fowler)

• Many refactorings can be automated
• Catalogue of refactorings:

http://www.refactoring.com/catalog/index.html

• Note: It is not always clear (a) how to detect refactoring
opportunities and (b) what refactoring(s) are most appropriate
(‘code smells’: http://en.wikipedia.org/wiki/Code_smell)

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Extreme Programming – Evolutionary
Process Model

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Mobile-D

Defined by VTT for the
mobile phone industry in
Finland

More on Crystal
methodologies can be
found at:

http://alistair.cockburn.
us/index.php/Crystal_
methodologies

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scrum

http://www.scrumforteamsystem.com/processguidance/v1/Scrum/Scrum.html

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scrum – Roles: ”Pigs” and ”Chicken”

"Pig" roles
• Pigs are the ones committed to the

project in the Scrum process; they
are the ones with "their bacon on
the line".

– Product Owner
– Scrum Master (or Facilitator)
– Team

"Chicken" roles
• Chicken roles are not part of the

actual Scrum process, but must be
taken into account.

– Users
– Stakeholders (customers,

vendors)
– Managers

• Note: An important aspect of an Agile
approach is the practice of involving
users, business and stakeholders into
part of the process. It is important for
these people to be engaged and provide
feedback into the outputs for review and
planning of each sprint.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scrum – Roles

"Pig" roles:
• Product Owner

– The Product Owner represents the voice of the customer
ensuring that the Team works on the right things from a
business perspective.

– The Product Owner writes user stories, prioritizes them,
then places them in the product backlog.

• Scrum Master (or Facilitator)
– Scrum is facilitated by a ScrumMaster, whose primary job is

to remove impediments to the ability of the team to deliver
the sprint goal.

– The ScrumMaster is not the leader of the team (as they are
self-organizing) but acts as a buffer between the team and
any distracting influences.

– The ScrumMaster ensures that the Scrum process is used
as intended. The ScrumMaster is the enforcer of rules.

• Team
– The team has the responsibility to deliver the product.
– A team is typically made up of 5–9 people with cross-

functional skills to do the actual work (designer, developer,
tester, etc.).

"Chicken" roles:
• Users

– The software is being
built for someone.

• Stakeholders (customers,
vendors)

– The people that will
enable the project, and
for whom the project will
produce the agreed-
upon benefit(s) which
justify it. They are only
directly involved in the
process at sprint
reviews.

• Managers
– People that will set up

the environment for the
product development
organizations.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Product Owner

• Defines the features of the
product

• Decides on release date and
content

• Is responsible for the profitability
of the product (ROI)

• Prioritizes features according to
market value

• Adjusts features and priority
every iteration, as needed

• Accepts or rejects work results

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scrum Master

• Represents management to
the project

• Responsible for enacting
Scrum values and practices

• Removes impediments
• Ensures that the team is fully

functional and productive
• Enables close cooperation

across all roles and functions
• Shields the team from external

interferences

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Team

• Typically 5-9 people
• Cross-functional:

– Programmers, testers, user experience
designers, etc.

• Members should be full-time
– May be exceptions (e.g., database

administrator)
• Teams are self-organizing

– Ideally, no titles but rarely a possibility
• Membership should change only

between sprints

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Structure of Lecture 03

• Hour 1:
– Light-weight (agile) processes / Evolutionary development
– XP, Crystal and Scrum

• Hour 2:
– Scrum (cont’d)
– Choosing the right process (model)

• Hour 3:
– Homework exercise
– Question/answer session about project

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scrum Iterations and Sprints

Daily Scrum Sp
rin

t R
ev

ie
w

 M
ee

tin
g

Sp
rin

t R
et

ro
sp

ec
tiv

e
Sp

rin
t P

la
nn

in
g

M
ee

tin
g

Sp
rin

t P
la

nn
in

g
M

ee
tin

g

15 min daily

~1 hour

1 day for a
4 week Sprint

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scrum – Meetings

• Daily Scrum
– Each day during the sprint, a project status meeting

occurs. This is called a "scrum", or "the daily
standup". Daily scrum guidelines:

• The meeting starts precisely on time. Often there
are team-decided punishments for tardiness (e.g.
money, push-ups, hanging a rubber chicken
around your neck)

• All are welcome, but only "pigs" may speak
• The meeting is time-boxed (15 minutes)

regardless of the team's size
• All attendees should stand (it helps to keep

meeting short)
• The meeting should happen at the same location

and same time every day
– During the meeting, each team member answers

three questions:
• What have you done since yesterday?
• What are you planning to do by today?
• Do you have any problems preventing you from

accomplishing your goal?
• It is the task of the ScrumMaster to remind the

team of these questions.

• Sprint Planning Meeting
– Select what work is to be done
– Prepare the Sprint Backlog that

details the time it will take to do that
work

– 8 hour limit
• Sprint Review Meeting

– Review the work that was completed
and not completed

– Present the completed work to the
stakeholders (a.k.a. "the demo")

– Incomplete work cannot be
demonstrated

– 4 hour time limit
• Sprint Retrospective

– All team members reflect on the past
sprint.

– Make continuous process
improvement.

– Two main questions are asked in the
sprint retrospective: What went well
during the sprint? What could be
improved in the next sprint?

– 3 hour time limit

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Sprint planning meeting

Sprint prioritization

• Analyze and evaluate product
backlog

• Select sprint goal

Sprint planning

• Decide how to achieve sprint goal
(design)

• Create sprint backlog (tasks) from
product backlog items (user
stories / features)

• Estimate sprint backlog in hours

Sprint
goal

Sprint
goal

Sprint
backlog
Sprint

backlog

Business
conditions
Business
conditions

Team
capacity
Team

capacity

Product
backlog
Product
backlog

TechnologyTechnology

Current
product
Current
product

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Sprint Goal – Examples

• A short statement of what the
work will be focused on during
the sprint

Database Application

Financial services

Life Sciences

Support features necessary for
population genetics studies.

Support more technical indicators
than company ABC with real-time,
streaming data.

Make the application run on SQL
Server in addition to Oracle.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Sprint Planning Meeting

• Team selects items from the product backlog they can commit to
completing

• Sprint backlog is created
– Tasks are identified and each is estimated (1-16 hours)
– Collaboratively, not done alone by the Scrum Master

• High-level design is considered

As a vacation
planner, I want to
see photos of the
hotels.

As a vacation
planner, I want to
see photos of the
hotels.

Code the middle tier (8 hours)
Code the user interface (4)
Write test fixtures (4)
Code the foo class (6)
Update performance tests (4)

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Daily Scrum

• Parameters
– Daily
– 15-minutes
– Stand-up

• Not for problem solving
– Whole world is invited
– Only team members, Scrum

Master, product owner, can
talk

• Helps avoid other unnecessary
meetings

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Daily Scrum – 3 Questions

NB:
• These questions

are not status
reports for the
Scrum Master

• They are
commitments in
front of peers

What did you do yesterday?What did you do yesterday?
11

What will you do today?What will you do today?
22

Is anything in your way?Is anything in your way?
33

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Sprint Review Meeting

• Team presents what it
accomplished during the sprint

• Typically takes the form of a
demo of new features or
underlying architecture

• Informal
– 2-hour prep time rule
– No slides

• Whole team participates
• Invite the world

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Sprint Retrospective

• Periodically take a look at what is and is not working
• Typically 15–30 minutes
• Done after every sprint
• Whole team participates

– Scrum Master
– Product Owner
– Team
– Possibly customers and others

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Backlog item Estimate
Allow a guest to make a reservation 3
As a guest, I want to cancel a
reservation. 5

As a guest, I want to change the dates of
a reservation. 3

As a hotel employee, I can run RevPAR
reports (revenue-per-available-room) 8

Improve exception handling 8
... 30
... 50

Scrum – Main
Artifacts

• Product backlog
• Sprint backlog
• Burn down chart

TasksTasks
Code the user interface
Code the middle tier
Test the middle tier
Write online help
Write the foo class

MonMon
8

16
8

12
8

TuesTues
4

12
16

8

WedWed ThurThur

4
11

8
4

FriFri

8

8
Add error logging

8
10
16

8
8

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scrum – Artifacts
Product backlog
• The product backlog is a high-level document for the entire project. It contains backlog

items: broad descriptions of all required features, wish-list items, etc. It is the "What" that will
be built. It is open and editable by anyone and contains rough estimates of both business
value and development effort. Those estimates help the Product Owner to gauge the
timeline and, to a limited extent, priority.

– For example, if the "add spellcheck" and "add table support" features have the same
business value, the one with the smallest development effort will probably have higher
priority, because the return-on-investment is higher.

• The product backlog is property of the Product Owner. Business value is set by the Product
Owner. Development effort is set by the Team.

Sprint backlog
• The sprint backlog is a greatly detailed document containing information about how the

team is going to implement the requirements for the upcoming sprint. Tasks are broken
down into hours, with no task being more than 16 hours. If a task is greater than 16 hours, it
should be broken down further. Tasks on the sprint backlog are never assigned; rather,
tasks are signed up for by the team members as they like.

• The sprint backlog is property of the Team. Estimations are set by the Team.
Burn down chart
• The burn down chart is a publicly displayed chart showing remaining work in the sprint

backlog. Updated every day, it gives a simple view of the sprint progress.

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Product Backlog

• The requirements
• A list of all desired work on the

project
• Ideally expressed such that each

item has value to the users or
customers of the product

• Prioritized by the product owner
• Reprioritized at the start of each

sprint

This is the
product backlog

This is the
product backlog

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Sprint Backlog – Example

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Managing the Sprint Backlog

• Individuals sign up for work of their own choosing
– Work is never assigned!

• Estimated work remaining is updated daily
• Any team member can add, delete or change the sprint backlog
• Work for the sprint emerges
• If work is unclear, define a sprint backlog item with a larger amount of

time and break it down later
• Update work remaining as more becomes known

• Visualisation Burndown chart (see next slide)

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

H
ou

rs

40

30

20

10

0 Mon Tue Wed Thu Fri

TasksTasks
Code the user interface

Code the middle tier

Test the middle tier

Write online help

MonMon
8

16
8

12

TuesTues WedWed ThurThur FriFri
4

12
16

7
11

8
10
16 8

50

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Scalability of Scrum
• Typical individual team is 7 ±

2 people
– Scalability comes from

teams of teams
• Factors in scaling

– Type of application
– Team size
– Team dispersion
– Project duration

• Scrum has been used on
multiple 500+ person projects
(e.g., SAP)

Scrum of Scrums of …

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Structure of Lecture 03

• Hour 1:
– Light-weight (agile) processes / Evolutionary development
– XP, Crystal and Scrum

• Hour 2:
– Scrum (cont’d)
– Choosing the right process (model)

• Hour 3:
– Homework exercise
– Question/answer session about project

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Choosing a Process Model is Difficult !

• What you should first decide is whether you actually need a
prescriptive process model.

• To make the choice it is important to know your
organization/project.

– What characteristics does the project have?
– What characteristics affect the choice of the process model?
– Can we use the same model everywhere, or do we need

variants (a repertoire of different models)?

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

How Much Structure is needed/wanted?

Formality of product (specification/validation)

Process discipline (support/enforcement)

Low High

StrictLow

Communication

FormalInformal

Number of check points

ManyFew

M
U

C
H

 S
T R

U
C

T U
R

E

LI
TT

L E
 S

TR
U

C
T U

R
E

Experience
Much Little

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

How Much Structure is needed/wanted?
Size (organization)

BigSmall

Size (product)

BigSmall

Age (team)

LowHigh
Problem complexity

BigLittle
Demand for precision

BigLittle

Project length

LongShort

M
U

C
H

 S
T R

U
C

T U
R

E

LI
TT

L E
 S

TR
U

C
T U

R
E

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

How much Agility is Recommended?

• Source: Boehm, B.; Turner, R.; Observations on balancing discipline and agility,
Proceedings of the Agile Development Conference, 2003. ADC 2003. Page(s):32-39

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Alistair Cockburn – Project Categorizing

“Any one
methodology is
likely to be
appropriate for only
one of the boxes on
one of the planes.
Thus, at least 150
or so methodologies
are needed!”
[Alistair Cockburn: Selecting a
Project 's Methodology. IEEE
Software 17(4): (2000)]

Degree of A
gility

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

‘Rules of thumb’ for selecting process

• IF uncertainty is high
– THEN use agile process

• IF complexity is high but uncertainty is not
– THEN use incremental process

• IF uncertainty and complexity both low
– THEN use waterfall process

• IF schedule is tight/fixed
– THEN use agile or incremental approach

• …

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Structure of Lecture 03

• Hour 1:
– Light-weight (agile) processes / Evolutionary development
– XP, Crystal and Scrum

• Hour 2:
– Scrum (cont’d)
– Choosing the right process (model)

• Hour 3:
– Homework exercise
– Question/answer session about project

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Homework

• Task:
– Model the process of surveying “Customer Satisfaction” using the

Kano-Model
– Specify activities, artifacts, roles, tools/techniques/methods
– Use either the graphical or the table notation

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

The Kano-Model
Five dimensions of quality:
• ”Basic quality” – satisfies basic “must-

have” needs which probably do not
even need to be specified.

• ”Competitive quality” - satisfies
expressed needs (usually in
requirement specification).

• ”Excitement quality” - satisfies latent
needs, needs which are there but which
the user hasn’t expressed and/or is
himself/herself aware of

• ”Indifference quality” - needs which are
covered but which user is indifferent to

• ”Reverse quality” - qualities which the
customer do not want

Customer
Satisfaction

Performance

high

high

Excitement
(Differentiation)

Linear
(Competitive)

Basic
(Cost of Entry)

Time

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

The Kano-Model – Surveying Users

• To assess whether a feature is basic,
linear, or exciting we can:

– Sometimes guess
– Survey a small set of users (20-30)

• We ask two questions:
– A functional question:

How do you feel if a feature is
present?

– A dysfunctional question:
How do you feel if that feature is
absent?

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Functional and Dysfunctional Forms

If your editor
includes a

voice recognition
function, how do

you feel?

I like it that way X
I expect it to be that way
I am neutral
I can live with it that way
I dislike it that way

If your editor
does not include a
voice recognition
function, how do

you feel?

Functional form
of question

Dysfunctional form
of question

I like it that way
I expect it to be that way X
I am neutral
I can live with it that way
I dislike it that way

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Categorizing an Answer Pair

B: Basic (Mandatory)
L: Linear
E: Excitement
R: Reverse
I: Indifferent
Q: Questionable

Like
Expect
Neutral
Live with
Dislike

Li
ke

E
xp

ec
t

N
eu

tra
l

Li
ve

 w
ith

D
is

lik
e

Q
R

R

R
R

E
I

R

I
I

E
I

R

I
I

E
I

R

I
I

L
B

Q

B
B

Dysfunctional
Question

Fu
nc

tio
na

l
Q

ue
st

io
n

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Solution Example:
Kano-Model Process

Ask functional and
dysfunctional

questions per requ.

List of selected
Customers

Answers from
Customers

Marketing,
Customers

Categorisation
Scheme,
Interview

Categorised
Requirements

Select Customers
for Interviews

List of all
Customers

Marketing

List of
Requirements

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Structure of Lecture 03

• Hour 1:
– Light-weight (agile) processes / Evolutionary development
– XP, Crystal and Scrum

• Hour 2:
– Scrum (cont’d)
– Choosing the right process (model)

• Hour 3:
– Homework exercise
– Question/answer session about project

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Project Assignment – Task

Task:
• Prepare a (realistic) software process improvement plan for a

software/systems development organization
• A project template with detailed guidelines is available
• The scope of the SPI plan could be (examples):

– complete process
– a sub-process of the complete process
– an activity of a sub-process
– a method/technique used in an activity
– …

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Project Schedule

• 06-Oct-2011: Student Presentation (5 min, mandatory)
– Should cover Section 1 of Report Template

• 20-Oct-2011: Draft Report (mandatory)
– Should cover Sections 1 to 3 of Report Template
– Deliver by email to dietmarp@ifi.uio.no no later than 13:30
– You will receive feedback (by email) within 2 weeks

• 06-Dec-2011: Final Report (mandatory)
– Should cover all Sections of Report Template
– Deliver by email to dietmarp@ifi.uio.no no later than 19:59

2 marks penalty
If presentation is

NOT given

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Project Assignment – Report Template

Introduction

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Project Assignment – Topic Ideas

Examples of problems and related improvement goals:
• Customers find too many defects – Improve software quality
• Inaccurate planning / estimates – Improve planning methods/models
• New technologies or standards make their way into the market (e.g., model-driven

development/testing) – Adapt existing processes to accommodate the new technology/standard
• Software is hard to maintain / difficult to evolve – Improve software architecture
• Increasing competition – Speed-up development, issue releases more frequently
• Customer are dissatisfied with deliveries – More customer participation and more flexible process
• “Old-fashioned", heavy development process – Modernize dev. processes, methods, and tools
• Little diffusion of competence, low motivation – Improve training & enhance involvement of people

FIND A REALISTIC APPROACH TO SOLVING A REALISTIC PROBLEM.
MAKE USE Of YOUR IMAGINATION (but choose “probable” problems/goals/solutions).

INF5181 / Lecture 03 / © Dietmar Pfahl 2011

Next Lecture

• Topic: Flow-based Agile Development (KANBAN)
• Date: 29 Sep 2011

• Instructor:
– Dag Sjøberg

