
64 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

The punch line is that having multiple
methodologies is appropriate and necessary.
We can differentiate them according to staff
size and system criticality (more dimensions
exist, but these two serve well initially). For
any point in the size–criticality space,
methodology designers select a scope of
concerns, prioritizing some quality of the
project. Based on these choices, the project
team selects how light or heavy a method-
ology they want for their project. (See the
“Vocabulary” sidebar for a discussion of
methodology weight and other pertinent
terms.)

To help software development teams han-
dle the selection, I describe several principles
that underlie methodology design. I have
successfully used these principles on several
software development projects, one of which
I describe in some detail in this article.

Methodology
A Big-M methodology includes at least the

elements shown in Figure 1: people, roles,

skills, teams, tools, techniques, processes, ac-
tivities, milestones, work products, stan-
dards, quality measures, and team values.
Under standards, we find notations, such as
the drawing and programming languages se-
lected; policies, such as incremental-develop-
ment use; and conventions—the standards
the project team determines. Team values, the
least obvious element in the above list, are
what the team strives for in terms of how it
communicates and works. Different team
values promote different methodologies.

Some companies have methodologies
that cover from the initial sales call through
maintenance and all roles for which project
funds pay (see Figure 2). Most books con-
taining what people call methodologies have
mainly just the designer or programmer in
mind, showing a few techniques and draw-
ing standards. Fitting these techniques and
standards into a methodology framework,
we understand why software developers get
frustrated when they see authors call these
things methodologies. The individual design

focus
Selecting a Project’s
Methodology

Alistair Cockburn, Humans and TechnologyThis article
describes a

framework for
methodology

differentiation,
principles for
methodology

selection,
and project
experiences
using these

ideas.

H
ow do we determine the need for various processes or
methodologies, and what helps us choose the appropriate
one for our project? To answer these questions, we need
to get to the bottom of the controversy over methodolo-

gies and discover the dimensions along which they vary.

process diversity

techniques or drawing standards rarely are
critical to the project’s final success.

Principles Involved
To understand the need for various

processes and methodologies, and to design
and select them, we need to know the un-
derlying principles. After several dozen
project interviews and half a dozen method-
ology designs, I have developed confidence
in four principles.

Principle 1
A larger group needs a larger methodology.
A methodology is larger when it contains

more elements (roles, work products, re-
views, standards, and so on). Because the
methodology exists primarily to coordinate
people, it appropriately will be larger on a
larger project. Fortunately, the methodology
grows with the number of roles rather than
the number of individual people.1 Principle
1 tells us that we should not expect a small-
team methodology to work properly for a
big team, and vice versa.

Principle 2
A more critical system—one whose unde-

tected defects will produce more damage—
needs more publicly visible correctness
(greater density) in its construction.

I separate system criticality into these

loss zones (obviously, others are possible):

� Loss of comfort means that with a sys-
tem failure, people will only be less
comfortable, have to do more work by
hand, or call each other to repair a mis-

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 65

In 1995, Sam Adams coined two terms to describe the dif-
ference between the concept of methodology as found in large
consulting houses and as described in then-current books by
Grady Booch, James Rumbaugh, and others. He said that those
books discussed little-m methodologies, describing a few tech-
niques and drawing notations for a few roles. The large con-
sulting houses use Big-M methodologies, encoding as much as
possible about their way of working—processes, techniques,
and standards being only part of the overall picture.

Because I needed a term to cover all aspects of working to-
gether, I started using his phrase, Big-M methodology. In this
and other articles, I use this term to denote everything about
how a group repeatedly produces and delivers systems: whom
they hire and why, what people expect from coworkers, the
processes they follow, their conventions, work products, and
even seating arrangements. When a group places a job adver-
tisement in the newspaper, the ad is an artifact of their Big-M
methodology. We need this broad a view to get practical re-
sults about methodology and process diversity.

The American Merriam-Webster Dictionary gives as its first
definition of methodology, “a series of related methods or tech-
niques.” The Oxford English Dictionary defines it only as “the

study of methods.” I use the American version to reflect the
breadth of topics involved.

Some writers like to talk about a team’s process. However, a
process targets a series of steps; it does not have the necessary
breadth of meaning we need to carry out the discussion. For
example, it will not cover cultural values, seating arrangements,
and other things. This article addresses overall methodology di-
versity, which naturally includes process diversity as a subset.

A methodology’s size is its number of control elements, in-
cluding deliverables, standards, activities, milestones, quality
measures, and so on (see Figure 1 in the main text). Its density
is the detail and consistency required in the elements. Greater
density corresponds to tighter controls. A methodology’s weight
is its size times its density (conceptually only, because I do not
attach numbers to size and density).

Project size is the number of people the organization allo-
cates for the project. You might expect project size to match
problem size, but it is not that simple. Problem size has no ab-
solute measure, because a new person might see a simplifying
pattern in the problem. I therefore carefully separate project
size from problem size (see Principle 4 of “Principles Involved”
in the main text).

Vocabulary

Team
values

Quality

Products

Standards

Processes

Activities

Techniques

Tools

Milestones

Teams

Roles

Skills

People

Personality

Figure 1. Elements of a Big-M methodology. People with partic-
ular skills and personalities fill project roles, working in vari-
ous types of teams. They use techniques to construct work
products that follow certain standards and meet selected qual-
ity criteria. The techniques require certain skills and tools; the
tools help enforce the standards. The teams engage in activi-
ties that fall within the project’s overall process; each activity
passes key milestones that indicate how the process is mov-
ing forward. These elements operate within the team’s value
system, which needs to align with both the people’s values
and the process being used.

communication. Purchase support sys-
tems and corporate infrastructure pro-
grams lie in this zone.

� Loss of discretionary moneys means
that system failure produces loss of
money or related valuables, but only in
the range of discomfort. Typically, in-
voicing systems lie in this zone.

� Loss of irreplaceable moneys means
that the loss of money or related valu-
ables has an effect similar to that of
bankruptcy. A run on the national
banks would lie in this zone.

� Loss of life means people will likely die
from a system malfunction. Atomic
power plants, space shuttles, and air-
plane control systems fit here.

This principle says that the team can justify
greater development expense for protecting
against mistakes as the system moves from
zone to zone.

For example, failure in an atomic power
plant is more serious than failure in my
bowling-match tracking software. Accord-
ingly, the methodology the developers use in
building the power plant software can af-
ford to be more laborious and expensive. It
will contain more elements, and the ele-
ments will have greater density.

Suppose both projects incorporate use

cases. The bowling league might write them
in a few sentences on the board, on a scrap of
paper, or in a word processing document.
The power plant team will insist on writing
them using a particular tool and filling in
particular fields. They will call for version
control, reviews, and sign-offs at several
stages in the life cycle. Developing the use
cases for the power plant will cost more. The
benefit is that more writers and readers will
be able to collaborate and fewer mistakes
will be made, which is supposed to justify the
extra cost. Principle 2 says when the addi-
tional methodology cost is worthwhile—
which is a good thing to know, considering
Principle 3.

Principle 3
A relatively small increase in methodol-

ogy size or density adds a relatively large
amount to the project cost.

Pausing development to coordinate with
other people costs not only time but concen-
tration.2,3 Updating requirements docu-
ments, design documents, and test documen-
tation is also time consuming. Principle 3
does not question whether the coordination
activities and deliverables are beneficial or
hazardous. It addresses the cost of adding el-
ements and control to the methodology.

At this point we can examine the rela-

66 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

Acti
vit

ies

Ro
le

s

Project life cycle

Rest and recreation

Vacations and basic business

Technical education

Time sheets

Project development

Project sponsor
Project manager
Expert user
Business expert
Lead designer
UI expert
Reuse point
Designer/programmer
Tester
Writer
Trainer
Secretary
Contractor
Night watchman
Janitor

Envisioning Proposal Sales Setup Requirements Design & code Test Deploy Train Alter

Figure 2. Identify-
ing a defined
methodology’s
boundaries. Every
methodology has a
boundary, either in
the portion of the
project lifecycle it
covers, the people,
or the subset of
their activities it
addresses. Under-
standing the
boundaries will
help you examine a
methodology or
compare any two.

tionship between methodology size, project
size, and problem size. This discussion can
be tricky, because of the tendency to assume
that larger problems require more people to
solve them.

A positive feedback loop connects proj-
ect size and methodology. With relatively
few people, relatively little methodology is
needed. With less weight, they work more
productively. With greater productivity, they
can address a larger problem with their
smaller team and lighter methodology.

On the other hand, a project with more
people requires more coordination—that is,
more methodology. The heavier methodol-
ogy lowers their productivity, so accom-
plishing the same work requires more peo-
ple. Methodology grows more slowly than
project size, so eventually they get to a
point where they can solve the problem and
manage the coordination activities (assum-
ing sensible management).

So, for a given problem (see Figure 3),
you need fewer people if you use a lighter
methodology and more people if you use a
heavier methodology. But there is a limit to
the size of a problem that a given number of
people can solve. That limit is higher for a
large team using a heavier methodology than
for a small team using a lighter methodol-
ogy. In other words, as the problem changes
in size, different combinations of methodol-
ogy and project size become optimal.

The difficulty is that no reliable way exists
to determine the problem size at a project’s
start or the minimum number of people need-
ed to solve it. Even worse, that number varies
based on exactly who is on the team.

Principle 4
The most effective form of communica-

tion (for transmitting ideas) is interactive
and face-to-face, as at a whiteboard.

Principle 4 implies that people sitting
near each other, with frequent, easy contact,
will develop software more easily; that is,
the software will be less expensive to de-
velop. It implies that as the project size in-
creases and interactive, face-to-face commu-
nication becomes hard to arrange, commu-
nication effectiveness goes down, and the
associated cost goes up.

Figure 4 shows effectiveness declining as
the participants move from standing at a
whiteboard to talking on the phone, to an e-

mail chat session, to a videotape, and to a
written document. As the curve progresses,
the people lose close personal contact, mul-
timodal communication, voice inflection,
and real-time questioning capabilities.

The principle does not imply that a few
people sitting in a room can develop all soft-
ware. It does imply that a methodology de-
signer should emphasize small groups and
lots of personal contact if productivity and
cost are key issues.4 A discussion of differ-
ent aspects of intragroup communication
can be found elsewhere.5

The recently completed Chrysler Com-

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 67

Problem size

Heavyweight
methodology

Lightweight methodology

Medium-weight
methodologyNu

m
be

r o
f p

eo
pl

e
ne

ed
ed

Figure 3. How problem size and methodology affect staff num-
bers. As long as the smaller team can deliver the system,
fewer people and a lighter (well-founded) methodology are
needed. However, as the problem gets larger, eventually, the
smaller team simply cannot deliver the system in time. At that
point, a heavier methodology, coordinating many more people,
becomes necessary.

Form of communication

2 people at
whiteboard

2 people
on phone

2 people
on email

Videotape
Audiotape PaperCo

m
m

un
ic

at
io

n
ef

fe
ct

iv
en

es
s

Figure 4. Communication efficiency decreases as personal
contact decreases.

Two other
factors

affect what
methodology is
appropriate:
the project
priorities
and the

methodology
designer’s

peculiarities.

prehensive Compensation (C3) experience
exemplifies the above discussion. After 26
people failed to deliver what was considered
a large system, an eight-person subset of the
team restarted, using eXtreme Program-
ming (XP),6 an extremely light and rigorous
methodology. (For more on XP, visit
www.extremeprogramming.com, www.
xprogramming.com, or www.c2.com/ppr/
wiki/ExtremeProgrammingRoadmap.) The
eight people successfully delivered in a year
what the larger team with heavier method-
ology had failed to deliver.7,8 Part of the suc-
cess was its adherence to Principle 4.

Principles 1 through 4 reveal a useful
spectrum along which methodology design
lies: methodology weight can be traded off
against personal communication. With bet-
ter communication, we can shed bureau-
cracy. Conversely, to the extent that the
group cannot get frequent and rich personal
communication, they must add compensa-
tion elements to the mehthodology.

Two Last Factors
Two other factors affect what methodol-

ogy is appropriate: the project priorities and
the methodology designer’s peculiarities.

Project priorities
It matters greatly whether the project

sponsors want to have the software soon,
want it defect free, or want to have the
process visible. Each prioritization produces
a different recommendation.

Understanding the priorities is only
sometimes easy. James Martin and James
Odell’s object-oriented methodology9 is
general and can be tailored, but what the
methodology optimizes, or whether differ-
ent optimizations are possible on different
projects, is not clear. The OPEN (object-ori-
ented process, environment, and notation)
process family appears to prioritize for pro-
gram correctness, progress visibility, and re-
peatability.10 Watts Humphreys’ Personal
Software Process fairly clearly optimizes for
predictability.11

Three recent methodologies announce
their priorities. The methodology family
Crystal3,12 optimizes for productivity and
tolerance. XP optimizes even more for pro-
ductivity by reducing tolerance. Adaptive
Software Development13 targets highly un-
stable project situations, where require-

ments, design, and incredibly short time-
lines shift as a function of each other (for
example, Web development).

The methodology designer
“All methodology is based on fears,”

quipped Kent Beck in a methodology dis-
cussion. Although this sentence appeared
merely dismissive at first, I have found it to
be largely true. Each element in the process
or methodology can be considered a pre-
ventative against a bad experience some
project has had. Afraid that programmers
make coding mistakes? Hold code reviews.
Afraid that designers will leave in the mid-
dle of the project? Have them write exten-
sive design documentation as they proceed.
If methodology designers would or could
state their fears and wishes, much of the
methodology’s design would become imme-
diately apparent.

We should distinguish, however, between
the actual risks the individual project faces
and the methodology designer’s background.
The methodology designer casts his or her
experiences and biases into the methodology
in an attempt to capture the invariants across
projects. However, the risks the team faces
vary with each individual project. Therefore,
the final methodology design fits a project as
well as the designer’s assumptions fit the
team members’ attitudes and the project’s
true risk profile.

The Selection Framework
Figure 5 illustrates my framework for

methodology selection, separating seven
project sizes, four criticality zones, and sev-
eral possible project priorities. These are ar-
bitrary but plausible divisions, set approxi-
mately where the nature of the methodology
will shift. This framework’s advantage is
that it is relatively objective. We can count
the people on the project and assess its crit-
icality and priorities.

The methodologies should correspond-
ingly get bigger (more communication ele-
ments) toward the right, and denser (tighter
controls) going up. According to Principle 3,
moving to the right or up adds a large cost to
the project development, so the team should
find economic incentive to place a project as
far to the left and down as possible. Other in-
centives, such as the manager’s prestige and
career safety, might drive a project to be con-

68 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

sidered bigger and more criti-
cal, even though that increases
the cost.

Each cell allows several
methodologies, depending on
whether the project sponsors
are searching for productiv-
ity, visibility, repeatability, or
correctness. Using the four
principles, we can make basic
decisions about which me-
thodology to use. After that,
personal preferences will drive
the details.

Applying the Principles
and Framework

To illustrate the use of these
ideas across a series of proj-
ects, let us look first at a di-
verse range of projects, and
then more closely at one of the
projects specifically, whose
changing characteristics moved it across the
selection framework grid.

A range of projects
The programming staff at the Central

Bank of Norway plays a critical role in co-
ordinating that nation’s banks, investing na-
tional funds, enforcing national banking
policy, tracking the movement of physical
currency around the country, and providing
IT services for the internal staff. The bank
employs approximately 40 employees, plus
a fluctuating number of contractors, to
work on the astonishing number of contrac-
tors that accomplishing these objectives re-
quires. I hope it is obvious that no one, right
methodology fits the following range of proj-
ects found in just this one organization.

� A 35-person Y2K project. Its objective
was to see that the Norwegian banking
system did not collapse on 1 January
2000. The primary technology was a
traditional mainframe. The project crit-
icality ranked in the essential-moneys
category (see Figure 5); timeliness and
correctness were the top project priori-
ties. This was clearly an E35-category
project.

� A project to collect and check all of
Norway’s bank-to-bank transactions, in
concert with another company. It also

used mainframe technologies. This proj-
ect, which I will discuss in detail in the
next section, was the first on which I ex-
plicitly used the grid in Figure 5 to shift
the project methodology.

� A five-person project to produce a pro-
totype of the mission-critical banking
system that would eventually replace
the mainframe system. The team was
developing an intranet-based, object-
oriented, Java–Corba component archi-
tecture, running as a C5-category proj-
ect, working in one room, with minimal
distraction. Both the manager and team
agreed on the key to success: “Get good
people; keep the team size low; put them
in one room; give them adequate train-
ing; keep distractions away from them.”
(How different from the Y2K project!)

� An internal, three-person project to let
people track their purchase requests. It
was to be built in Java, using Web
browsers and the e-mail system, and run
as a C4 project prioritzing low-cost de-
velopment. The team worked quite in-
formally, writing only a sketch of the use
cases and a draft project plan—until
they decided to buy rather than build the
software (true to the low-cost priority).

� Two internal, one-person projects. One
was to let people order special dinners
from the cafeteria when they worked

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 69

Cr
iti

ca
lit

y
(d

ef
ec

ts
 c

au
se

 lo
ss

 o
f..

.)

1–6 7–20 21–40 41–100 101–200 201–500 501–1,000
Number of people involved 20%

Life
(L)

Essential
money

(E)

Discretionary
money (D)

Comfort
(C)

Prioritized for productivity and tolerance

L6 L20 L40 L100 L200 L500 L1,000

E6 E20 E40 E100 E200 E500 E1,000

D6 D20 D40 D100 D200 D500 D1,000

C6 C20 C40 C100 C200 C500 C1,000

Prioritized for legal liability

Figure 5. A methodology grid, organized as people × criticality × priority.
The letter–number combination in a cell indicates the maximum criticality
and project size for that cell. For example, C6 indicates a loss-of-comfort
project with up to 6 people. D40 indicates a loss-of-discretionary-money
project using 21 to 40 people.

late at night. It was developed in Delphi,
using Web browsers. The other was to
let selected bank staff produce summary
reports of various investment and spend-
ing activities. It was programmed in SQL
and ran on a mainframe. In both of these
projects, the single programmer simply
worked with representative users and
had no other development controls.

Outside the Central Bank of Norway, I
visited or worked on the following projects,
all of which were internal business systems
programmed primarily in Smalltalk. I pres-
ent them from smallest to largest.

� The C3 project,6–8 described earlier, grew
from 10 to 14 people. The team replaced
all the usual written work-product docu-
ments with face-to-face discussions,
whiteboard notes, index cards, and ex-
tensive regression tests. They made some
innovations, including rotating partners
in a continual pair-programming envi-
ronment and delivering every three
weeks. In terms of this article, they used
the principles to stretch a D6 methodol-
ogy to fit a D14 project, thus keeping
costs down and productivity up.

� Project Winifred was a D40 Smalltalk
project with time to completion as its top
priority, a colocated team, and good in-
ternal communications.12 As process
consultant, I examined the team size and
physical proximity, system criticality, and
the project priorities, and designed a cus-
tomized lightweight methodology that
maximized the use of interactive, person-
to-person communication to reduce cost.

� Project Rishi was a D90 Smalltalk proj-
ect. I was part of the management group
that introduced interteam coordination,
including special meetings and docu-
ments. Even working to let this project
run as lightly as possible, we could not
use the same simple mechanisms as in
Project Winifred, but had to instead cre-
ate multiple design teams with cross-
team mentors and standards.

One specific project
At the Central Bank of Norway, I worked

as technical coordinator and pinch-hitting
architect on the bank-to-bank transactions

project. This project was particularly inter-
esting because it shifted cells in the method-
ology framework twice.

When the bank introduced this project to
me in November 1997, they described it as a
15-workweek, three-person project, with the
design already mostly complete and the peo-
ple already experienced from the previous
system version. Based on the methodology
framework and my experience, I suggested
they view it as a D4 project—a loss-of-dis-
cretionary-money project using four peo-
ple—and simply work together casually
(“Get it done and go home” was the phrase),
with minimal bureaucratic interference.

As part of picking up the project, I re-
viewed the project plan with the team and
discovered that the developers had only es-
timated part of the task. The complete esti-
mate came to 130 workweeks. Additionally,
the designers were adding new technology,
with new real-time response and failure sen-
sitivity requirements, and faced a mutual-
exclusion problem inside the main database.

Two of the developers were in Lilleham-
mer, and the other developer, the project
manager, and I were in Oslo. The developers
needed to interface with a sister organization
in a different part of Oslo, working on a sep-
arate computer system. Our lead architect
was taking paternity leave in two months,
the project manager was new to both IT and
project management, and the project would
report to a national project board.

At this point, I shifted our side of the
project to the E5 category (see the difference
in Figure 5). This meant instituting a risk-
reduction milestone plan, incremental deliv-
ery, weekly teleconferenced group meetings,
monthly status reports, and other measures.

The team delivered the first increment on
time, at the start of February 1998. But then
the lead designer went on paternity leave,
the Y2K project preempted the other senior
developer, and we uncovered a flaw in the
failure recovery and mutual-exclusion de-
signs. We grew to 10 people—most of whom
were novices in the domain—spread across
multiple floors of multiple locations. Daily
face-to-face communication was impossible.

In mid-February, I shifted our project to
the E15 category. We designed smaller mile-
stone markers for each individual, set up a
testing simulator, and increased communi-
cations between team members. Because of

This project
was

particularly
interesting
because it

shifted cells
in the

methodology
framework

twice.

70 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

time pressures, we did not institute more pa-
perwork for the team members (see Princi-
ples 3 and 4) but stepped up personal com-
munications, including phone calls, telecon-
ferences, and train trips.

The story ended relatively happily. We
were able to stabilize both staffing and the
project plan in March 1998. The project
sponsors accepted the March 1998 plan,
even though it was considerably different
from the original, November 1997 version.
The novice project manager learned how to
read the people on the project and tracked
the milestones well. The project delivered on
time (according to the March 1998 plan) in
December 1998 and was installed the fol-
lowing February. The project pleased man-
agement on all sides, both technically and
because the cost and schedule remained sta-
ble over the project’s last 10 months.

I t is quite easy to say, “One methodology
can’t fit all projects,” but that notion
seems to escape many process and

methodology designers. Actually, it is quite
hard to see how to proceed beyond making
that statement. A start is to use the four
principles I described for methodology de-
sign and apply the project grid.

The task facing us next is to find ways to
tailor a methodology to the idiosyncracies of
any particular project fast enough to get the
benefits of the tailoring before the project is
over.

References
1. N.B. Harrison and J.O. Coplien, “Patterns of Productive

Software Organizations,” Bell Labs Technical J., Vol. 1,
No. 1, Summer 1996, pp. 138–145.

2. T. DeMarco and T. Lister, Peopleware: Productive Pro-
jects and Teams, 2nd ed., Dorset House, N.Y., 1999.

3. A. Cockburn, Surviving Object-Oriented Projects, Addi-
son-Wesley, Reading, Mass., 1998.

4. L. Plowman, “The Interfunctionality of Talk and Text,”
Computer Supported Cooperative Work, Vol. 3, Nos.
3–4, 1995, pp. 229–246.

5. J.A. Sillince, “A Model of Social, Emotional and Sym-
bolic Aspects of Computer-Mediated Communication
within Organizations,” Computer Supported Coopera-

tive Work, Vol. 4, No. 1, 1996, pp. 1–31.
6. K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley, Reading, Mass., 1999.
7. The C3 Team, “Chrysler Goes to ‘Extremes,’” Distrib-

uted Object Computing, Oct. 1998, pp. 24–28.
8. R. Jeffries, “Extreme Testing,” Software Testing and

Quality Eng., Mar./Apr. 1999, pp. 23–26.
9. J. Martin and J. Odell, Object-Oriented Methods, Prag-

matic Considerations, Prentice Hall, Upper Saddle
River, N.J., 1996.

10. I. Graham, B. Henderson-Sellers, and H. Younessi, The
OPEN Process Specification, Addison-Wesley, Reading,
Mass., 1997.

11. W. Humphreys, Introduction to the Personal Software
Process, Addison-Wesley, Reading, Mass., 1997.

12. A. Cockburn, Crystal/Clear: A Human-Powered
Methodology for Small Teams, to be published by Ad-
dison-Wesley, Reading, Mass., 2000; access our early
version at members.aol.com/humansandt/crystal/clear
(current June 2000).

13. J. Highsmith, Adaptive Software Development: A Col-
laborative Approach to Managing Complex Systems,
Dorset House, N.Y., 2000.

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 71

About the Author

Alistair
Cockburn is
consulting fellow
at Humans and
Technology. He
works to under-
stand and im-
prove human fac-
tors in software

development. He speaks six languages,
has forgotten two others, and enjoys
dancing, and sitting underwater. Contact
him at Humans and Technology, 7691
Dell Rd., Salt Lake City, UT 84121;
arc@acm. org.

Malicious IT: The Software
vs. The People

Software Engineering in the Small

Recent Developments in
Software Estimation

The Personal Software Process

Global Software Development

Usability Engineering in
Software Development

Growing a Software Organization Quickly

The Engineering of Internet Software

What Is Software?
What Is Programming?

In Future Issues:

In the September/October Issue:

