
INF5181 / Lecture 06 / © Dietmar Pfahl 2011

INF5181: Process Improvement
and Agile Methods in Systems
Development
Lecture 06:
SPI & Measurement

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no
Fall 2011

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

• Hour 1:
– Introduction & Motivation
– SW Measurement: Why – What – How?

• Hour 2:
– GQM Process
– Example Measurement Program

• Hour 3:
– Question/answer session about project
– Exercise

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement in
Project Management

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement in SPI ?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement – What & How?

• What to measure?
– Product

• Quality
• Cost

– Process
• Capability / Maturity
• Time
• Effort

– Resources
• Quality
• Cost

• How to measure?
– Standards/Frameworks

• Product quality ISO
9126

• Process capability /
maturity ISO 15504
(SPICE) / CMMI

– GQM (Goal / Question /
Metric)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

• ISO 9000-2005:
Degree to which a set of inherent characteristics fulfills
requirements

Definition of “(Software) Quality”

• ISO 8402-1986:
The totality of features
and characteristics of a
product or service that
bear on its ability to
satisfy stated or implied
needs

• ISO 9126-1991:
The totality of features
and characteristics of a
software product that
bear on its ability to
satisfy stated or implied
needs

Entity

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

ISO 9126 software quality characteristics

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Functionality

• Suitability
• Accuracy
• Interoperability

– Ability of software to interact with other software
components

• Functionality compliance
– Degree to which software adheres to application-related

standards or legal requirements e.g audit
• Security

– Control of access to the system

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Reliability

• Maturity
– Frequency of failure due to faults - the more the software

has been used, the more faults will have been removed
• Fault-tolerance
• Recoverability

– Note that this is distinguished from ‘security’ - see above
• Reliability compliance

– Complies with standards relating to reliability

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Usability

• Understandability
– Easy to understand?

• Learnability
– Easy to learn?

• Operability
– Easy to use?

• Attractiveness – this is a recent addition
• Usability compliance

– Compliance with relevant standards

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Efficiency

• Time behaviour
– E.g. response time

• Resource utilization
– E.g. memory usage

• Efficiency compliance
– Compliance with relevant standards

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Maintainability

• Analysability
– E. g., ease with which the cause of a failure can be found

• Changeability
– How easy is software to change?

• Stability
– Low risk of modification having unexpected effects

• Testability
– How easy to test?

• Compliance (to standards affecting maintainability)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Portability

• Adaptability
• Installability
• Co-existence

– Capability of co-existing with other independent software
products

• Replaceability
– Factors giving ‘upwards’ compatibility - ‘downwards’

compatibility is excluded
• Portability conformance

– Adherence to standards that support portability

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Quality Model: ISO 9126

Characteristics Characteristics AttributesAttributes
Functionality Suitability Interoperability Accuracy

Security Compliance

Reliability Maturity Recoverability Fault Tolerance

Compliance

Usability Understandability Learnability Operability

Attractiveness Compliance

Efficiency Time Behaviour Resource Behaviour Compliance

Maintainability Analyzability Stability Changeability

Testability Compliance

Portability Adaptability Installability Co-existence

Replaceability Compliance

1 : n relation
between
Characteristics
and
Attributes (Sub-
Characteristics)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

ISO 9126
Software Product Quality

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

ISO 9126 – Future Developments

• A new series of standards is
currently under development.

• Name: Software Product
Quality Requirements and
Evaluation (SQuaRE - ISO
25000).

• This series of standards will
replace the current ISO 9126
(and ISO 14598) series of
standards.

– Note: the new standard will
replace the word ”metric”
by “measure”

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Software Process & Product Quality

process
quality

Process

Process measures
(ISO 15504)

internal
quality

attributes

external
quality

attributes

quality
in use

attributes

influences

depends on

influences

depends on

influences

Software products Effect of software
product

Internal
measures

External
measures

Quality in
use
measures

Context
of use

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Software Process Assessment
CMMI / ISO 15504 (SPICE)

Staged

ML 1

ML2

ML3

ML4

ML5

Defines 5 maturity levels (MLs); in order to
achieve a maturity level all process areas
associated to this level, plus all process
areas associated with levels below must have
a certain minimal capability.

Continuous

A maturity profile is established
based on the capabilities of
individual process areas

PA PA
Pr

oc
es

s
A

re
a

C
ap

ab
ili

ty
0

1

 2

 3

 4

 5

PA

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Causal Analysis and Resolution
Organizational Innovation and Deployment5 Optimizing

4 Quantitatively
Managed

3 Defined

2 Managed

Quantitative Project Management
Organizational Process Performance

Requirements Development
Technical Solution
Product Integration
Verification
Validation
Organizational Process Focus
Organizational Process Definition
Organizational Training
Risk Management
Integrated Project Management (for IPPD*)
Integrated Teaming*
Integrated Supplier Management**
Decision Analysis and Resolution
Organizational Environment for Integration*

Requirements Management
Project Planning
Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

1 Performed

Process AreasLevelCMMI Levels and
Process Areas
(staged)

* Integrated Product/Process
Development (IPPD) –
add-on to the Engineering
processes
** Acquisition – add-on to
the Engineering processes

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

CMM Assessment Results (continuous)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

• Hour 1:
– Introduction & Motivation
– SW Measurement: Why – What – How?

• Hour 2:
– GQM Process
– Example Measurement Program

• Hour 3:
– Question/answer session about project
– Exercise

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

SW Measurement: Who benefits?

• Managers
– What does each process cost?
– How productive is development?
– How good is the product (code, design)?
– Will the user be satisfied with the

product?
– How can we improve?

• Engineers
– Are the requirements testable?
– Have we found all (severe) defects?
– Have we met our product or process

goals?
– What can we predict about our software

product in the future?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement and Measure

Measurement:
• Measurement is the process through which values are assigned to

attributes of entities of the real world.

Measure:
• A measure is the result of the measurement process, so it is the

assignment of a value to an entity with the goal of characterizing a
specified attribute.

Source: Sandro Morasca, “Software Measurement”, in “Handbook of Software Engineering and
Knowledge Engineering - Volume 1: Fundamentals” (refereed book), pp. 239 - 276, Knowledge Systems
Institute, Skokie, IL, USA, 2001, ISBN: 981-02- 4973-X.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measure (Metric)

• Measure:
– Let A be a set of empirical (physical)

objects
– Let B be a set of formal objects, such as

numbers (or symbols)
– A measure m is a mapping from A to B,

i.e., m: A B

Note:
• this is neither (exactly) the definition of the

mathematical measure, i.e., μ: σ(A) [0, ∞), with σ(A)
is the σ-algebra of A

• nor of the mathematical metric, i.e., d: A × A → B with
d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, d(x, y) = d(y,
x), and d(x, z) ≤ d(x, y) + d(y, z).

4 e *
3 d *
2 c *
1 b *
0 a *

A B
Scale
& Unit

Program

LOC
Size

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement: Characterization

• Relevant objects (entities) may be described, identified,
categorized, ordered, and compared in terms of their key
properties (attributes)

• Measurement is a means of assessing these properties:
– with known reliability
– with known systematic bias (validity), if any
– efficiently
– in a manner that is useful for decision-making

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement Scale Types

Scale
Type

Characterization Example (generic) Example (SE)

Nominal Divides the set of objects into
categories, with no particular ordering
among them

Labeling, classification Name of programming
language, name of defect type

Ordinal Divides the set of entities into
categories that are ordered

Preference, ranking, difficulty Ranking of failures (as measure
of failure severity)

Interval Comparing the differences between
values is meaningful

Calendar time, temperature
(Fahrenheit, Reaumur, Celsius)

Beginning and end date of
activities (as measures of time
distance)

Ratio There is a meaningful “zero” value,
and ratios between values are
meaningful

Length, weight, time intervals,
absolute temperature (Kelvin)

Lines of code (as measure of
attribute “Program length/size”)

Absolute There are no meaningful
transformations of values other than
identity

Object count Count (as measure of attribute
“Number of lines of code”)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement Scale Types – cont’d

Scale
Type

Admissible
Transformation

Indicators of Central
Tendency

Nominal Bijection (one-to-one mapping) Mode

Ordinal Monotonically increasing
transformation

Mode + Median

Interval Positive linear transformation
M’= a M + b (a>0)

Mode + Median + Arithmetic
Mean

Ratio Proportionality
M’= a M (a>0)

Mode + Median + Arithmetic
Mean + Geometric Mean

Absolute Identity
M’ ≡ M

Mode + Median + Arithmetic
Mean + Geometric Mean

The classification of scales has
an important impact on their
practical use, in particular on the
statistical techniques and indices
that can be used.

Example: Indicator of central
tendency of a distribution of
values (“Location”).

Mode = most frequent value of
distribution

Median = the value such that not more
than 50% of the values of
the distribution are less
than the median and not
more than 50% of the
values of the distribution
are greater than the
median

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Scale types and meaningful measurement

• Scales are defined through their admissible transformations
• Scales (and their admissible transformations) help us decide

– whether a statement involving measures is meaningful
– what type of statistical analyses we can apply

• Definition of Meaningfulness:
A statement S with measurement values (i.e., measures m1,

…, mn) is meaningful iff its truth of falsity value is invariant
under admissible transformations Tr.

iff: “if and only if”
Tr(S[m1, …, mn]) is true iff S[Tr(m1), …, Tr(mn)] is true

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Software Measurement Challenge

• Measuring physical properties:
entity attribute unit scale (type) value
Human Height cm ratio 178

• Measuring non-physical properties:
entity attribute unit scale (type) value
Human Intelligence/IQ index ordinal 135
Program Modifiability ? ? ?

• Software properties are usually non-physical:
– size, complexity, functionality, reliability, maturity,

portability, flexibility, maintainability, correctness, testability,
coupling, coherence, interoperability, …

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Base vs. Derived Measures

• A measure is base if it directly characterizes an empirical
property and does not require the prior measurement of some
property

• Derived measure: uses one or more base measures of one or
more attributes to measure, indirectly, another supposedly
related attribute.

– Requires first the measurement of two or more attributes
– Then it combines them using a mathematical model of

some kind, according to the laws imposed by the empirical
model.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Base Measure: measurement method, scale
(or: range), scale type, unit

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Derived Measures

• Examples:
– Productivity
– Defect density

• Scale of an indirect measure M will generally be the
weakest of the scale types of the direct measures M1, …,
Mn

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

What to Measure?

Process

Quality
(incl. functionality)

TimeEffort
(Cost)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

ISO 12207 development life cycle

• A development life cycle defines the sequence of
processes and activities that will produce the software
deliverable and the intermediate products that will pass
between the processes/activities.

elicit
require-
ments

requirements

design
software

s/w
architecture

code/test

tested code

processes

intermediate
products

deliverable

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurable entities in a process model
• An entity can represent any of the

following:
– Process/Activity: any activity (or

set of activities) related to
software development and/or
maintenance (e.g., requirements
analysis, design, testing) – these
can be defined at different levels
of granularity

– Product/Artifact: any artifact
produced or changed during
software development and/or
maintenance (e.g., source code,
software design documents)

– Resources: people, time, money,
hardware or software needed to
perform the processes

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Attribute
• An attribute is a feature or property of an entity

– e.g., blood pressure of a person, cost of a journey, duration of the
software specification process

• There are two general types of attributes:
– Internal attributes can be measured based on the

entity itself (static)
• e.g., entity: code, internal attribute: size, modularity,

coupling
– External attributes can be measured only with

respect to how the entity relates to its environment
(behavior, usage dynamic)

• e.g., entity: code, external attribute: reliability,
maintainability

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Examples of Software Product Attributes

• Size
– Length, Complexity,

Functionality
• Modularity
• Cohesion
• Coupling
• Quality
• Cost

• Quality (ISO 9126)
– Functionality
– Reliability
– Usability
– Efficiency
– Maintainability
– Portability

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Examples of Software Process and Resource
Attributes

• Process Efficiency:
– How fast, how much effort, how much quantity/quality per time or

effort unit?
• Process Effectiveness:

– Do we get the quantity/quality we want?
• Process Maturity:

– CMMI level
• People/Organisation-related:

– Skills, knowledge, learning, motivation
• Method/Technique/Tool-related:

– Effectiveness, Efficiency, Learnability, Cost

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Cost (Effort) Measurement

• Effort consumption in the project
– Includes overtime, excludes non-project related activities like department

meetings etc.
– How to distinguish productive time from unproductive time?
– How to distinguish defect correction, change management and “pure

development"?
– Allocation of effort over phases / increments / activities?

• Necessary training costs
– Close competence gap to be able to do the project

• Tool costs
– Pure purchase and possible license costs
– (Tool) Training costs
– Learning curve costs?

• NB: To be able to investigate cost-effectiveness, cost/effort data must be related to
amount of produced output/value (productivity)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Time Measurement

• Time-to-market is often considered as very important
– How do you define "time-to-market"?
– How do you monitor this parameter?

• Time (and its measurement) must be precisely defined!
– Number of work hours or days, number of calendar days, weeks,

months … ???
– Requires that projects/increments/processes/phases/activities

have clearly defined start and end times

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Objective vs. Subjective Measurement

• Objective Measurement
– Usually the measurement

process can be automated
– (Almost) no random

measurement error, i.e., the
process is perfectly reliable

• Subjective Measurement
– Human involvement in the

measurement process
– If we repeat the

measurement of the same
object(s) several times, we
might not get exactly the
same measured value every
time, i.e., the measurement
process is not perfectly
reliable

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Objective vs. Subjective Measurement (cont’d)

Examples:Examples:
• Subjective Measurement

– Classification of defects into severity classes
– Function Points (when counted manually)
– Software Process Assessments

• Objective Measurement
– Lines of Code
– Cyclomatic Complexity
– Memory Size
– Test Coverage

To which category
belong …
- Effort ?
- Time ?
- Defect Count ?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Remarks on Subjective Measures

• Well developed subjective measures have proven to be useful
– e.g., to select suppliers, to identify skill gaps, to assign priorities

(e.g., for requirements, defects, etc.)
• It is possible to have objective and subjective measures for the

same attribute
– e.g., measures of code size: LOC and Function Points

• Rule of Thumb:
– If an objective measure is available, then it is preferable

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Basic Concepts in Subjective Measurement
• Construct: A conceptual object that cannot be

directly observed and therefore cannot be directly
measured (i.e., we estimate the quantity we are
interested in rather than directly measure it); for
example:

– User Satisfaction
– Competence of a Software Engineer
– Efficiency of a Process
– Maturity of an Organization

• Item: A subjective measurement scale that is used
to measure a construct

– A question on a questionnaire is an item

Construct

Item1

Itemn

.

.

.

Measurement
Instrument

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Dimensionality of Constructs

• Constructs can be one-dimensional or multi-dimensional
• If a construct is multidimensional, then each dimension covers a

different and distinct aspect of the construct
– e.g., the different dimensions of customer satisfaction

Construct

Item1

Itemn

.

.

.

One-Dimensional

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Procedures for Subjective Measurement

• Subjective Measures usually entail a well-defined
Measurement Procedure that precisely describes:

– How to collect the data (usually via
questionnaires on paper or online)

– How to conduct interviews
– How to review documents (software artifacts)
– In which order to assess the

dimensions/items of the instrument, etc.

• Examples: ISO9000 Audit, CMMI/SPICE
Assessment, Function Points

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Commonly Used Subjective Measurement
Scales

• Likert-Type Scale
– Evaluation-Type
– Frequency-Type
– Agreement-Type

• Semantic Differential
Scale

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Likert Type Scales

• Evaluation-type
Example:

– “Familiarity with and
comprehension of the
software development
environment”

Little
Unsatisfactory
Satisfactory
Excellent

• Frequency-type
Example:

– “Customers provide
information to the
project team about the
requirements”

Never
Rarely
Occasionally
Most of the time

• Agreement-type
Example:

– “The tasks supported by
the software at the
customer site change
frequently”

Strongly Agree
Agree
Disagree
Strongly Disagree

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Semantic Differential Scale

• Items which include semantic opposites
• Example:

– Processing of requests for changes to existing systems: the
manner, method, and required time with which the MIS staff
responds to user requests for changes in existing computer-based
information systems or services.

Slow □ □ □ □ □ □ □ Fast

Timely □ □ □ □ □ □ □ Untimely

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Assigning numbers to scale responses

• Likert-Type Scales:

Strongly Agree 1
Agree 2
Disagree 3
Strongly Disagree 4

• Ordinal Scale
• But:

– Often the distances between the
four response categories are
approximately (conceptually)
equidistant and thus are treated
like approximate interval scales.

• Semantic Differential Scale:

Slow □ □ □ □ □ □ □ Fast
1 2 3 4 5 6 7

• Ordinal scale, but again, often treated
as interval scales

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

• Hour 1:
– Introduction & Motivation
– SW Measurement: Why – What – How?

• Hour 2:
– GQM Process
– Example Measurement Program

• Hour 3:
– Question/answer session about project
– Exercise

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

How to define a Measurement Program?

• GQM = Goal / Question / Metric (Measure)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Introduce
incremental
development

process

Introduce daily
builds

Hire/Train a
support person

Introduce design-
reviews

Hire a
super seller

Hierarchy of Goals

Earn more money
or more precisely:

Increase profit on shares
Board of Directors
(Shareholders)

Increase the market share
for product X

from 10% to 25%

Increase
customer satisfaction
from score 3.5 to 4

Company
Management (CEO)

Operative Units
Strengthen

Sales organization

Go from
1 to 4 releases

per year
Improve support

Reduce number
of failures in
the product

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Business Focus on Quality

Typical Quality-related Goals
• Reduce number of failures in field

(i.e., at customer’s site)
– by reducing number of faults in

product
– by abolishing error triggers

has product, process, and
people aspects

• Characterise quality
this is often the starting point
(see process-related example
on next slide)

Typical changes in focus of interest:
• Introduce/alter verification techniques (e.g.,

inspections) or validation techniques (e.g.,
new test techniques)

– to detect more defects (earlier)
• Establish/reorganize quality management

– to improve defect data collection,
storage, analysis, and maintenance

• Introduce better design techniques
– to reduce possibilities of committing

errors
– to improve readability/testability of

artefacts
• Intensify training

– to reduce the probability of committing
errors

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Business Focus on Cost… and Time

Typical Cost-related Goals
• Identify cost divers
• Decrease effort

– by increasing productivity
Typical changes in focus of interest
• New methods (e.g., perspective based

reading)
• Design for reuse
• Introduce component-based development

(COTS)
• Outsourcing

Typical Time-related Goals
• Reduce Time to Market

– by increasing efficiency

Typical changes in focus of interest
• Product-line development
• Parallel development (concurrent

engineering)
• Evaluation of new methods, tools

or techniques

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Business Focus on Time – Example
How long does it take until defects are removed?
(Real World Example)

0

10

20

30

40

50

60

70

80

90

100

same day]1,3]]3,5]]5,10]]10,15]]15,20]]20,40] >40
workdays

nu
m

be
r o

f f
au

lts

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

P4
P3

P2
P1
sum P3
sum P2
sum P1

P = Priority

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Principles

1. Goal-Driven: Define measurement goals (systematically).
2. Documented: Document measurement goals and their refinement

explicitly.
3. People-Oriented: Actively involve all participants during the entire

measurement program.
4. Context-Sensitive: Consider context/environment when defining

measurement goals.
5. Top-Down: Refine goals top-down into measures via questions.
6. Bottom-Up: Analyze and interpret the collected data bottom-up in the

context of the goal.
7. Sustained: Measurement is part of a systematic and continuous software

quality improvement process.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Core Elements

GQM has three elements:
• Goals
• Questions (and associated Models)
• Measures

Goal

Q1 Q2 Q3 Q4

M1 M2 M3 ...

D
ef

in
iti

on

Interpretation

Implicit
models

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Core Elements: Goals

• GQM goal (or: Measurement
Goals) are derived from
business or improvement
goals

• A GQM goal defines
– which object is measured,
– for which purpose,
– with respect to which

quality focus (aspect),
– from which viewpoint,
– and in which context

(environment).

Dimension Description Examples
Object What is analyzed ? Process,

Product,
Resource

Purpose Why is the object
analyzed?

Characterization,
Monitoring,
Improvement, ...

Quality
Focus

Which characteristic of the
object is analyzed?

Reliability,
Flexibility,
Maintainability, ...

Viewpoint From which viewpoint is
the quality focus
analyzed?

Developer,
Manager,Tester,
Project Leader,

Context In which context does the
analysis take place?

Organization,
Project,
Application, ...

GQM Goal Template

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Goal – Object

• Products:
– artifacts (documents) produced during system life cycle

phases (e.g., specification, design, programs, test suites)
• Processes:

– software related activities (e.g., specifying, designing,
coding, testing, inspecting)

• Resources:
– “items” used by processes in order to produce their outputs

(e.g., people, hardware, software, office space)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Goal – Purpose
• Characterization:

– aims at forming a snapshot of the current state/performance of
the software development processes and products

• Monitoring:
– aims at following the trends/evolution of the performance/state of processes and

products
• Evaluation:

– aims at comparing and assessing the quality of products and the
efficiency/effectiveness of processes

• Prediction:
– aims at identifying relationships between various process and product factors and

using these relationships to predict relevant external attributes of products and
processes

• Control and Change:
– aim at identifying causal relationships that influence the state/performance of

processes and products
• Control consists in influencing the course of a project in order to alleviate risks.
• Change implies modifying the process from project to project in order to improve

quality or productivity.
• Change requires a finer grained understanding of the phenomena under study

than control.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Goal – Quality Focus

• Cost
• Time-to-Market
• Efficiency
• Effectiveness
• Correctness
• Reliability
• Reusability
• Usability
• Maintainability
• …

Quality focus might be aligned to
to standards (e.g. ISO 9126)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Goal – Viewpoint

• Software Users
– interested in the quality and value of the software

products
• Senior Managers

– interested in overall understanding, control and
improvement across projects in the business unit

• Project Managers
– interested in understanding, control and

improvement of the specific software projects
they manage

• Software Engineers
– interested in understanding, control and

improvement of the specific software project
activities and quality of work products in which
they are involved

• Software Process Engineers / Quality Assurance
Team

– interested in a cross section of what the four
previous audiences are interested in

Defines the stakeholder(s)
interested in the
measurement results.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Goal – Context

• Organization
– Company, Business Unit, Department,

Project, etc.
• Type of Product

– Business Application, MIS, Embedded
System, etc.

• Product Domain
– Telecommunication, Transportation Systems,

Commerce (banks, insurance companies),
medical health care systems, etc.

• Other
– Development history
– Organizational maturity
– Platforms / Technologies used, etc. …

Defines the
environment in
which the
measurement
project takes place.

Is important for
– assessing

generalisability
(external validity)

– future re-use of
plans,
measurements,
and models

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Goal – Example

Analyze test process
for the purpose of characterization
with respect to (quality aspect) effectiveness
from the viewpoint of the test team
in the environment of project X, organization Y.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Question – Examples

• Goal: Analyze the test process for the
purpose of characterization with respect to
(quality aspect) effectiveness from the
viewpoint of the test team in the
environment of project X, organization Y.

• Question 1: How many failures are detected
during testing?

• Question 2: When are failures detected
(time)?

• Question 3: What types of failures are
detected?

• Question 4: How much testing effort is
spent?

• Question 5: Which test techniques/tools are
applied?

• Etc.

Dimension Description Examples
Object What is analyzed ? Process,

Product,
Resource

Purpose Why is the object
analyzed?

Characterization,
Monitoring,
Improvement, ...

Quality
Focus

Which characteristic of the
object is analyzed?

Reliability,
Flexibility,
Maintainability, ...

Viewpoint From which viewpoint is the
quality focus analyzed?

Developer,
Manager,Tester,
Project Leader,

Context In which context does the
analysis take place?

Organization,
Project,
Application, ...

Test

Effectiveness,

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Questions & Models

• Questions:
– Specify verbally the

information required to
achieve the goal

• Models:
– Specify formally (and make

operational) the information
required to achieve the goal

– Type of model depends on
goal purpose

– Models are sometimes called
Indicators

Dimension Description Examples
Object What is analyzed ? Process,

Product,
Resource

Purpose Why is the object
analyzed?

Characterization,
Monitoring,
Improvement, ...

Quality
Focus

Which characteristic of the
object is analyzed?

Reliability,
Flexibility,
Maintainability, ...

Viewpoint From which viewpoint is
the quality focus
analyzed?

Developer,
Manager,Tester,
Project Leader,

Context In which context does the
analysis take place?

Organization,
Project,
A li ti

Effectiveness,

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM: Model Type ↔ Purpose

• Characterization
• Monitoring
• Evaluation
• Prediction
• Control and

Change

Dimension
Object

Purpose

Quality
Focus

Viewpoint

Context

Goal Purpose Model Type Formula
• Descriptive

• Evaluation

• Predictive

),,(1 nxxf K=δ

),,(1 nxxg K=ε

},,{ 1 mεεε K∈

),,(ˆ 1 nxxh K=υ

),,(')(ˆ 1 nxxhp K=υ

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Question Categories

• Question 1: How
many failures are
detected during
testing?

• Question 2: When
are failures detected
(time)?

• Question 3: How are
failures distributed
wrt. criticality?

• Goal: Analyze the test process for the
purpose of characterization with respect
to (quality aspect) effectiveness from the
viewpoint of the test team in the
environment of project X, organization Y.

• In order to help formulate appropriate
questions, the goal can be refined into two
aspects:

– Quality focus variables: Characterize quality
focus defined by the GQM goal

– Explanatory variables (or: variation factors):
specify parameters that may have an impact on
the quality focus: e.g., experience of testers,
used test techniques/tools

• Questions may be generated for each of the
two aspects

• Question 4: How
much testing effort
is spent?

• Question 5: Which
test
techniques/tools
are applied?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Measures – Example

• Q3: What is the distribution of
failures reported during test by
criticality?

Model refines to …
–M1.1: Failure count …
–M3.1: Criticality classification

• object: reported failure
• attribute: criticality
• scale/range: [critical,

uncritical, other]
• scale type: nominal
• unit: criticality class

• Q6: How experienced are the development
team members?

Model refines to …
–…
–M6.1: Experience classification

• object: development team member
• attribute: experience
• scale/range: [inexperienced, low (< 5

modules developed), medium (5-10
modules developed), high experience
(> 10 modules developed)]

• scale type: ordinal
• unit: experience class

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Developing the GQM Hierarchy

Example GQM Hierarchy (incomplete):
• Question 3: What is the distribution of failures by criticality?
• Model: D = F(x, y) = x[y]/x[all], x = Measure 1.1, y = Measure 3.1,

where D: distribution of # failures per criticality class
• Measure 1.1: Failure count (ST: absolute; U: n/a; S: positive integer;

O: product version 1.0)
– Hypothesis: 120 failures

• Measure 3.1: Failure criticality (ST: nominal; U: n/a; S: {critical =
complete breakdown of system, uncritical = unable to perform one or
more of the functions F1, ..., F6, other}, O: failure report)

– Hypothesis: 5% critical failures, 15% major failures, 80% minor
failures

Q3

Goal1

M3.1M1.1

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Plan

• The models and measures are
identified by answering ”What kind of
information do we need in order to
answer the questions?"

• The GQM-tree is documented in
tabular form

• Each measure is defined by:
– Name, ID
– Scale, unit, etc.
– Hypotheses

Goal Question
(Model)

Measure

G1 Q1 M1
M2
M3

Q2 M1
M4
M5

Model

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement Plan – Example

• Table for tracing Measurement Plan entries to GQM Plan, Project Plan and
Data Collection Forms

Goal-
ID

Metric-
ID

Metric-
Name

Data Creation
Event

Data Col.
Time

Data Col.
Resource

Data
Provider

Data
Collector

Form-
Id

… … … … … … … … …
Goal 1 M1.1 Failure

count
Failure Report
Summary

Test
COMPLETE

TOOL: Failure
Management System

Tester QA Manager Form X

Goal 1 M1.2 Failure
criticality

Failure Report Test report
COMPLETE

TOOL: Failure
Management System

Tester QA Manager Form X

… … … … … … … … …
Goal 1 M4.1 Dev. team

experience
Project team
assignment

Project
START

HUMAN: Interview or
Questionnaire

Team
member

Project
Manager

Form Y

Goal 1 M5.1 Document
count

CM system
report

Test
COMPLETE

TOOL: CM system Developer /
Tester

Project
Manager

Form Z

Goal 1 M5.2 Document
type

Document
complete

Test
COMPLETE

TOOL: CM system Developer /
Tester

Project
Manager

Form Z

GQM Plan Project Plan Data Collection Forms

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Data
Collection –
Example
Questionnaire

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

The GQM Process

GQM

Planning

Identifiy GQM Goal(s)
Develop GQM-Plan

Develop
Measurement Plan

Prestudy

Execution

Collect, validate, analyse
and interpret data

Analysis

Package results for
reuse

Analyse and interpret
data post-mortem

Phases

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

• Hour 1:
– Introduction & Motivation
– SW Measurement: Why – What – How?

• Hour 2:
– GQM Process
– Example Measurement Program

• Hour 3:
– Question/answer session about project
– Exercise

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Software Metrics Initiative at Motorola [Das92]

Why?
• Engineers and managers wanted to better understand the software

development process and be able to determine necessary changes to
improve productivity, quality, and cycle time.

How?
• Definition of software processes
• Focusing on continuous process and product improvement
• Setting quantitative goals
• Controlling the achievement of goals

Measurement became an integral part of the software development process

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Improvement Goals

• Goal 1: Improve project planning
• Goal 2: Increase defect containment

ability to detect and correct defects as soon as they are
injected

• Goal 3: Increase software reliability
• Goal 4: Decrease software defect density
• Goal 5: Improve customer service
• Goal 6: Reduce cost of non-conformance
• Goal 7: Increase software productivity

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Goal 1: Improve Project Planning

• Question 1.1: How accurate are the estimates of the actual project schedule
(duration)?

– Metric 1.1: Schedule Estimation Accuracy (actual project duration/estimated
project duration)

• Question 1.2: How accurate are the estimates of the actual project effort?
– Metric 1.2: Effort Estimation Accuracy (actual project effort/estimated project

effort)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Goal 5: Improve Customer Service

• Question 5.1: What is the number of new problems that were opened during the
month?

– Metric 5.1: New Open Problems (NOP = number of new post-release problems
that remain open at the end of the month)

• Question 5.2: What is the total number of open problems at the end of the month?
– Metric 5.2: Total Open Problems (TOP = total number of post-release problems

that remain open at the end of the month)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Goal 5: Improve Customer Service (cont’d)

• Question 5.3: What is the mean age of open problems at the end of the month?
• Metric 5.3: (Mean) Age of Open Problems (AOP = total time post-release problems

remaining open at end of month have been open / TOP)
• Question 5.4: What is the mean age of problems that were closed during the month?
• Metric 5.4: (Mean) Age of Closed Problems (ACP = total time post-release problems

closed within the month were open / number of post-release problems closed within
the month)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Use of Metrics for In-Process Project Control

• The charts shown on the previous slides are examples of the so-
called “10-up software metrics charts”. These can be used for in-
process control.

• More detailed data for in-process control includes:
– Tracking of Life-Cycle Phase / Schedule Progress
– Cost/Earned Value Tracking
– Tracking of Impact of Requirements Changes on the project
– Tracking of Design Progress
– Fault-Type Tracking
– Remaining Defects Estimates (e.g., using an assumed Rayleigh

curve distribution for fault detection rate)
– Effectiveness of Reviews (Design, Code)
– Tracking the fixing of defects per priority/severity class, …

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Fault Type Tracking
Purpose:
• Understanding (and communicating) the nature of code faults (and

possibly their root causes) in order to prevent programmers from
injecting similar faults in the future

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Cost/Earned Value Tracking of the Project

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Lessons Learnt

• Necessary prerequisites: infrastructure (cost accounting, configuration
management, problem reporting), documented process

• Start with a small set of metrics addressing important improvement areas;
then evolve over time

• Initial charts were used for in-process control and feedback (immediate
impact of measurement)

• Data analysis should be done by engineers and managers, not by external
experts (= facilitators of the measurement program)

• The code review package deployed by the Metrics Working Group was
heavily used (67% of software engineers and managers)

• Metrics can only show problems and trigger corrective action; only if action is
implemented benefits can be achieved
Measurement is not the goal. The goal is improvement through
measurement, analysis and feedback.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Cost of Measurement at Motorola

• Cost for meetings:
– Metrics Working Group meetings ~ 8 participants

(twice a quarter)
– Metric User Group meetings (feedback

sessions) ~ 15 participants (quarterly)
• Additional cost for data collection (incl. providing

necessary tools), analysis and meeting preparation
(~1% of total project resources)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Data Collection in Agile Projects?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

• Hour 1:
– Introduction & Motivation
– SW Measurement: Why – What – How?

• Hour 2:
– GQM Process
– Example Measurement Program

• Hour 3:
– Question/answer session about project
– Exercise

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

• Hour 1:
– Introduction & Motivation
– SW Measurement: Why – What – How?

• Hour 2:
– GQM Process
– Example Measurement Program

• Hour 3:
– Question/answer session about project
– Exercise

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Next Lecture

• Topic:
– Problem Solving and Improvement - by Individuals and in

Groups

• For you to do:
– Complete project report (draft)
– Submit not later than 13:30 by e-mail to dietmarp@ifi.uio.no
– Only PDF format will be accepted
– Submission is mandatory!

