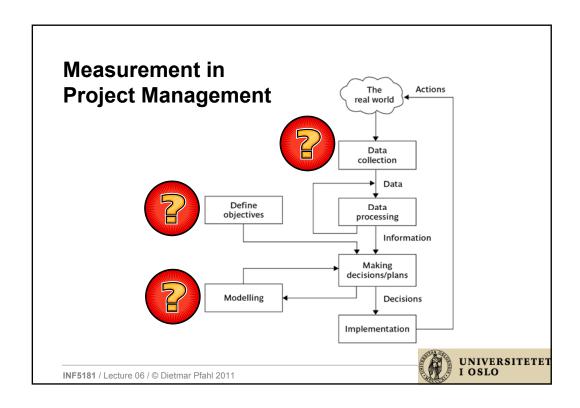
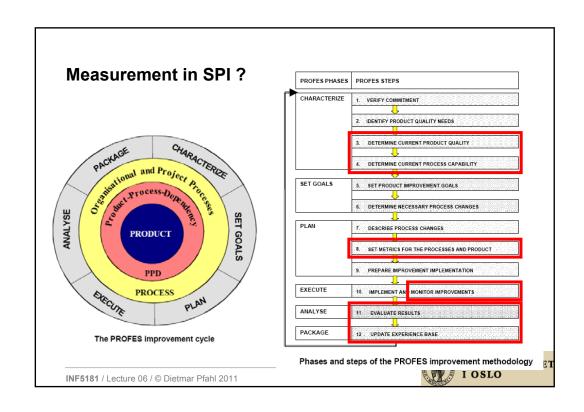
INF5181: Process Improvement and Agile Methods in Systems Development

Lecture 06: SPI & Measurement

Dr. Dietmar Pfahl


email: dietmarp@ifi.uio.no


Fall 2011

Structure of Lecture 06

- Hour 1:
 - Introduction & Motivation
 - SW Measurement: Why What How?
- Hour 2:
 - GQM Process
 - Example Measurement Program
- Hour 3:
 - Question/answer session about project
 - Exercise

Measurement - What & How?

- What to measure?
 - Product
 - Quality
 - Cost
 - Process
 - Capability / Maturity
 - Time
 - Effort
 - Resources
 - Quality
 - Cost

- · How to measure?
 - Standards/Frameworks
 - Product quality → ISO 9126
 - Process capability / maturity → ISO 15504 (SPICE) / CMMI
 - GQM (Goal / Question / Metric)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Definition of "(Software) Quality"

Entity

• ISO 8402-1986:

The totality of features and characteristics of a product or service that bear on its ability to satisfy stated or implied needs

• ISO 9126-1991:

The totality of features and characteristics of a software product that bear on its ability to satisfy stated or implied needs

• ISO 9000-2005:

Degree to which a set of inherent characteristics fulfills requirements

ISO 9126 software quality characteristics

functionality	does it satisfy user needs?
reliability	can the software maintain its level of performance?
usability	how easy is it to use?
efficiency	relates to the physical resources used during execution
maintainability	relates to the effort needed to make changes to the software
portability	how easy can it be moved to a new environment?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Functionality

- Suitability
- Accuracy
- Interoperability
 - Ability of software to interact with other software components
- Functionality compliance
 - Degree to which software adheres to application-related standards or legal requirements e.g audit
- Security
 - Control of access to the system

Sub-characteristics of Reliability

- Maturity
 - Frequency of failure due to faults the more the software has been used, the more faults will have been removed
- · Fault-tolerance
- Recoverability
 - Note that this is distinguished from 'security' see above
- · Reliability compliance
 - Complies with standards relating to reliability

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Sub-characteristics of Usability

- Understandability
 - Easy to understand?
- Learnability
 - Easy to learn?
- Operability
 - Easy to use?
- Attractiveness this is a recent addition
- · Usability compliance
 - Compliance with relevant standards

Sub-characteristics of Efficiency

- · Time behaviour
 - E.g. response time
- Resource utilization
 - E.g. memory usage
- · Efficiency compliance
 - Compliance with relevant standards

UNIVERSITETET

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

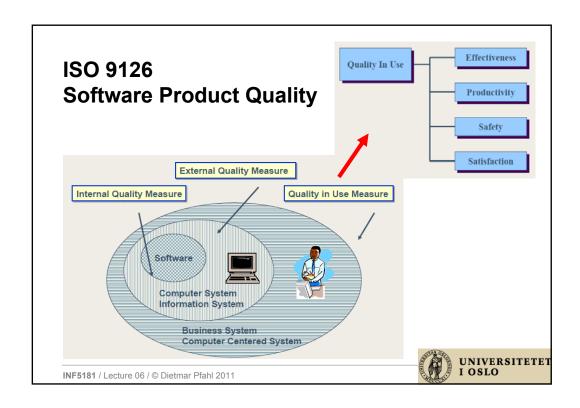
Sub-characteristics of Maintainability

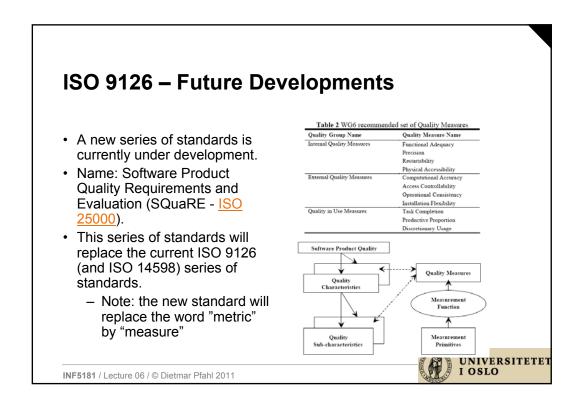
- · Analysability
 - E. g., ease with which the cause of a failure can be found
- Changeability
 - How easy is software to change?
- Stability
 - Low risk of modification having unexpected effects
- Testability
 - How easy to test?
- Compliance (to standards affecting maintainability)

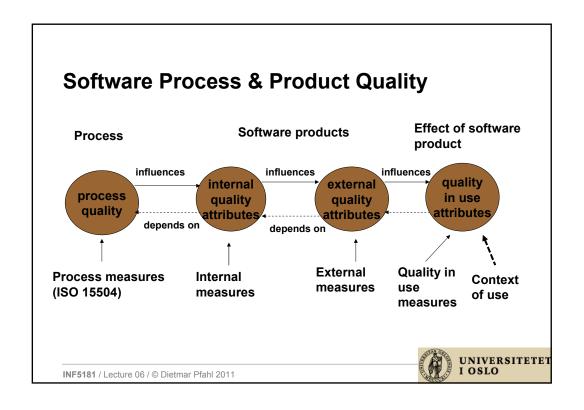
Sub-characteristics of Portability

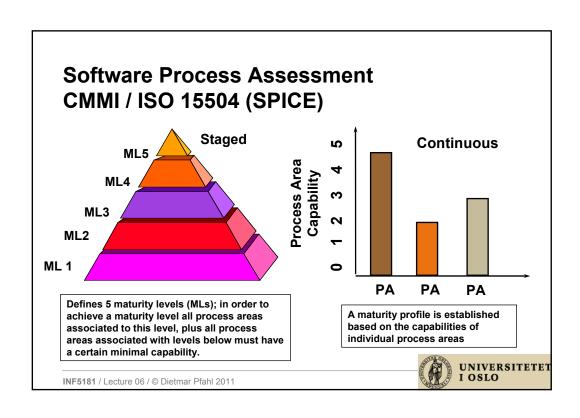
- Adaptability
- · Installability
- Co-existence
 - Capability of co-existing with other independent software products
- · Replaceability
 - Factors giving 'upwards' compatibility 'downwards' compatibility is excluded
- · Portability conformance
 - Adherence to standards that support portability

UNIVERSITETET I OSLO


INF5181 / Lecture 06 / © Dietmar Pfahl 2011


Quality Model: ISO 9126


1 : n relation between Characteristics and Attributes (Sub-Characteristics)


Characteristics		Attributes		
Functionality	Suitability	Interoperability	Accuracy	
	Security	Compliance		
Reliability	Maturity	Recoverability	Fault Tolerance	
	Compliance			
Usability	Understandability	Learnability	Operability	
	Attractiveness	Compliance		
Efficiency	Time Behaviour	Resource Behaviour	Compliance	
Maintainability	Analyzability	Stability	Changeability	
	Testability	Compliance		
Portability	Adaptability	Installability	Co-existence	
	Replaceability	Compliance		

CMMI Levels and **Process Areas** (staged)

* Integrated Product/Process Development (IPPD) – add-on to the Engineering processes
** Acquisition – add-on to

the Engineering processes

Level	Process Areas
5 Optimizing	Causal Analysis and Resolution Organizational Innovation and Deployment
4 Quantitatively Managed	Quantitative Project Management Organizational Process Performance
3 Defined	Requirements Development Technical Solution Product Integration Verification Validation Organizational Process Focus Organizational Process Definition Organizational Training Risk Management Integrated Project Management (for IPPD*) Integrated Teaming* Integrated Supplier Management** Decision Analysis and Resolution Organizational Environment for Integration*
2 Managed	Requirements Management Project Planning Project Monitoring and Control Supplier Agreement Management Measurement and Analysis Process and Product Quality Assurance Configuration Management
1 Performed	(AFT)
	UNIVERSITETE I OSLO

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

CMM Assessment Results (continuous) Total CMMI Complience: 63 % Tailoring: Use of Not Applicable: 8 % CMMI Level 2 complience: 77 % CMMI Level 3 complience: CMMI Level 2/3 80 % ■ Negative 60 % □Partly ■ Not Applicable 40 % ■ Positive 20 % PMC SAM MA PPQA CM UNIVERSITETET I OSLO INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

- Hour 1:
 - Introduction & Motivation
 - SW Measurement: Why What How?
- Hour 2:
 - GQM Process
 - Example Measurement Program
- Hour 3:
 - Question/answer session about project
 - Exercise

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

SW Measurement: Who benefits?

- Managers
 - What does each process cost?
 - How productive is development?
 - How good is the product (code, design)?
 - Will the user be satisfied with the product?
 - How can we improve?
- Engineers
 - Are the requirements testable?
 - Have we found all (severe) defects?
 - Have we met <u>our</u> product or process goals?
 - What can we predict about our software product in the future?

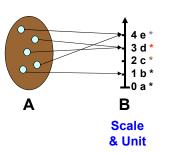
Measurement and Measure

Measurement:

 Measurement is the process through which values are assigned to attributes of entities of the real world.

Measure:

 A measure is the result of the measurement process, so it is the assignment of a value to an entity with the goal of characterizing a specified attribute.

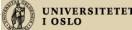

Source: Sandro Morasca, "Software Measurement", in "Handbook of Software Engineering and Knowledge Engineering - Volume 1: Fundamentals" (refereed book), pp. 239 - 276, Knowledge Systems Institute, Skokie, IL, USA, 2001, ISBN: 981-02- 4973-X.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measure (Metric)

Measure:

Size


- Let A be a set of empirical (physical) objects
- Let B be a set of formal objects, such as numbers (or symbols)
- A measure m is a mapping from A to B,
 i.e., m: A → B

Note:

- this is neither (exactly) the definition of the mathematical measure, i.e., μ: σ(A) → [0, ∞), with σ(A) is the σ-algebra of A
- nor of the mathematical metric, i.e., d: $A \times A \to B$ with $d(x, y) \ge 0$, d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), and $d(x, z) \le d(x, y) + d(y, z)$.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

LOC

Measurement: Characterization

- Relevant objects (entities) may be described, identified, categorized, ordered, and compared in terms of their key properties (attributes)
- · Measurement is a means of assessing these properties:
 - with known reliability
 - with known systematic bias (→ validity), if any
 - efficiently
 - in a manner that is useful for decision-making

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Measurement Scale Types

Scale Type	Characterization	Example (generic)	Example (SE)
Nominal	Divides the set of objects into categories, with no particular ordering among them	Labeling, classification	Name of programming language, name of defect type
Ordinal	Divides the set of entities into categories that are ordered	Preference, ranking, difficulty	Ranking of failures (as measure of failure severity)
Interval	Comparing the differences between values is meaningful	Calendar time, temperature (Fahrenheit, Reaumur, Celsius)	Beginning and end date of activities (as measures of time distance)
Ratio	There is a meaningful "zero" value, and ratios between values are meaningful	Length, weight, time intervals, absolute temperature (Kelvin)	Lines of code (as measure of attribute "Program length/size")
Absolute	There are no meaningful transformations of values other than identity	Object count	Count (as measure of attribute "Number of lines of code")

Measurement Scale Types - cont'd

Scale Type	Admissible Transformation	Indicators of Central Tendency
Nominal	Bijection (one-to-one mapping)	Mode
Ordinal	Monotonically increasing transformation	Mode + Median
Interval	Positive linear transformation M'= a M + b (a>0)	Mode + Median + Arithmetic Mean
Ratio	Proportionality M'= a M (a>0)	Mode + Median + Arithmetic Mean + Geometric Mean
Absolute	Identity M' = M	Mode + Median + Arithmetic Mean + Geometric Mean

The classification of scales has an important impact on their practical use, in particular on the statistical techniques and indices that can be used.

Example: Indicator of central tendency of a distribution of values ("Location").

Mode = most frequent value of distribution

Median = the value such that not more than 50% of the values of the distribution are less than the median and not more than 50% of the values of the distribution are greater than the median

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Scale types and meaningful measurement

- Scales are defined through their admissible transformations
- · Scales (and their admissible transformations) help us decide
 - whether a statement involving measures is meaningful
 - what type of statistical analyses we can apply
- Definition of Meaningfulness:

A statement S with measurement values (i.e., measures m_1 , ..., m_n) is meaningful iff its truth of falsity value is invariant under admissible transformations Tr.

iff: "if and only if"

 $Tr(S[m_1, ..., m_n])$ is true iff $S[Tr(m_1), ..., Tr(m_n)]$ is true

UNIVERSITETET I OSLO

Software Measurement Challenge

Measuring physical properties:

entityattributeunitscale (type)valueHumanHeightcmratio178

Measuring non-physical properties:

entityattributeunitscale (type)valueHumanIntelligence/IQindexordinal135Program Modifiability???

- Software properties are usually non-physical:
 - size, complexity, functionality, reliability, maturity, portability, flexibility, maintainability, correctness, testability, coupling, coherence, interoperability, ...

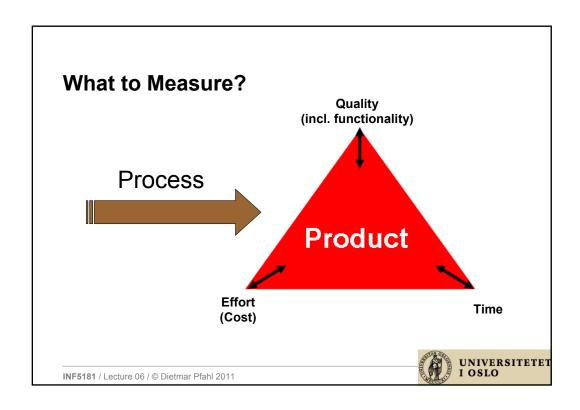
INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Base vs. Derived Measures

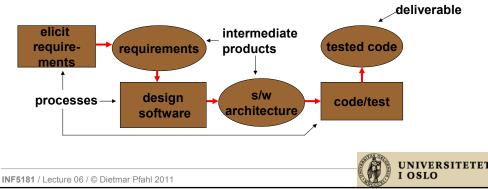
- A measure is base if it directly characterizes an empirical property and does not require the prior measurement of some property
- Derived measure: uses one or more base measures of one or more attributes to measure, indirectly, another supposedly related attribute.
 - Requires first the measurement of two or more attributes
 - Then it combines them using a mathematical model of some kind, according to the laws imposed by the empirical model.

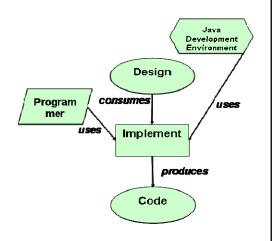
Base Measure: measurement method, scale (or: range), scale type, unit

Base Measures	1.	Droject V	Lines of	rode	
Dase Measures	١.	Floject	CINES OF	code	
	2.	Project X	(Hours of	effort	
Measurement Method		1.	Count se	micolons in	Project X code
		2.	Add time	card entries	s together for Project X
Type of Measurement Meth	od	·	1.	Objective	
			2.	Objective	
Scale			1.	Integers fr	om zero to infinity
			2.	Real numb	bers from zero to infinity
Type of Scale				1.	Ratio
				2.	Ratio
Unit of Measurement				1.	Line
				2.	Hour
INF5181 / Lecture 06 / © Dietmar Pfahl	2011			•	I OSLO


Derived Measures

- Examples:
 - Productivity
 - Defect density

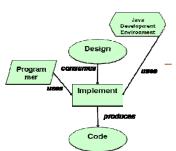

• Scale of an indirect measure M will generally be the weakest of the scale types of the direct measures $M_1, \, \ldots, \, M_n$


ISO 12207 development life cycleA development life cycle defines the sequence of

 A development life cycle defines the sequence of processes and activities that will produce the software deliverable and the intermediate products that will pass between the processes/activities.

Measurable entities in a process model

- An entity can represent any of the following:
 - Process/Activity: any activity (or set of activities) related to software development and/or maintenance (e.g., requirements analysis, design, testing) – these can be defined at different levels of granularity
 - Product/Artifact: any artifact produced or changed during software development and/or maintenance (e.g., source code, software design documents)
 - Resources: people, time, money, hardware or software needed to perform the processes



INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Attribute

- · An attribute is a feature or property of an entity
 - e.g., blood pressure of a person, cost of a journey, duration of the software specification process
- There are two general types of attributes:
 - Internal attributes can be measured based on the entity itself (→ static)
 - e.g., entity: code, internal attribute: size, modularity, coupling
 - External attributes can be measured only with respect to how the entity relates to its environment (behavior, usage → dynamic)
 - e.g., entity: code, external attribute: reliability, maintainability

UNIVERSITETET I OSLO

Examples of Software Product Attributes

- Size
 - Length, Complexity,
 Functionality
- Modularity
- Cohesion
- Coupling
- Quality
- Cost

- Quality (→ ISO 9126)
 - Functionality
 - Reliability
 - Usability
 - Efficiency
 - Maintainability
 - Portability

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Examples of Software Process and Resource Attributes

- · Process Efficiency:
 - How fast, how much effort, how much quantity/quality per time or effort unit?
- · Process Effectiveness:
 - Do we get the quantity/quality we want?
- · Process Maturity:
 - CMMI level
- People/Organisation-related:
 - Skills, knowledge, learning, motivation
- Method/Technique/Tool-related:
 - Effectiveness, Efficiency, Learnability, Cost

Cost (Effort) Measurement

- Effort consumption in the project
 - Includes overtime, excludes non-project related activities like department meetings etc.
 - How to distinguish productive time from unproductive time?
 - How to distinguish defect correction, change management and "pure development"?
 - Allocation of effort over phases / increments / activities?
- Necessary training costs
 - Close competence gap to be able to do the project
- · Tool costs
 - Pure purchase and possible license costs
 - (Tool) Training costs
 - Learning curve costs?
- NB: To be able to investigate cost-effectiveness, cost/effort data must be related to amount of produced output/value (→ productivity)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

TOSLO

UNIVERSITETET

Time Measurement

- Time-to-market is often considered as very important
 - How do you define "time-to-market"?
 - How do you monitor this parameter?
- · Time (and its measurement) must be precisely defined!
 - Number of work hours or days, number of calendar days, weeks, months ... ???
 - Requires that projects/increments/processes/phases/activities have clearly defined start and end times

Objective vs. Subjective Measurement

- Objective Measurement
 - Usually the measurement process can be automated
 - (Almost) no random measurement error, i.e., the process is perfectly reliable
- Subjective Measurement
 - Human involvement in the measurement process
 - If we repeat the measurement of the same object(s) several times, we might not get exactly the same measured value every time, i.e., the measurement process is not perfectly reliable

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

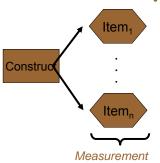
Objective vs. Subjective Measurement (cont'd)

Examples:

- Subjective Measurement
 - Classification of defects into severity classes
 - Function Points (when counted manually)
 - Software Process Assessments
- Objective Measurement
 - Lines of Code
 - Cyclomatic Complexity
 - Memory Size
 - Test Coverage

To which category belong ...

- Effort ?
- Time ?
- Defect Count?


Remarks on Subjective Measures

- Well developed subjective measures have proven to be useful
 - e.g., to select suppliers, to identify skill gaps, to assign priorities (e.g., for requirements, defects, etc.)
- It is possible to have objective and subjective measures for the same attribute
 - e.g., measures of code size: LOC and Function Points
- · Rule of Thumb:
 - If an objective measure is available, then it is preferable

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Basic Concepts in Subjective Measurement

- Construct: A conceptual object that cannot be directly observed and therefore cannot be directly measured (i.e., we estimate the quantity we are interested in rather than directly measure it); for example:
 - User Satisfaction
 - Competence of a Software Engineer
 - Efficiency of a Process
 - Maturity of an Organization
- Item: A subjective measurement scale that is used to measure a construct
 - A question on a questionnaire is an item



INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Instrument

Dimensionality of Constructs

- Constructs can be one-dimensional or multi-dimensional
- If a construct is multidimensional, then each dimension covers a different and distinct aspect of the construct
 - e.g., the different dimensions of customer satisfaction

Procedures for Subjective Measurement

 Subjective Measures usually entail a well-defined Measurement Procedure that precisely describes:

- How to collect the data (usually via questionnaires on paper or online)
- How to conduct interviews
- How to review documents (software artifacts)
- In which order to assess the dimensions/items of the instrument, etc.
- Examples: ISO9000 Audit, CMMI/SPICE Assessment, Function Points

Commonly Used Subjective Measurement Scales

- Likert-Type Scale
 - Evaluation-Type
 - Frequency-Type
 - Agreement-Type
- Semantic Differential Scale

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Likert Type Scales

Evaluation-type

Example:

- "Familiarity with and comprehension of the software development environment"
 - ☐ Little
 - Unsatisfactory
 - Satisfactory
 - □ Excellent

Frequency-type

Example:

- "Customers provide information to the project team about the requirements"
 - □ Never
 - □ Rarely
 - Occasionally
 - Most of the time

Agreement-type

Example:

- "The tasks supported by the software at the customer site change frequently"
 - ☐ Strongly Agree
 - □ Agree
 - □ Disagree
 - Strongly Disagree

Semantic Differential Scale

- · Items which include semantic opposites
- Example:
 - Processing of requests for changes to existing systems: the manner, method, and required time with which the MIS staff responds to user requests for changes in existing computer-based information systems or services.

Slow ---- Fast

Timely ---- Untimely

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Assigning numbers to scale responses

→ 1

- Likert-Type Scales:
 - ☐ Strongly Agree
 - □ Agree \rightarrow 2
 - □ Disagree \rightarrow 3 \rightarrow 4
 - Strongly Disagree
- Ordinal Scale
- But:
 - Often the distances between the four response categories are approximately (conceptually) equidistant and thus are treated like approximate interval scales.

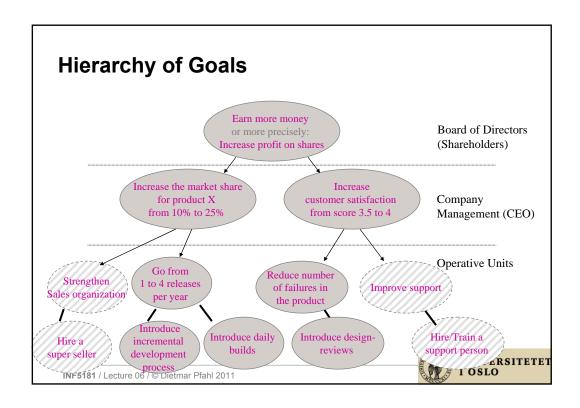
Semantic Differential Scale:

Slow Fast 1234567

Ordinal scale, but again, often treated as interval scales

Structure of Lecture 06

- Hour 1:
 - Introduction & Motivation
 - SW Measurement: Why What How?
- Hour 2:
 - GQM Process
 - Example Measurement Program
- Hour 3:
 - Question/answer session about project
 - Exercise


INF5181 / Lecture 06 / © Dietmar Pfahl 2011

How to define a Measurement Program?

• GQM = Goal / Question / Metric (Measure)

Business Focus on Quality

Typical Quality-related Goals

- Reduce number of failures in field (i.e., at customer's site)
 - by reducing number of faults in product
 - by abolishing error triggers
 - → has product, process, and people aspects
- · Characterise quality
 - → this is often the starting point (see process-related example on next slide)

Typical changes in focus of interest:

- Introduce/alter verification techniques (e.g., inspections) or validation techniques (e.g., new test techniques)
 - to detect more defects (earlier)
- · Establish/reorganize quality management
 - to improve defect data collection, storage, analysis, and maintenance
- Introduce better design techniques
 - to reduce possibilities of committing errors
 - to improve readability/testability of artefacts
- · Intensify training
 - to reduce the probability of committing errors

 UNIVERSITETED

I OSLO

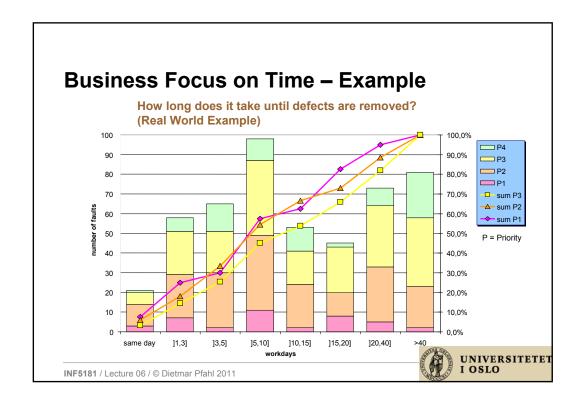
Business Focus on Cost... and Time

Typical Cost-related Goals

- · Identify cost divers
- · Decrease effort
 - by increasing productivity

Typical changes in focus of interest

- New methods (e.g., perspective based reading)
- · Design for reuse
- Introduce component-based development (COTS)
- Outsourcing


Typical Time-related Goals

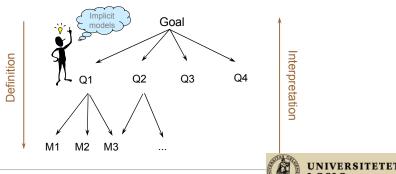
- · Reduce Time to Market
 - by increasing efficiency

Typical changes in focus of interest

- · Product-line development
- Parallel development (concurrent engineering)
- Evaluation of new methods, tools or techniques

GQM Principles

- 1. Goal-Driven: Define measurement goals (systematically).
- Documented: Document measurement goals and their refinement explicitly.
- 3. People-Oriented: Actively involve all participants during the entire measurement program.
- Context-Sensitive: Consider context/environment when defining measurement goals.
- **5. Top-Down:** Refine goals top-down into measures via questions.
- **6. Bottom-Up:** Analyze and interpret the collected data bottom-up in the context of the goal.
- **7. Sustained:** Measurement is part of a systematic and continuous software quality improvement process.


UNIVERSITETET

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Core Elements

GQM has three elements:

- Goals
- Questions (and associated Models)
- Measures

GQM Core Elements: Goals

- GQM goal (or: Measurement Goals) are derived from business or improvement goals
- · A GQM goal defines
 - which object is measured,
 - for which purpose,
 - with respect to which quality focus (aspect),
 - from which viewpoint,
 - and in which context (environment).

GQM Goal Template

Dimension	Description	Examples
Object	What is analyzed ?	Process,
		Product,
		Resource
Purpose	Why is the object	Characterization,
	analyzed?	Monitoring,
		Improvement,
Quality	Which characteristic of the	Reliability,
Focus	object is analyzed?	Flexibility,
		Maintainability,
Viewpoint	From which viewpoint is	Developer,
	the quality focus	Manager, Tester,
	analyzed?	Project Leader,
Context	In which context does the	Organization,
	analysis take place?	Project,
		Application,

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Goal – Object

- Products:
 - artifacts (documents) produced during system life cycle phases (e.g., specification, design, programs, test suites)
- · Processes:
 - software related activities (e.g., specifying, designing, coding, testing, inspecting)
- Resources:
 - "items" used by processes in order to produce their outputs (e.g., people, hardware, software, office space)

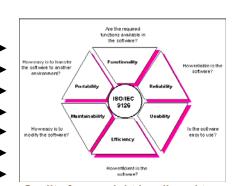
GQM Goal - Purpose

Dimension	Description	Examples
Object	What is analyzed ?	Process, Product, Resource
Purpose	Why is the object analyzed?	Characterization Monitoring,
Quality Focus	Which characteristic of the object is analyzed?	Relability. Flexibility. Maintainability.
Viewpoint	From which viewpoint is the quality focus analyzed?	Developer, Manager, Tester, Project Leader,
Context	in which context does the analysis take place?	Organization, Project, Application

- · Characterization:
 - aims at forming a snapshot of the current state/performance of the software development processes and products
- Monitoring:
 - aims at following the trends/evolution of the performance/state of processes and products
- · Evaluation:
 - aims at comparing and assessing the quality of products and the efficiency/effectiveness of processes
- Prediction:
 - aims at identifying relationships between various process and product factors and using these relationships to predict relevant external attributes of products and processes
- · Control and Change:
 - aim at identifying causal relationships that influence the state/performance of processes and products
 - · Control consists in influencing the course of a project in order to alleviate risks.
 - Change implies modifying the process from project to project in order to improve quality or productivity.
 - Change requires a finer grained understanding of the phenomena under study than control.

 UNIVERSITETET

INF5181 / Lecture 06 / © Dietmar Pfahl 2011


GQM Goal – Quality Focus

I OSLO

- Cost
- Time-to-Market
- Efficiency
- Effectiveness
- Correctness
- Reliability
- Reusability
- Usability
- Maintainability

•

Quality focus might be aligned to to standards (e.g. ISO 9126)

GQM Goal – Viewpoint

- - interested in the quality and value of the software products
- **Senior Managers**

Software Users

- interested in overall understanding, control and improvement across projects in the business unit
- **Project Managers**
 - interested in understanding, control and improvement of the specific software projects they manage
- **Software Engineers**
 - interested in understanding, control and improvement of the specific software project activities and quality of work products in which they are involved
- **Software Process Engineers / Quality Assurance** Team
 - interested in a cross section of what the four previous audiences are interested in

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Defines the stakeholder(s) interested in the measurement results.

GQM Goal – Context

Defines the environment in which the measurement project takes place.

Is important for

- assessing generalisability (external validity)
- future re-use of plans, measurements, and models

- **Organization**
 - Company, Business Unit, Department, Project, etc.
- Type of Product
 - Business Application, MIS, Embedded System, etc.
- Product Domain
 - Telecommunication, Transportation Systems, Commerce (banks, insurance companies), medical health care systems, etc.
- Other
 - Development history
 - Organizational maturity

- Platforms / Technologies used etc....
UNIVERSITETET I OSLO

GQM Goal – Example

Analyze
for the purpose of
with respect to (quality aspect)
from the viewpoint of the
in the environment of

test process characterization effectiveness test team project X, organization Y.

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Question – Examples

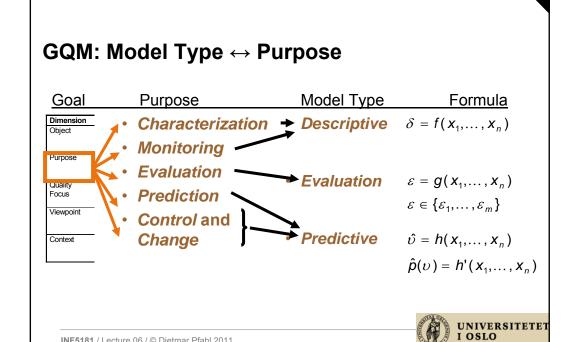
Dimension	Description	Examples
Object	What is analyzed?	Process, Test
		Product,
		Resource
Purpose	Why is the object	Characterization,
	analyzed?	Monitoring,
		Improvement,
Quality	Which characteristic of the	Effectiveness,
Focus	object is analyzed?	Hexibility,
		Maintainability,
Viewpoint	From which viewpoint is the	Developer,
	quality focus analyzed?	Manager, Tester,
		Project Leader,
Context	In which context does the	Organization,
	analysis take place?	Project,
		Application,

- Goal: Analyze the test process for the purpose of characterization with respect to (quality aspect) effectiveness from the viewpoint of the test team in the environment of project X, organization Y.
- Question 1: How many failures are detected during testing?
- Question 2: When are failures detected (time)?
- Question 3: What types of failures are detected?
- Question 4: How much testing effort is spent?
- Question 5: Which test techniques/tools are applied?
- Etc.

GQM Questions & Models

Questions:

- Specify verbally the information required to achieve the goal


Models:

- Specify formally (and make operational) the information required to achieve the goal
- Type of model depends on goal purpose
- Models are sometimes called Indicators

Dimension	Description	Examples
Object	What is analyzed ?	Process, Product, Resource
Purpose	Why is the object analyzed?	Characterization, Monitoring, Effectiveness,
Quality Focus	Which characteristic of the object is analyzed?	Reliability, Flexibility, Maintainability,
Viewpoint	From which viewpoint is the quality focus analyzed?	Developer, Manager,Tester, Project Leader,
Context	In which context does the analysis take place?	Organization, Project,

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Question Categories

- Goal: Analyze the test process for the purpose of characterization with respect to (quality aspect) effectiveness from the viewpoint of the test team in the environment of project X, organization Y.
- In order to help formulate appropriate questions, the goal can be refined into two aspects:
 - Quality focus variables: Characterize quality focus defined by the GQM goal
 - Explanatory variables (or: variation factors): specify parameters that may have an impact on the quality focus: e.g., experience of testers, used test techniques/tools
- Questions may be generated for each of the two aspects

- Question 1: How many failures are detected during testing?
- Question 2: When are failures detected (time)?
- Question 3: How are failures distributed wrt. criticality?
- Question 4: How much testing effort is spent?
- Question 5: Which test techniques/tools are applied?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

GQM Measures – Example

 Q3: What is the distribution of failures reported during test by criticality?

Model refines to ...

-M1.1: Failure count ...

-M3.1: Criticality classification

· object: reported failure

· attribute: criticality

 scale/range: [critical, uncritical, other]

· scale type: nominal

· unit: criticality class

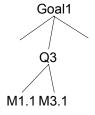
 Q6: How experienced are the development team members?

Model refines to ...

-...

-M6.1: Experience classification

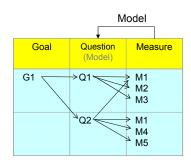
- · object: development team member
- · attribute: experience
- scale/range: [inexperienced, low (< 5 modules developed), medium (5-10 modules developed), high experience (> 10 modules developed)]
- · scale type: ordinal
- · unit: experience class



Developing the GQM Hierarchy

Example GQM Hierarchy (incomplete):

- Question 3: What is the distribution of failures by criticality?
- Model: D = F(x, y) = x[y]/x[all], x = Measure 1.1, y = Measure 3.1, where D: distribution of # failures per criticality class
- Measure 1.1: Failure count (ST: absolute; U: n/a; S: positive integer;
 O: product version 1.0)
 - Hypothesis: 120 failures
- Measure 3.1: Failure criticality (ST: nominal; U: n/a; S: {critical = complete breakdown of system, uncritical = unable to perform one or more of the functions F1, ..., F6, other}, O: failure report)
 - Hypothesis: 5% critical failures, 15% major failures, 80% minor failures



INF5181 / Lecture 06 / © Dietmar Pfahl 2011

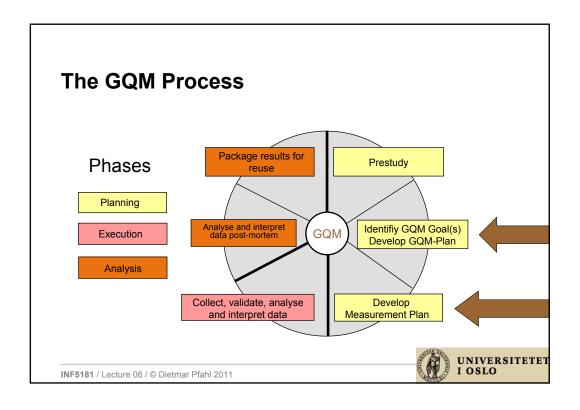
GQM Plan

- The models and measures are identified by answering "What kind of information do we need in order to answer the questions?"
- The GQM-tree is documented in tabular form
- · Each measure is defined by:
 - Name, ID
 - Scale, unit, etc.
 - Hypotheses

Measurement Plan – Example

Table for tracing Measurement Plan entries to GQM Plan, Project Plan and **Data Collection Forms**

Goal- ID	Metric- ID	Metric- Name	Data Creation Event	Data Col. Time	Data Col. Resource	Data Provider	Data Collector	Form- Id
Goal 1	M1.1	Failure count	Failure Report Summary	Test COMPLETE	TOOL: Failure Management System	Tester	QA Manager	Form X
Goal 1	M1.2	Failure criticality	Failure Report	Test report COMPLETE	TOOL: Failure Management System	Tester	QA Manager	Form X
Goal 1	M4.1	Dev. team experience	Project team assignment	Project START	HUMAN: Interview or Questionnaire	Team member	Project Manager	Form Y
Goal 1	M5.1	Document count	CM system report	Test COMPLETE	TOOL: CM system	Developer / Tester	Project Manager	Form Z
Goal 1	M5.2	Document type	Document complete	Test COMPLETE	TOOL: CM system	Developer / Tester	Project Manager	Form Z


GQM Plan Project Plan Data Collection Forms

UNIVERSITETET

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Data Collection -Example Questionnaire

Defect Report Form Name: Please fill in one report form for each defect you detect. Defect number: _ How much time did you spend to isolate the defect? ____ h ____ min How much time did you spend to correct the defect? ____ h ____ min What is the defect type? □ Calculation□ Interface□ Control Flow□ Other When was the defect injected? □ Requirements specification
□ Design
□ Coding
□ Unknown UNIVERSITETET I OSLO

Structure of Lecture 06

- Hour 1:
 - Introduction & Motivation
 - SW Measurement: Why What How?
- Hour 2:
 - GQM Process
 - Example Measurement Program
- Hour 3:
 - Question/answer session about project
 - Exercise

Software Metrics Initiative at Motorola [Das92]

Why?

 Engineers and managers wanted to better understand the software development process and be able to determine necessary changes to improve productivity, quality, and cycle time.

How?

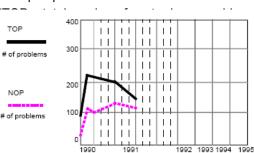
- · Definition of software processes
- · Focusing on continuous process and product improvement
- · Setting quantitative goals
- · Controlling the achievement of goals
- → Measurement became an integral part of the software development process

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Improvement Goals

- Goal 1: Improve project planning
- · Goal 2: Increase defect containment
 - ightarrow ability to detect and correct defects as soon as they are injected
- · Goal 3: Increase software reliability
- · Goal 4: Decrease software defect density
- Goal 5: Improve customer service
- Goal 6: Reduce cost of non-conformance
- Goal 7: Increase software productivity

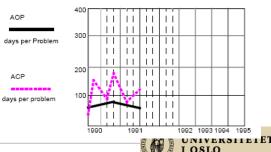
Goal 1: Improve Project Planning


- Question 1.1: How accurate are the estimates of the actual project schedule (duration)?
 - Metric 1.1: Schedule Estimation Accuracy (actual project duration/estimated project duration)
- Question 1.2: How accurate are the estimates of the actual project effort?
 - Metric 1.2: Effort Estimation effort)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Goal 5: Improve Customer Service

- Question 5.1: What is the number of new problems that were opened during the month?
 - Metric 5.1: New Open Problems (NOP = number of new post-release problems that remain open at the end of the month)
- Question 5.2: What is the total number of open problems at the end of the month?
 - Metric 5.2: Total Open Problems that remain open at the end of t



UNIVERSITETET I OSLO

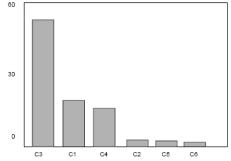
UNIVERSITETET

Goal 5: Improve Customer Service (cont'd)

- Question 5.3: What is the mean age of open problems at the end of the month?
- Metric 5.3: (Mean) Age of Open Problems (AOP = total time post-release problems remaining open at end of month have been open / TOP)
- Question 5.4: What is the mean age of problems that were closed during the month?
- Metric 5.4: (Mean) Age of Closed Problems (ACP = total time post-release problems closed within the month were open / number of post-release problems closed within the month)

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Use of Metrics for In-Process Project Control

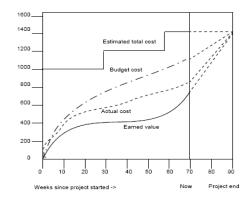

- The charts shown on the previous slides are examples of the socalled "10-up software metrics charts". These can be used for inprocess control.
- More detailed data for in-process control includes:
 - Tracking of Life-Cycle Phase / Schedule Progress
 - Cost/Earned Value Tracking
 - Tracking of Impact of Requirements Changes on the project
 - Tracking of Design Progress
 - Fault-Type Tracking
 - Remaining Defects Estimates (e.g., using an assumed Rayleigh curve distribution for fault detection rate)
 - Effectiveness of Reviews (Design, Code)
 - Tracking the fixing of defects per priority/severity class.

UNIVERSITETET I OSLO

Fault Type Tracking

Purpose:

· Understanding (and communicating) the nature of code faults (and possibly their root causes) in order to prevent programmers from injecting similar faults in the future



- C1 Incorrect or missing initiali-zation of a variable C2 Incorrect interface; call of an operation with the wrong param-
- operation with the wrong param-eters.
 C3 Logic problem, the control flow is wrong, the computation of a value is wrong.
 C4 Error handlier problem, ex-ception handled incorrectly, the operation has no recovery mech-anism when an incorrect input is encountered.
 C5 The definition of a variable is incorrect, the fields of records are incorrectly defined.
 C6 Other

UNIVERSITETET

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Cost/Earned Value Tracking of the Project

Purpose: to allow manager to track inprocess the following cost-related quantities (and update the project plan if necessary):

- Estimated total cost of the project Budgeted cumulative cost of the
- project
- Actual cumulative cost of the project
- Earned value of the project (the sum of the budgeted cost for the activities already completed by the project)
- summary of the actual progress of the project and how this relates to the project budget/cost.

Lessons Learnt

- Necessary prerequisites: infrastructure (cost accounting, configuration management, problem reporting), documented process
- Start with a small set of metrics addressing important improvement areas; then evolve over time
- Initial charts were used for in-process control and feedback (→ immediate impact of measurement)
- Data analysis should be done by engineers and managers, not by external experts (= facilitators of the measurement program)
- The code review package deployed by the Metrics Working Group was heavily used (67% of software engineers and managers)
- Metrics can only show problems and trigger corrective action; only if action is implemented benefits can be achieved
- → Measurement is not the goal. The goal is improvement through measurement, analysis and feedback.

UNIVERSITETET

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Cost of Measurement at Motorola

- · Cost for meetings:
 - Metrics Working Group meetings ~ 8 participants (twice a quarter)
 - Metric User Group meetings (→ feedback sessions) ~ 15 participants (quarterly)
- Additional cost for data collection (incl. providing necessary tools), analysis and meeting preparation (~1% of total project resources)

Data Collection in Agile Projects?

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Structure of Lecture 06

- Hour 1:
 - Introduction & Motivation
 - SW Measurement: Why What How?
- Hour 2:
 - GQM Process
 - Example Measurement Program
- Hour 3:
 - Question/answer session about project
 - Exercise

Structure of Lecture 06

- Hour 1:
 - Introduction & Motivation
 - SW Measurement: Why What How?
- Hour 2:
 - GQM Process
 - Example Measurement Program
- Hour 3:
 - Question/answer session about project
 - Exercise

UNIVERSITETET I OSLO

INF5181 / Lecture 06 / © Dietmar Pfahl 2011

Next Lecture

- · Topic:
 - Problem Solving and Improvement by Individuals and in Groups
- For you to do:
 - Complete project report (draft)
 - Submit not later than 13:30 by e-mail to dietmarp@ifi.uio.no
 - Only PDF format will be accepted
 - Submission is mandatory!

