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This article provides an overview of the basic concepts and state of the art of software
measurement. Software measurement is an emerging field of software engineering, since it
may provide support for planning, controlling, and improving the software development
process, as needed in any industrial development process. Due to the human-intensive nature
of software development and its relative novelty, some aspects of software measurement are
probably closer to measurement for the social sciences than measurement for the hard
sciences. Therefore, software measurement faces a number of challenges whose solution
requires both innovative techniques and borrowings from other disciplines. Over the years, a
number of techniques and measures have been proposed and assessed via theoretical and
empirical analyses. This shows the theoretical and practical interest of the software
measurement field, which is constantly evolving to provide new, better techniques to support
existing and more recent software engineering development methods.
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1. Introduction

Measurement permeates everyday life and is an essential part in every scientific and
engineering discipline. Measurement allows the acquisition of information that can be
used for developing theories and models, and devising, assessing, and using methods
and techniques. Practical application of engineering in the industry would not have
been possible without measurement, which allows and supports

• production planning, from a qualitative and quantitative viewpoint,
• production monitoring and control, from a qualitative and quantitative viewpoint,
• decision making,
• cost/benefit analysis, especially when new techniques are proposed or introduced,
• post-mortem analysis of projects,
• learning from experience.

Like in all other engineering branches, industrial software development requires the
application of software engineering methods and techniques that are effective, i.e., they
allow software organizations to develop quality software products, and efficient, i.e.,
they allow software organizations to optimize the use of their production resources.



However, software engineering differs from other engineering disciplines in a number
of aspects that have important consequences on software measurement. First, software
engineering is a young discipline, so its theories, methods, models, and techniques still
need to be fully developed and assessed. Other engineering branches rely on older,
well-consolidated scientific disciplines. These disciplines have developed a large
number of deep mathematical models and theories over the centuries and have long
identified the important concepts (e.g., length, mass) that need to be studied and have
long developed suitable tools to measure them. Second, Software Engineering is a very
human-intensive discipline, while other engineering branches are based on the so-called
hard sciences (e.g., Physics, Chemistry). Therefore, some aspects of software
measurement are more similar to measurement in the social sciences than measurement
in the hard sciences. For instance, in a number of software measurement applications,
repeatability of results may not be achieved. As a consequence, one cannot expect
software engineering measurement models and theories to be necessarily of the same
nature, precision, and accuracy as those developed for more traditional branches of
engineering. Third, there are several different types of software development, for
different application areas and purposes, so, software measurement models may not be
valid on a general basis, like those used in other engineering branches.

However, the very nature of software engineering makes measurement a necessity,
because more rigorous methods for production planning, monitoring, and control are
needed, otherwise the amount of risk of software projects may become excessive, and
software production may easily get out of industrial control. This would produce
obvious damages to both software producers (e.g., higher costs, schedule slippage) and
users (e.g., poor quality products, late product delivery, high prices). To be effective
and make good use of the resources devoted to it, software measurement should
address important development issues, i.e., it should be carried out within a precise goal
of industrial interest. In this context, software measurement may serve several
purposes, depending on the level of knowledge about a process of product. Here, we
list some of these purposes, from one that can be used when a limited or no amount of
knowledge is available to one that requires an extensive amount of knowledge.

• Characterization, i.e., the gathering of information about some characteristic of
software processes and products, with the goal of acquiring a better idea of
``what's going on."

• Tracking, i.e., the (possibly constant and regular) acquisition of information on
some characteristic of software processes and products over time, to understand if
those characteristics are under control in on-going projects.

• Evaluation, i.e., judging some characteristic of a software process or product, for
instance based on historical data in the same development environment or data
available from external sources.

• Prediction, i.e., identifying a cause-effect relationship among product and process
characteristics.

• Improvement, i.e., using a cause-effect relationship to identify parts of the
process or product that can be changed to obtain positive effects on some



characteristic of interest, and collecting data after the changes have been made to
confirm or disconfirm whether the effect was positive and assess its extent.

Therefore, the goal of software measurement is certainly not limited to deriving
measures. In addition to the above practical goals, one may say that, from a more
abstract point of view, the goal of software measurement is to build and validate
hypotheses and increase the body of knowledge about software engineering. This body
of knowledge can be used to understand, monitor, control, and improve software
processes and products. Therefore, building measures is a necessary part of
measurement, but not its final goal.

Software measurement poses a number of challenges, from both a theoretical and
practical points of view. To face these challenges, we can use a number of techniques
that have been developed over the years and/or have been borrowed from other fields.

First, we need to identify, characterize, and measure the characteristics of software
processes and products that are believed to be relevant and should be studied. This is
very different from other engineering branches, where researchers and practitioners
directly use measures without further thought. In those disciplines, there no longer is a
debate on what the relevant characteristics are, what their properties are, and how to
measure these characteristics. In software engineering measurement, instead, we still
need to reach that stage. There is not as much intuition about software product and
process characteristics (e.g., software cohesion or complexity) as there is about the
important characteristics of other disciplines. Therefore, it is important that we make
sure that we are measuring the right thing, i.e., it is important to define measures that
truly quantify the characteristic they purport to measure. This step—called theoretical
validation—is a difficult one, in that it involves formalizing intuitive ideas around
which there is limited consensus. To this end, one can use Measurement Theory, which
has been developed in the social sciences mainly in the last 60 years, or property-based
approaches, which have been used in Mathematics for a long time.

Second, we need to show that measuring these characteristics is really useful, via
the so-called empirical validation of measures. For instance, we need to show if and to
what extent these characteristics influence other characteristics of industrial interest,
such as product reliability or process cost. It is worthwhile to measure them and use
them to guide the software development process only if they have a sufficiently large
impact. To this end, experiments must be carried out and threats to their internal and
external validity must be carefully studied.

In addition, the identification and assessment of measures may not be valid in
general. Nothing guarantees that measures that are valid and useful in one context and
for some specified goal are as valid and useful for another context and goal. Goal-
oriented frameworks that have been defined for software measurement can be used.

Before illustrating the various aspects of software measurement, we would like to
explain that the term ``metric" has been often used instead of ``measure" in the
software measurement field in the past. As it has been pointed out, ̀ `metric" has a more
specialized meaning, i.e., distance, while ``measure" is the general term. Therefore, we
use ``measure" in the remainder of this article.



The remainder of this article is organized as follows. Section 2 describes a
framework for goal-oriented measurement (the Goal/Question/Metric paradigm).
Sections 3 and 4 introduce the basic concepts of software measurement. Sections 5 and
6 illustrate how Measurement Theory and axiomatic approaches can be used to carry
out the so-called theoretical validation of software measures, i.e., to show that a
measure actually quantifies the attribute it purports to measure. Section 7 describes
some of the measures that have been defined for the intrinsic attributes (e.g., size,
structural complexity) of the artifacts produces during software development. Section 8
concisely reports on external software attributes (e.g., reliability, maintainability), i.e.,
those that refer to the way software relates to its development or operational
environment. Process attributes are discussed in Section 9. Remarks on the practical
application of software measurement are in Section 10. Possible future developments
are discussed in Section 11.

Good surveys of the state of the art and on-going research can be found in [1, 2].

2. Goal-oriented Measurement

It is fundamental that all measurement activities be carried out in the context of a
well-defined measurement goal. In turn, the measurement goal should be clearly
connected with an industrial goal, so the measurement program responds to a software
organization's needs. The Goal/Question/Metric (GQM) paradigm [3, 4] provides a
framework for deriving measures from measurement goals. The idea is to define a
measurement goal, with five dimensions, as follows:

• Object of Study: the entity or set of entities that should be studied, e.g., a software
specification, or a testing process;

• Purpose: the reason/the type of result that should be obtained: e.g., one may want
to carry out/obtain a characterization, evaluation, prediction, or improvement;

• Quality Focus: the attribute or set of attributes that should be studied, e.g., size
(for the software specification, or effectiveness (for the testing process);

• Point of View: the person or organization for whose benefit measurement is
carried out, e.g., the designers (for the software specification), or the testers (for
the testing process)

• Environment: the context (e.g., the specific project or environment) in which
measurement is carried out.

The following is an example of a GQM goal:

Analyze the testing process (object of study) for the purpose of evaluation (purpose)
with respect to the effectiveness of causing failures (quality focus) from the point of
view of the testing team (point of view) in the environment of project X (environment).

GQM goals help clarify what needs to be studied, why, and where. Based on the
goal, the relevant attributes are identified via a set of questions (an intermediate
document between the goal and the questions, the Abstraction Sheet, has been recently



introduced to provide a higher-level view of the questions). As a simple example, a
question related to the study of testing effectiveness may ask: How much is defect
density? Each question is then refined into measures that can be collected on the field.
For instance, defect density may be defined as the ratio of the number of defects found
to the number of lines of code. Figure 1 shows this top-down refinement of goals into
measures. Figure 1 also shows that several measurement goals may be pursued at the
same time, and questions and measures may be reused across goals, thus decreasing the
effort for adding further goals to an existing set of goals, questions, and measures.
Conversely, interpretation of results proceeds bottom-up, i.e., the measures collected
are used and interpreted in the context and for the objectives that have been initially
defined. The GQM paradigm has been successfully used in many industrial
environments to increase the knowledge of software organizations about their own
practices and lay the quantitative foundations for improvement of software processes
and products.
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Fig. 1. A sample GQM.

The GQM paradigm is a part of an organized approach to the improvement of
software products and processes, the Quality Improvement Paradigm (QIP), which can
be concisely described as an instantiation of the scientific method tailored for the needs
of Software Engineering. The QIP is based on the idea that improvement can be
achieved and quantified via the acquisition of knowledge on software processes and
products over time. The Experience Factory (EF) is another central aspect of the QIP.
The EF is the organizational unit that collects, stores, analyzes, generalizes, and tailors
information from software development projects, so it can be used in future ones.

3. Entities and Attributes

We now introduce the basic concepts of measurement. First, we identify the object
of measurement. To this end, measurement is based on the following two concepts [1].

Entity. An entity may be a physical object (e.g., a program), an event that occurs at a
specified instant (e.g., a milestone) or an action that spans over a time interval (e.g., the
testing phase of a software project).



Attribute. An attribute is a characteristic or property of an entity (e.g., the size of a
program, the time required during testing).

Both the entity and the attribute to be measured must be specified, because
measurement should not be used for entities or attributes alone. For instance, it does not
make sense to ``measure a program," since the attribute to be measured is not specified
(it could be size, complexity, maintainability, etc.), or to ``measure size," since the
entity whose size is to be measured is not specified (it could be a specification, a
program, a development team, etc.). Instead, one can ̀ `measure the size of a program."

Entities in software measurement can be divided into two categories: products and
processes. Product and process entities may be of different kinds. For instance,
requirements, specifications, designs, code, test sets are all product entities and their
parts are product entities as well. On the other hand, single phases, activities, and
resources used during a project are process entities. Product and process entities have
specific attributes. For instance, product attributes include size, complexity, cohesion,
coupling, reliability, etc. Process attributes include time, effort, cost, etc.

Attributes are usually divided into internal and external attributes. An internal
attribute of an entity depends only on the entity. For instance, the size of a program
may be considered an internal attribute, since it depends only on the program. An
external attribute of an entity depends on the entity and its context. For instance, the
reliability of a program depends on both the program and the environment in which the
program is used. External attributes are usually the ones whose measures have
industrial interest. For instance, it is important to measure the reliability of a program
during its operational use, so as to assess whether its quality is sufficiently high.
However, external attributes are usually difficult to measure directly, since they depend
on the environment of the entity. Internal product attributes are easier to measure, but
their measurement is seldom interesting per se, at least from a practical point of view.
Internal product attributes are measured because they are believed to influence the
external attributes (e.g., coupling is believed to influence maintainability) or process
attributes (e.g., program complexity is believed to influence cost).

4. Measurement and Measure

We introduce a distinction between measurement and measure, as follows.

Measurement. Measurement is the process through which values are assigned to
attributes of entities of the real world.

Measure. A measure is the result of the measurement process, so it is the assignment of
a value to an entity with the goal of characterizing a specified attribute.

Therefore, a measure is not just a value, but it is a function that associates a value
with an entity. In addition, the notion of value is by no means restricted to real or
integer numbers, i.e., a measure may associate a symbol with an entity. For instance, a
measure for the size of programs may associate the values ``small", ``medium," and



``large" with programs. These values cannot be used for arithmetic or algebraic
manipulations, but they can be used to obtain useful results through a variety of
statistical techniques.

Because of the distinction between internal and external attributes, measures for
internal attributes of an entity can be computed based only on the knowledge of the
entity, while measures for external attributes also require the knowledge of the context
of the entity.

Not all functions that associate a value with an entity are sensible measures for an
attribute of that entity. For instance, if we intuitively rank a program P' as longer than
another program P", we expect that a sensible measure of program size gives program
P' a value greater than the value it gives program P".

Measures that make sense on an intuitive level are an obvious precondition in every
measurement application. The measures used in many scientific fields (especially in the
hard sciences) are usually taken for granted, i.e., they are considered intuitively valid
for the attributes they purport to measure. For instance, there is no debate about the
measures used to quantify the volume of an object. The reason is that there is a
consolidated consensus about which measures can be considered intuitively valid. This
consensus has been built over centuries and is so well established that the question
hardly ever arises whether a measure is a sensible one for an attribute. However, this is
not the case in software engineering measurement. Because of the novelty of the field,
a sufficient degree of consensus still needs to be reached about which measures make
sense on an intuitive level. Moreover, there is no widespread agreement on the
attributes themselves, i.e., how can we define attributes unambiguously? which
attributes are really relevant?

These questions are important from an engineering point of view, because methods
and techniques are devised with reference to attributes of software entities. For
instance, it is commonly accepted that software systems should be composed of
modules (entities) with high levels of inner cohesion (attribute) and low levels of
coupling (attribute) among them. These software systems (entities) are believed to
have, for instance, a high degree of maintainability (attribute). This is one of the
reasons why object-oriented programming is believed to lead to better software systems
than other techniques. However, this hypothesis (i.e., there is an influence of module
cohesion and coupling on the maintainability of a software system) cannot undergo a
real scientific examination until unambiguous definitions are provided for cohesion,
coupling, and maintainability, and until measures are defined that are consistent with
these definitions when applied to software modules and systems. This is not to say that
module cohesion and coupling have no impact on software system maintainability or
that object-oriented programming has not been beneficial in software development.
However, in a sound engineering approach we need to ascertain

• whether the evidence is sufficient for us to draw reliable conclusions (e.g., is the
evidence only anecdotal or do statistical procedures such as the test of hypotheses
confirm the hypothesis?)



• the absence of other influencing factors (e.g., has maintainability improved
because of the adoption of object-oriented programming or because of the
improvement in the education of programmers or the adoption of CASE tools?)

• the extent of the impact of the influencing attributes on the influenced attribute
(e.g., does module cohesion influence software maintainability more than module
coupling does? what is the impact of a variation in module coupling on
maintainability?)

If we had information on these three points above, we would be able to use
software techniques more effectively.

We now describe two approaches (Representational Measurement Theory and
property-based approaches) that help identify those measures that make sense. It is to
be borne in mind that, in both cases, we are actually modeling intuition, and intuition
may vary across different people. For instance, one person may not agree with another
person on how programs should be ranked according to their size. However, the value
added by either approach is to spell out one's own intuition in mathematical,
unambiguous terms, which can be used as a basis for discussion about the measures for
an attribute and, eventually, to reach widespread consensus.

5. Representational Measurement Theory

Representational Measurement Theory [5] (see also [1, 6]) formalizes the
``intuitive," empirical knowledge about an attribute of a set of entities and the
``quantitative," numerical knowledge about the attribute. The intuitive knowledge is
captured via the so-called empirical relational system (described in Section 5.1), and
the quantitative knowledge via the so-called numerical relational system (Section 5.2).
Both the empirical and the numerical relational systems are built by means of set
algebra. A measure (Section 5.3) links the empirical relational system with the
numerical relational system in such a way that no inconsistencies are possible, as
formalized by the Representation Condition. In general, many measures may exist that
quantify equally well one's intuition about an attribute of an entity (e.g., weight can be
measured in kilograms, grams, pounds, ounces, etc.). The relationships among the
admissible measures for an attribute of an entity are illustrated in Section 5.4. As we
will see, this leads to classifying measures into different categories, as described in
Section 5.5. ``Objectivity" and ``subjectivity" of measures are discussed in Section 5.6.

5.1. Empirical Relational System.

An empirical relational system for an attribute of a set of entities is defined through
the concepts of set of entities, relations among entities, and operations among entities.
Therefore, an empirical relational system is defined as an ordered tuple

mn ooRREERS ,...,,,...,, 11= , as we now explain.

• E  is the set of entities, i.e., the set of objects of interest that are subject to
measurement with respect to that attribute.



• nRR ,...,1  are empirical relations: each empirical relation iR  has an arity in , so
in

i ER ⊆ , i.e., iR  is a subset of the cartesian product of the set of entities
EEE ××× ...  in  times.

• moo ,...,1  are binary operations among entities: each binary operation jo  is  a

function EEEo j →×: . Therefore, its result is an entity, so we have

213 eoee j=  (infix notation is usually used for these operations). As an additional

assumption, all binary operations jo 's are closed, i.e., they are defined for any

pair of entities 21,ee .

As an example, suppose that we want to study the size (attribute) of program
segments (set of entities). A program segment is defined as a sequence of statements.
To characterize the size attribute, we may define the binary relation ``longer than," i.e.,

EEthanlonger ×⊆_ . Therefore, given two program segments 1e  and 2e , we may

have thanlongeree _, 21 ∈  (i.e., our intuitive knowledge is that 1e  is longer than

2e ) or thanlongeree _, 21 ∉  (i.e., our intuitive knowledge is that 1e  is not longer

than 2e ). If we were interested in another attribute, e.g., complexity, we would
characterize the complexity attribute via a different relation, e.g.,

EEthancomplexmore ×⊆__ . A binary operation may specify how program
segments may be built based on other program segments, e.g., by concatenating
program segments. For instance, 213 eee ⊕=  may represent the fact that program
segment 3e  is built by concatenating program segments 1e  and 2e .

The empirical relations do not involve any values or numbers. We are not
comparing the values obtained by measuring 1e 's and 2e 's sizes, but we are just stating
our intuitive understanding and knowledge on 1e 's and 2e 's sizes and that 3e  is the
concatenation of 1e  and 2e . Since this knowledge is intuitive, empirical relational
systems are built in a somewhat subjective way, as intuition may very well vary across
different individuals.

5.2. Numerical Relational System.

The intuitive knowledge of the empirical relational system is translated into the
numerical relational system, which predicates about values. A numerical relational
system is defined as an ordered tuple mnSSVNRS ••= ,...,,,...,, 11 , as we show.

• V  is the set of values that can be obtained as results of measures.
• nSS ,...,1  are numerical relations: each numerical relation iS  has the same arity

in  of the empirical relation iR , so in
i VS ⊆ , i.e., iS  is a subset of the in -times

cartesian product of the set of values.



• m•• ,...,1  are binary operations among values: each binary operation j•  is  a

function VVVj →×• : . Therefore, its result is a value, so we have

213 vvv j•=  (infix notation is usually used for these operations). As an

additional assumption, all binary operations j• 's are closed, i.e., they are defined

for any pair of values 21,vv .

For instance, the set V  may be the set of nonnegative integer numbers. A binary
relation may be ``greater than," i.e., > , so VV ×>⊆ . A binary operation may be the
sum between two integer values, i.e., 213 vvv += . Therefore, the numerical relational
system in itself does not describe anything about the entities and the attribute.

5.3. Measure

The link from the empirical relational system and the numerical relational system is
provided by the definition of measure, which associates entities and values, and scale,
which associate the elements of the tuple of the empirical relational system with
elements of the numerical relational system. A measure is a function VEm →:  that
associates a value with each entity.

As defined above, a measure establishes a link between the set of entities and the
set of values, regardless of the relations and operations in the empirical and numerical
relational system. Therefore, a measure for the size of program segments may be
inconsistent with our intuitive knowledge about size as described by the relation

thanlonger _ . For instance, we may have three program segments 1e , 2e , and 3e

such that thanlongeree _, 21 ∈ , thanlongeree _, 32 ∈ , ( ) ( )21 emem < , and

( ) ( )32 emem > . This shows that not all measures are sensible ways for quantifying
intuitive knowledge. The Representation Condition places a constraint on measures, so
they do not exhibit this kind of counterintuitive behavior.
Representation Condition. A measure VEm →:  must satisfy these conditions

( ) ( ) ( )( )( )
ii

i
i nini

n
n ememSeeREeeni ,...,,...,,...,..1 111 ⇔∈∀∈∀

( ) ( ) ( )( )212121,..1 ememeoemEEeemj jj •=×∈∀∈∀

The first condition requires that a tuple of entities be in the relation iR  if and only
if the tuple of measures computed on those entities is in the relation iS  that
corresponds to iR . Therefore, if the relation > is the one that corresponds to

thanlonger _  we have thanlongeree _, 21 ∈  if and only if ( ) ( )21 emem > , as one

would intuitively expect. The second condition requires that the measure of an entity



obtained with the binary operation jo  from two entities be obtained by computing the

corresponding binary operation j•  on the measures computed on those two entities.

Scale. A scale is a triple mNRSERS ,, , where ( )mn ooRREERS ,...,,,...,, 11=  is an

empirical relational system, ( )mnSSVNRS ••= ,...,,,...,, 11  is a numerical relational
system, and VEm →:  is a measure that satisfies the Representation Condition.

For simplicity, we also refer to m as a scale in what follows.

5.4. Uniqueness of a Scale

Given an empirical relational system and a numerical relational system, two issues
naturally arise, i.e., existence and uniqueness of a scale that maps the empirical
relational system into the numerical relational system. We do not deal with the
existence issue here, so we assume that a scale exists that links an empirical relational
system and a numerical relational system. As for uniqueness, many different scales can
be used given an empirical relational system and a numerical relational system. This is
well known in everyday life or scientific or engineering disciplines. For instance, the
distance between two points may be measured with different scales, e.g., kilometers,
centimeters, miles, etc. All of these are legitimate scales, i.e., they satisfy the
representation condition, so it does not really matter which scale we choose. Using one
instead of another is just a matter of convenience, since there exists a transformation of
scale (multiplication by a suitable proportionality coefficient) from a scale to another
scale. However, multiplication by a suitable proportionality coefficient is also the only
kind of transformation that can be applied to a distance scale to obtain another distance
scale. Other transformations would not lead to a distance scale, since they would
``distort" the original distance scale. For instance, given a distance scale m, using

2' mm =  as a distance measure would distort the original distance scale, so we cannot
use 2m  as a legitimate distance measure.

In general, this leads to the notion of admissible transformation, i.e., a
transformation that leads from one scale to another scale.

Admissible Transformation. Given a scale mNRSERS ,, , a transformation f is

admissible if ',, mNRSERS  is a scale, where mfm o='  is the composition of f and

m.

As a different example, suppose that we want to study failure severity, whose
empirical relational system is defined by the set of failures F and the relationship

thanseveremore __ . Suppose we have a scale m, with values 1, 2, and 3. In this case,
we can obtain a new measure m' by simply mapping these three values into any three
values, provided that an order is defined among them and that the measure preserves
that order. For instance, we can use the numeric triples 2, 4, 6, or 6, 15, 91, to obtain a



new scale. The set of admissible transformations in this case is broader than the set of
admissible transformations for the distance between two points, since we are not forced
to using only proportional transformations to obtain new scales. We could even use the
triples a, b, c, or e, r, w, with the usual alphabetical ordering, or the three values low,
medium, high, with the obvious ordering among them.

A broader set of admissible transformations means a broader choice of measures,
but this comes with a price. All that our knowledge on failure severity allows us to tell
is whether a failure is more severe than another, but nothing about the relative
magnitude of severity. Therefore, it does not make sense to say that a failure is twice as
severe as another failure, since the truth value of this statement depends on the specific
scale used. For instance, one could say that medium severity failures are twice as
severe as low severity ones according to the scale with values 1, 2, 3, or even the scale
with values 2, 4, 6, but this would no longer be true according to the scale with values
6, 15, 91, let alone the scales with values a, b, c, or e, r, w. Instead, it makes sense to
say that the distance between two points is twice as much as the distance between two
other points. This statement does not change its truth value regardless of the scale
chosen. This is a meaningful statement, according to the following definition.

Meaningful Statement. A statement about the values of a scale is meaningful if its truth
value does not change if the scale is transformed according to any of its admissible
transformations.

As an additional price to pay, we cannot use the values of the measure for failure
severity as we would use the values we obtain for the distance between two points. For
instance, we can sum the values we compute for distance measures, but it does not
make sense to sum the values we obtain for failure severity.

5.5. Scale Types

The set of admissible transformations, the set of meaningful statements, and the set
of operations that can be used on the values are related to each other. Specifically, the
set of admissible transformation defines the measurement level of a scale. In general,
the narrower the set of admissible transformations, the smaller the number of scales,
and the more informative the scale we choose. In Measurement Theory, five
measurement levels are usually used. Here, we describe them, from the least to the
most informative one. They are summarized in Table 1 along with their properties.

5.5.1. Nominal Scale.

A scale is a nominal one if it divides the set of entities into categories, with no
particular ordering among them. For instance, the programming language used for a
program is a nominal measure, since it allows programs to be classified into different
categories, and no ordering among them is available. The set of admissible
transformations is the set of all one-to-one transformations, since the specific values of
the measures do not convey any particular information, other than the fact that they are



different, so they can be used as labels for the different classes. For instance, a
transformation that changed all the names of the programming languages would be
acceptable, as long as different names are transformed into different names. We could
have also used numbers to identify the programming languages, as long as different
programming languages are encoded with different numbers. It is obvious that we
cannot carry out any arithmetic operations on these numbers, since it makes no sense to
sum or multiply them, and it does not make sense to order them, since there is no
ordering of programming languages.

Nominal scales are the least informative ones, but they may well provide important
information. For instance, a scale for the gender of people is a nominal one. However,
scientific research has shown that gender may be related to diseases (e.g., the people of
one gender may be more likely to have a disease than the people of the other gender) or
to immunity to diseases. Therefore, nominal measures do provide important pieces of
information. For instance, the programming language used is fundamental in
interpreting models built on the number of lines of code.

5.5.2. Ordinal Scale.

A scale is an ordinal one if it divides the set of entities into categories that are
ordered. For instance, an ordinal scale is the one that divides programs into small,
medium, and large ones. The difference with the nominal scale is therefore that we
have an additional piece of information, i.e., we know how to order the values of the
measure. The set of admissible transformations is the set of strictly monotonic
functions, i.e., those functions that preserve the ordering among the values of the
measure, since we do not want to lose this piece of information. These functions are a
subset of the one-to-one transformations, which are admissible for nominal scales. For
instance, we can use the values a, b, and c with the usual alphabetical ordering instead
of small, medium, and large. We might as well use the values 1, 2, and 3, with the
usual, trivial ordering of integers. However, these values must then be used with
caution. Unlike in the nominal case, we can compare these values, but we still cannot
use them for arithmetic operations. For instance it would make no sense to sum the
values 1 and 1 to obtain 2 and claim that 2 is the value of the size of a program segment
obtained by putting together the two program segments whose values are 1 and 1. (Just
imagine summing 3 and 3: the result would not even be defined.)

5.5.3. Interval Scale.

In an interval scale, the distance between two values is the basis for meaningful
statements. For instance, it makes sense to say that the distance in time between the
start of a software project and its completion is three times as much as the distance
between the start and the end of the implementation phase. This statement makes sense
regardless of the origin of time we adopt (e.g., foundation of Rome, first Olympic
games) and the unit used (e.g., seconds, hours). The set of admissible transformations is
a subset of the monotonic functions that are admissible for ordinal scales, the set of



functions of the kind bamm +=' , where b  is any number (i.e., we can change the
origin of the measure) and 0>a  (i.e., we can change the unit of the measure). Thus,
not only can we order these distances, but we can establish truly numerical relations on
them that are meaningful. What we cannot do is establish numerical statements of the
same kind on the values of the measures. For instance, it does not make sense to say
that the time at which a software project ended was twice as much as the time the
project started. However, it makes sense to subtract values of an interval measure.

5.5.4. Ratio Scale.

A ratio scale allows the definition of meaningful statements of the kind ``twice as
much" on the single values of the measure. For instance one can say that a program
segment is twice as long as another program segment. In this case, we can no longer
choose the reference origin arbitrarily, as in the interval scale case. The reference origin
is fixed, and its value is 0. On the other hand, we may change the unit without changing
the meaningfulness of statements. For instance, when measuring the volume of objects,
we can use liters, centiliters, gallons, etc. The truth value of a statement that says that
the volume of an object is twice as much as the volume of another object does not
change depending on the unit adopted. The set of admissible transformations is
therefore a subset of the set of admissible transformations for the interval case, as the
origin is now fixed. The set of admissible transformations is of the kind amm =' ,
where 0>a , since we can only change the unit of the measure. It makes sense to add
and subtract ratio measures, and to multiply and divide them by constants.

5.5.5. Absolute Scale.

Absolute scales are the most informative ones, but they are also seldom used in
practice. For instance, consider the attribute ``number of lines of code" of a program
segment. (This attribute is not the same as size, since we may want to measure size
through different measures.) There is only one possible measure for this attribute, i.e.,
LOC, so there is only one admissible transformation, i.e., the identity transformation.
Therefore, the set of admissible transformation, mm =' , is a subset of the admissible
transformations for ratio measures.

5.5.6. Scale Types and Statistics

The above classification of scales has a very important impact on their practical
use, in particular on the statistical techniques and indices that can be used. For instance,
as an indicator of ``central tendency" of a distribution of values, we can use the
following different statistics, depending on the measurement level of the scale. For
nominal scales, we can use the mode, i.e., the most frequent value of the distribution.
(Several modes may exist.) For ordinal scales, we can use the median, i.e., the value
such that not more than 50% of the values of the distribution are less than the median
and not more than 50% of the values of the distribution are greater than the median. In
addition, we can still use the mode. (There may be one or two—adjacent—medians.)



For interval scales, in addition to the median and the mode, we can use the arithmetic
mean. For ratio and absolute scales, in addition to the arithmetic mean, the median, and
the mode, we can use the geometric mean. Therefore, the higher the level of
measurement of a scale, the richer the set of indicators of central tendency. More
importantly, the higher the level of measurement, the more powerful the statistical
techniques that can be used, for instance, for ascertaining the presence of statistical
relationships between measures [7]. In particular, parametric statistical techniques may
be used only with interval, ratio, and absolute scales, while only nonparametric
statistical techniques may be used with nominal and ordinal scales. Without going into
the details of these two kinds of statistical techniques, we can say that parametric
statistical techniques may use additional information than nonparametric ones,
specifically information about the distance between values that is available in interval,
ratio, and absolute scales, but that cannot be derived in ordinal or nominal scales. Thus,
fewer data are needed to reach a statistically-based conclusion with parametric
techniques than nonparametric ones.

Table 1. Scale types and their properties.

Scale Type Admissible
Transformations

Examples Indicators of Central
Tendency

Nominal Bijections Name of programming
language (attribute:
``programming language")

Mode

Ordinal Monotonically
increasing

A ranking of failures (as a
measure of failure severity)

Mode + Median

Interval Positive linear Beginning date, End date of
activities (as measures of time)

Mode + Median +
Arithmetic Mean

Ratio Proportionality LOC (as a measure for program
size)

Mode + Median +
Arithmetic Mean +
Geometric Mean

Absolute Identity LOC (as a measure of the
attribute ``number of lines of
code")

Mode + Median +
Arithmetic Mean +
Geometric Mean

5.6. Objective vs. subjective measures.

A distinction is sometimes made between ``objective" and ``subjective" measures.
The distinction is based on the way measures are defined and collected. Objective
measures are defined in a totally unambiguous way and may be collected through
automated tools, while subjective measures may leave some room for interpretation and
may require human intervention. For instance, ranking a failure as catastrophic, severe,
non-critical, or cosmetic may be done based on human judgment. As a consequence,
subjective measures are believed to be of lower quality than objective ones. However,
there are a number of cases in which objective measures cannot be collected, so
subjective measures are the only way to collect pieces of information that may be
important and useful. Efforts must be made to keep the discrepancies among the values



that are provided by different people as small as possible. Guidelines can be provided
for limiting the amount of variability in the values that different people can give to a
measure. As an example, the definition of values for an ordinal measure should be
accompanied by an explanation of what those values really mean. So, if we have a size
measure with values, small, medium, and large, we need to explain what we mean by
each of the three values. Otherwise, different people with different intuitions may
provide totally different values when ranking a program according to that measure.

6. Property-based Approaches

Representational Measurement Theory is not the only way the properties of the
measures for software attributes have been modeled. In recent years, a few studies have
proposed to describe the characteristics of the measures for software attributes via
mathematical properties, in the same way as other concepts have been described in the
past (e.g., distance). Based on an abstract description of a software artifact, each
attribute is associated with a set of properties that its measure should satisfy. A few sets
of properties have been defined [8, 9], which address single software attributes, e.g.,
complexity, or general properties for software measures [10]. Here, we summarize the
proposal of [11] because it addresses several different software product attributes. The
proposal is based on a graph-theoretic model of a software artifact, which is seen as a
set of elements linked by relationships. The idea is to characterize the properties for the
measures of a given software attribute via a set of mathematical properties, based on
this graph-theoretic model. We describe the basic concepts of the approach and the sets
of properties for the measures of four internal software attributes of interest.

System, Module, and Modular System. A software artifact is modeled by a graph
RES ,= , called system, where the elements of a software artifact are modeled by

the nodes, and the relationships by the edges. The subgraph that represents the elements
and relationships of a portion of the artifact is called a module. So, mm REm ,=  is a

module of S if and only if EEm ⊆ , mmm EER ×⊆ , and RRm ⊆ . A module is
connected to the rest of the system by external relationships, whose set is defined as

( ) ( ) ( ){ }mmmm EeEeEeEeeemOuterR ∈∧∉∨∉∧∈= 212121 |, . A modular

system is one where all the elements of the system have been partitioned into different
modules. Therefore, the modules of a modular system do not share elements, but there
may be relationships across modules.

Figure 2 shows a modular system with three modules 1m , 2m , 3m .
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Fig. 2. A modular system.

Because of its generality, this graph-based model may be applied to several
different kinds of software artifacts, including specifications, designs, code, etc. For
instance, when modeling software code, elements may represent statements,
relationships transfers of control from one statement to another, and modules functions.

A few additional definitions of operations and properties of modules have been
defined, as follows ( 111 , mm REm = , 222 , mm REm = , and mm REm ,= ).

• Inclusion. Module 1m  is included 2m  (notation 21 mm ⊆ ) if and only if

21 mm EE ⊆  and 21 mm RR ⊆ .
• Union. Module m  is the union of modules 1m  and 2m  (notation 21 mmm ∪= )

if and only if 21 mm EEE ∪=  and 21 mm RRR ∪= .
• Intersection. Module m  is the intersection of modules 1m  and 2m  (notation

21 mmm ∩= ) if and only if 21 mm EEE ∩=  and 21 mm RRR ∩= .
• Empty module. Module m  (notation ∅=m ) is empty if and only if

∅∅= ,m . The empty module is the ``null" element of this small algebra.

• Disjoint modules. Modules 1m  and 2m  are disjoint if and only if ∅=∩ 21 mm .

We describe the properties for the internal attributes size, complexity, cohesion and
coupling. Size and complexity may be defined for entire systems or modules of entire
systems. Cohesion and coupling may be defined for entire modular systems or modules
in a modular system. For simplicity, we only show the properties for the measures of
cohesion and coupling of modules, and not of entire modular systems.

Size. The basic idea is that size depends on the elements of the system. A measure
( )SSize  of the size of a system RES ,=  is

• non-negative: ( ) 0≥SSize



• null if E is empty: ( ) 0=⇒∅= SSizeE

• equal to the sum of the sizes of any two of its modules 111 , mm REm = ,

222 , mm REm =  such that { }21, mm EE  is a partition of E :

( ) ( ) ( )212121 mSizemSizeSSizeEEEEE mmmm +=⇒∅=∩∧∪=

Complexity. Complexity depends on the relationships between elements. A measure
( )SComplexity  of the complexity of a system >=< RES ,  is

• non-negative: ( ) 0≥SComplexity
• null if R is empty: ( ) 0=⇒∅= SComplexityR
• not less than the sum of the complexities of any two of its modules

111 , mm REm = , 222 , mm REm =  without common relationships:

( ) ( ) ( )2121 mComplexitymComplexitySComplexityRR mm +≥⇒∅=∩
• equal to the sum of the complexities of two disjoint modules:

( ) ( ) ( )2121 mComplexitymComplexitySComplexitymm +=⇒∅=∩

Cohesion. Cohesion is based on the internal relationships of modules. A measure
( )mCohesion  of the cohesion of a module mm REm ,=  of a modular system is

• non-negative and with an upper bound: ( ) MaxmCohesion ≤≤0
• null if mR  is empty: ( ) 0=⇒∅= mCohesionRm

• non-decreasing if relationships are added to the set of relationships of a module:
given two modules 111 , mm REm = , 222 , mm REm = , we have

( ) ( )2121 mCohesionmCohesionRR ≤⇒⊆
• non-increasing if two modules that are not linked by any relationships are

grouped in a single module:
( ) ( ) ( ) ( ) ( )212121 mCohesionmCohesionmmCohesionmOuterRmOuterR +≤∪⇒∅=∩

Coupling. Coupling depends on the relationships that link a module to the rest of the
system. A measure ( )mCoupling  of the coupling of a module mm REm ,=  of a

modular system is

• non-negative: ( ) 0≥mCoupling
• null if ( )mOuterR  is empty: ( ) ( ) 0=⇒∅= mCouplingmOuterR
• non-decreasing if relationships are added to the set of external relationships of a

module: ( ) ( ) ( ) ( )2121 mCouplingmCouplingmOuterRmOuterR ≤⇒⊆



• not less than the sum of the couplings of any two of its modules
111 , mm REm = , 222 , mm REm = :

( ) ( ) ( )2121 mCouplingmCouplingmmCoupling +≤∪
• equal to the sum of the couplings of two modules that are not linked by any

relationships:
( ) ( ) ( ) ( ) ( )212121 mCouplingmCouplingmmCouplingmOuterRmOuterR +=∪⇒∅=∩

Sets of properties such as the one described above may be used to

• model intuition about the properties that measures for an attribute should possess
• show similarities and differences among the measures for different attributes
• check whether a given measure is consistent with intuition: if a measure satisfies

the set of properties for an attribute does not imply that that measure is valid for
the attribute it purports to measure, but as supporting evidence. On the other
hand, if a measure does not satisfy the set of properties for the attribute it
purports to measure, then it is not a measure for that attribute.

7. Measures for Internal Product Attributes

Many software measures have been defined over the last few years, mainly for
programs. There are two reasons for this. Programs are the main products of software
development, so they are always built during software development. The other artifacts
may not always exist or they may not be explicitly and completely recorded. The
second reason is that software code is a totally formal artifact, so it can be
automatically processed to extract measures. Instead, the other software artifacts (e.g.,
requirements, specifications, etc.) are seldom fully formal, so they cannot usually be
processed as easily in an automated way. In addition, human intervention may be
required, so the measures obtained are more subjective than those for software code.
Nevertheless, measures for artifacts other than software code exist, since measurement
should be used in all phases of the software process, especially in the early ones, which
are believed to have the biggest influence on the entire software process.

In what follows, we concisely describe a number of measures that have been
defined for different software artifacts to measure a number of software attributes.
Before proceeding, it is necessary to say that these measure have been seldom defined
according to the concepts of Measurement Theory or the property-based approaches.
This makes their adherence to intuition questionable in some cases.

7.1. Requirements

Measures for the early development phases would be the most useful ones, since
the early phases and the artifacts they produce are believed to have the largest impact
on the entire software development process and the final product. However, few



measures have been defined for the artifacts produced during the early phases. One of
the reasons is that these artifacts are hardly ever formal in nature, and, therefore, it is
hardly ever possible to analyze them in an automated fashion. Nevertheless, due to the
need for early measures, measures for requirements have been defined.

7.1.1. Requirements Count

A widely used measure is requirements count, which is intended to measure the size
of a software application. As such, it can be used to come up with at least a rough
estimate of the size of the final product and, more importantly, time and effort required
for developing the software product. This latter estimation may be carried out through
mathematical estimation models (e.g., based on the average productivity in previous
projects, interpreted, for instance, as the average time required for coding a
requirement), or based on personal experience. The variations in the requirements count
over time has also been used to quantify the volatility of requirements, which is a
frequent phenomenon in industrial software development. Good definition and practical
application of requirements count require that all requirements be of the ``same size,"
i.e., there shouldn't be requirements with intuitively different sizes, or, alternatively,
requirements with intuitively different sizes should be given different ̀ `weights."

7.1.2. Function Points

Another measure has emerged over the years and is commonly used: Function
Points. The aim of Function Points (FP) [12] is to measure software functionality. On
an intuitive level, the more functionality in a program, the higher the number of
Function Points. The attribute ``functionality," however, is quite elusive, so Function
Points have been often taken as an operational definition of a measure for
functionality, without much formal consideration on the intrinsic characteristics of the
functionality attribute.

Function Points abstract from the specific languages used to specify, design, and
implement a software system, so they are not a measure of the size of the final product.
Due to the informal nature of requirements, Function Points are a subjective measure.
Function Points are now used for several purposes, including contracts and pricing.

The computation of FP is carried out in two steps. First, Unadjusted Function Points
(UFP) are computed. Second, a correction factor, Technical Correction Factor (TCF), is
computed. The value of FP is the product TCFUFPFP ⋅= .

Unadjusted Function Points are computed based on element types belonging to the
five categories below, which are used to summarize the input/output behavior of the
software system and the internally handled data:

• external input types: each unique (different format or different processing logic)
user data or control input type that enters the external boundary of the application
and adds or changes data in a logical internal file type (include transactions from
other applications);



• external output types: each unique user data or control output type that leaves the
external boundary of the application (include reports and messages to the user or
to other applications);

• logical internal file types: each major logical (from the viewpoint of the user)
group of user data or control information that is generated, used, maintained by
the application;

• external interface file types: files (major logical group of user data or control
information) passed or shared between applications (outgoing external interface
file types are also counted as logical internal file types);

• external inquiry types: each unique input/output combination, where an input
causes and generates an immediate output (the input data is entered only to direct
the search and no update of logical internal file type occurs).

Each element type of the software system (e.g., each different external inquiry type)
is ranked on a three-valued complexity scale with values low, medium, high. A weight

jiW ,  is associated with each element type i and complexity value j. Table 2 shows the

values, which were determined by ``trial and error." Each element type therefore
contributes to UFP according to its weight, so the value of UFP is obtained by
summing all the products given by the number of elements types of kind i and
complexity j times jiW ,

∑ ∑
∈ ∈

=
5..1 3..1

,,#
i j

jiji WesElementTypUFP

Table 2. Weights for the computation of Unadjusted Function Points.

                  Complexity
Function Types

Low Average High

External inputs 3 4 6
External outputs 4 5 7
Internal logical files 7 10 15
External interface files 5 7 10
External inquiries 3 4 6

The value of UFP is multiplied by a correction factor called Technical Complexity
Factor (TCF), which accounts for 14 different General System Characteristics kGSC of
the software system: data recovery and back-up, data communication, distributed
processing, performance issues, heavily used configuration, advanced data entry and
lookup, online data entry, online update of master files, complex functionality, internal
processing complexity, reusability, installation ease, multiple sites, modifiability. These
characteristics are ranked according to their degree of influence kDegGSC  from



``None" to ``Essential" and are accordingly associated with a value in the 0 – 5 range.
The value of TCF is obtained as follows:

∑
∈

+=
14..1

01.065.0
k

kDegGSCTCF

The idea is that the impact of each kGSC  on FP has a 5% range, the sum of the

kDegGSC 's is multiplied by 0.01 (i.e., 1%). In addition, if the influence of all kGSC 's

is rated as ``Essential" the value of ∑
∈ 14..1

01.0
k

kDegGSC  is 0.7. At the other extreme, if

all the influence of all kGSC 's is rated as ``None" the value of ∑
∈ 14..1

01.0
k

kDegGSC  is

0. Therefore, there is a 70% oscillation interval, which explains the number 0.65 in the
formula for TCF, since TCF varies in the [ ]35.1,65.0  range.

Function Points are therefore computed based on subjective considerations. The
extent of the discrepancies in the counting of Function Points by different people has
been studied in a few works (e.g., [13]). At any rate, the International Function Points
Users Group (IFPUG), an international organization with local chapters, periodically
provides and refines existing guidelines to reduce the extent of subjectivity.

Several variants of Function Points have been defined. Among them, Feature Points
[14] introduce Algorithmic Complexity as an additional element type and modify some
values of the original complexity weights. Mark II Function Points [15] simplify the set
of element types. A system is viewed as a set of ``transaction types," composed of
input, processing, and output, used to compute the Unadjusted Function Points are.
Then, Mark II Function Points are computed by multiplying the Unadjusted Function
Points by a correction factor which takes into account 19 General System
Characteristics.

The original justifications of Function Points were founded on Halstead's Software
Science (see Section 7.4.2). Over the years, Function Points have been used as a
measure of several attributes [16], including, size, productivity, complexity,
functionality, user deliverables, overall behavior, or as a dimensionless number.
Despite these theoretical problems, Function Points are widely spread and used as a de
facto standard.

7.2. Specifications

Few measures exist for the attributes of software specifications. However, it would
be important to have an early quantitative evaluation of the attributes of a software
specification, since the early phases and artifacts are commonly believed to be the most
influential ones during software development. The lack of measures for specifications
is mainly due to the fact that specifications are usually written in plain text, so it is
difficult to build ``objective" measures that can be computed automatically. Measures



have been defined for formal or semi-formal specifications, since the measures can be
defined in an ``objective" way (i.e., no subjective assessments are required) and
computations can be automated. As an example, a preliminary study was carried out on
software specifications written in TRIO+ [17], a formal object-oriented specification
language. Another application of software measurement to specifications is in [18].

7.3. Designs

A few measures have been defined for high-level and low-level design.

7.3.1. High-level Design Measures

In [19], measures have been defined for cohesion and coupling of the high-level
design of an object-based system, which differs from a full-fledged object oriented
system because objects are instances of types that are exported by modules, i.e., there is
no real syntactic concept of class, and inheritance is not allowed.

At the high-level design stage, only the interfaces of modules of the system
(functions types, variables, and constants defined in the module interfaces) are known.

The measures are based on two kinds of interactions, which may relate data to data
or data to functions. There is an interaction between two data (DD-interaction) if one
appears in the definition of the other (e.g., a type appears in the definition of another
type, variable, constant, or function parameter). There is an interaction between a piece
of data and a function as a whole (DF-interaction) if the piece of data appears in the
definition of the function (e.g., a type appears as the type returned by the function or as
the type of a parameter). The notions of interaction are also transitive, so, for instance,
data A and C also interact if A interacts with a third piece of data B that interacts with
C. Some interactions contribute to cohesion, other to coupling. The interactions
between data and functions of a module and the interactions between data of a module
(excluding the parameters of functions) are considered cohesive. The interactions
between data of a module and data of other modules are believed to contribute to
coupling. More specifically, some interactions contribute to import coupling of a
module (those in which data from some other module appears in the data definitions of
a module) and others to export coupling (those in which data from the module appear in
the data definitions of some other module).

Among the measures defined for cohesion, the Ratio of Cohesive Interactions is the
ratio of cohesive interactions existing in a module to the maximum number possible of
cohesive interactions for that module, based on its data. Among the coupling measures,
Import Coupling is the number of interactions that link data from other modules to data
in a module. These measures are consistent with the properties shown in Section 6 for
cohesion and coupling measures. In addition, it was shown that they could be used as a
part of models for fault-proneness of the final software.

Among recent developments, measures have been proposed for object-oriented
systems [20, 21], some of which may be applied to software designs and software code.
The measures defined in [20] are explained in more detail in Section 7.4.4.



7.3.2. Low-level design measures

Based on the modularization of high-level design, low level design takes care of the
designing the parts of the single modules. Information Flow Complexity [22] is
probably the best-known measure for low-level design. The measure is based on the
communication flows to and from a function. The input parameters and the global data
structures from which the function retrieves information are called the fan-in. The
output parameters and the global data structures that the function updates are called the
fan-out. Information Flow Complexity is defined as follows:

( )2fanOutfanInlengthexitynFlowComplInformatio ⋅⋅=

where length is a suitable size measure, and fanIn and fanOut are the number of
parameters and data of the fan-in and fan-out, respectively.

7.4. Code

A very large number of measures have been defined for software code. Here, we
report on some of the best-known and widely used ones.

7.4.1. Lines of Code

The number of Lines of Code (abbreviated as LOC) is the oldest and most widely
used measure of size. It is commonly used to give an indication about the size of a
program and in several models for the prediction of effort, fault-proneness, etc. The
success of LOC is due to the fact that it is easy to understand and to measure. A few
variations exist, though. For instance, one needs to decide whether to count only
executable lines, as was done when LOC was first introduced, or declaration lines as
well. Also, one needs to decide whether comment lines and blank lines should be
counted. However, in the vast majority of cases, there is a very high linear correlation
between the values of LOC obtained with or without comment and blank lines.
Therefore, the predictive power is not really affected by these decisions. Nevertheless,
it is sensible, in a specified development environment, to define a consistent
mechanism for counting LOC, so the measures collected are comparable.

7.4.2. Halstead's Software Science

Halstead's Software Science [23] was an attempt to build a comprehensive theory
for defining measures for several attributes of software code. The idea was to identify a
set of basic elements of programs and measure them to build measures for a number of
attributes of software code. Software Science argues that a program is composed of two
basic types of elements, i.e., operators and operands. Operands are variables and
constants. Operators are symbols or combinations of symbols that affect the values of
operands. The basic measures computed on a program, on top of which Software
Science was built, are:



• 1η : the number of distinct operators that appear in the program
• 2η : the number of distinct operands that appear in the program
• 1N : the total number of occurrences of operators in the program
• 2N : the total number of occurrences of operands in the program

• *
2η : the number of conceptual input/output operands of in the program, i.e., the

input and output parameters that would be needed if the program was represented
as a function

Therefore, the main assumption of Software Science is that all measures for several
attributes can be obtained based on these five measures. Through considerations
deriving from a number of sources, including Information Theory and
Thermodynamics, a number of measures are defined, as follows.

Program Length. A program is made only of operators and operands, so its length is
given by the total number of occurrences of operators and operands, 21 NNN += .

Length Estimator. Program length is known only upon program completion. However,
it is useful to know or estimate the length of a program at the beginning of coding for
prediction purposes, for instance to estimate the effort needed. Under the assumption
that the number of distinct operators and operands of a program can be estimated early
during coding, an estimator of length is derived as 222121 loglogˆ ηηηη +=N .

Volume. The volume of a program is the number of bits needed to represent it, so it is
another measure of size. It is computed as ( )212log ηη += NV .

Potential Volume. This is the minimal number of bits required to represent a program,
which would be attained if the function implemented by the program was already
available. In that case, it is argued that the number of operators would be two (the name
of the function and a mechanism to group the function's parameters), the number of
operands would be *

2η , and each operator and operand would appear only once, so the

potential volume is ( ) ( )*
22

*
2

* 2log2 ηη ++=V .

Program Level. The level of the program (L) is an indicator of how close a program is
to its potential volume, so *VVL = .

Estimator of Program Level. Since the value of *
2η  may be difficult to compute, the

following estimator is introduced for L: ( )2122ˆ NL ηη= .

Effort. Effort is measured as the number of elementary discriminations (of the kind
yes/no) that a programmer must make to write a program. It is argued that this number
is LVVVE == *2 . Since L may be difficult to obtain, due to the fact that it is

computed based on *
2η , L̂  may be used in the formula.



Time. The time (in seconds) needed to write a program is given by the number of
elementary discriminations divided by the number of elementary discriminations that a
programmer makes every second, assumed to be 18, so 18ˆ ET = .

The example in Figure 3 (in a Pascal-like language) shows how the computations
are carried out.

Operators Occurrencies Operands Occurrencies

begin … end 2 max 4
:= 2 0 2
; 5 x 5
read 2
(…) 3
while … do 1
<> 1
if … then 1
> 1

begin
  max:=0;
  read(x);
  while x<>0 do
  begin
    if x>max
    then max:=x;
    read(x)
  end;
  write(max);
end; write 1

2*
2 =η  (x and max) 101 =η 191 =N 32 =η 112 =N

30=N , 38ˆ =N , 112=V , 61.11* =V , 1037.0=L , 0545.0ˆ =L , 1568=E ,
1.87ˆ =T

Fig. 3. Example of computations for Halstead's Software Science.

Halstead's Software Science's theoretical foundations and derivations of measures
are somewhat shaky, and it is fair to say that not all of the above measures have been
widely used in practice. However, due to their popularity and the availability of
automated tools for computing them, some of the above measures are being used. As an
example, a value 4000≤V  would be considered desirable for maintainability
purposes in some environments.

7.4.3. Cyclomatic Complexity

The Cyclomatic Complexity [24] of a program is a measure for the complexity of the
control flow graph of the program. The basic assumption is that the higher the number
of paths in a program, the higher its control flow complexity. Since the number of paths
in a control flow graph is infinite if the program has at least one loop, Cyclomatic
Complexity only counts the so-called base paths, i.e., those paths from the start point to
the end point of a program whose linear combinations provide all the paths in the
program. Based on graph theory results, the number of base paths in a program is
computed as ( ) 2+−= neGv , where e  and n  are the number of edges and nodes in



the control flow graph, respectively. If a program has one main routine and ( )1−p
subroutines, the value of ( )Gv  is computed as ( ) pneGv 2+−= .

It is not necessary to build the control flow graph of a program to compute its
Cyclomatic Complexity. Mills' theorem shows that ( ) pdGv += , where d  is the
number of decision points in the program including its subroutines (an n-way decision
point is counted n-1).

Figure 4 contains the control flow graph for the software code in Figure 3, for
which ( ) 3267 =+−=Gv .

Fig. 4. Control flow graph for the program of Figure 3.

``Rules of thumb" are sometimes used to curb the control flow complexity of
software modules. In different application environments, upper limits ranging between
7 and 15 have been suggested.

7.4.4. Object-oriented measures

Following the success of Object-Oriented techniques, several measures have been
proposed. The measures that have been most widely discussed and accepted are those
defined in [20], which we now concisely describe. Some of these measures can also be
used on object-oriented designs. We also provide a rough idea of the median values for
them, based on the systems studied in [20, 25].

• Weighted Methods per Class (WMC). It is the sum of the complexities of the
methods of a class. Any complexity measure can be taken as the one to be used
for the single methods, i.e., it is not fixed in the definition of the measure. By
assuming each method has a unit weight, median values range between 5 and 10.

• Number Of Children of a class (NOC), computed as the number of classes that
directly inherit from a class in the inheritance hierarchy. Median values are
around 0.

• Depth of Inheritance Tree (DIT), which is the length of the longest path starting
from the root of the inheritance hierarchy to the terminal classes. Median values
range between 0 and 3.

• Coupling Between Object classes (CBO) , which is the number of classes to which
a class is coupled, i.e., those classes that use that class or are used by that class.
Median values may range around 5.



• Response For a Class (RFC), defined as the number of methods of a class that
can be executed when a class receives a message. Median values range between
15 and 20.

• Lack of COhesion in Methods (LCOM) , computed as the difference between the
number of pairs of methods that do not share class variables (e.g., member data)
and the number of pairs of methods that share class variables, if this difference is
non-negative, otherwise LCOM is 0. Median values range between 0 and 1.

Although their theoretical validation is not fully convincing, the above measures
(except LCOM) have been found generally useful in building models for various
attributes. Many other measures have been defined. A comprehensive set is proposed in
[21]. Surveys can be found in [26, 27].

7.4.5. Functional Cohesion

Three measures for functional cohesion are introduced in [28], based on the data
tokens (i.e., the occurrences of a definition or use of a variable or a constant) that
appear in a procedure, function, or main program. Each data token is on at least one
data slice, i.e., a sequence of data tokens belonging to those statements that can
influence the statement in which the data token appears, or can be influenced by that
statement. Those data tokens that belong to more than one data slice are called glue
tokens, and those that belong to all data slices are called super-glue tokens. Given a
procedure, function, or main program p, the following measures SFC(p) (Strong
Functional Cohesion), WFC(p) (Weak Functional Cohesion), and A(p) (adhesiveness)
are introduced for all the data slices that refer to the results of the computations

( )
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okensSuperGlueT
pSFC

#
#

= ( )
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#
#

=

( )
DataSlicesAllTokens
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#

⋅
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∑
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It can be shown that ( ) ( ) ( )pWFCpApSFC ≤≤ , so the measures for cohesion
define a range with lower bound ( )pSFC  and upper bound ( )pWFC  and ``central
value" ( )pA . As an example, consider the function in Figure 5, which computes the
minimum and the maximum values of a series of n integer numbers (with 1≥n ). The
procedure computes two outputs (min and max), so we are interested in the data slices
for those two outputs. For each data token in the procedure, the table in Figure 5 shows
the occurrence number and whether it belongs to the min or the max data slice (YES or
NO in the corresponding column). There are two data slices, so all glue tokens are also
super-glue ones and the values for the three cohesion measures coincide, i.e.,

36.0228)()()( ==== pWFCpApSFC .



Data Token Occurrence min max

n 1 YES YES
min 1 YES NO
max 1 NO YES
i 1 YES YES
temp 1 YES YES
temp 2 YES YES
min 2 YES NO
temp 3 YES NO
max 2 NO YES
temp 4 NO YES
i 2 YES YES
2 1 YES YES
n 2 YES YES
temp 5 YES YES
temp 6 YES NO
min 3 YES NO
min 4 YES NO
temp 7 YES NO
temp 8 NO YES
max 3 NO YES
max 4 NO YES

procedure minmax
          (n: integer;
           var min, max: integer);
  var i: integer;
      temp: integer;
begin
  read(temp);
  min:=temp;
  max:=temp;
  for i:=2 to n do
  begin
    read(temp);
    if temp<min
      then min:=temp;
    if temp>max
      then max:=temp
  end
end;

temp 9 NO YES

Fig. 5. Example of computations for cohesion measures.

7.5. Verification

Measures have been defined for the artifacts used during the verification phase.
Among these, the best known ones are coverage measures, which are used during
software testing to assess how thoroughly a program is exercised by a set of test data.
Coverage measures provide the percentage of elements of interest that have been
exercised during software testing. Below, we list a few coverage measures that can be
defined based on a given program P  and a given set of test data TD .

• Statement coverage (also called C0 coverage), i.e., the percentage of statements
of P  that are executed by at least one test in TD .

• Branch coverage (also called C1 coverage), i.e., the percentage of branches of P
that are executed by at least one test in TD .

• Base path coverage, i.e., the percentage of base paths (see Section 7.4.3) of P
that are executed by at least one test in TD . Path coverage measures cannot be



used effectively, since the number of paths of the control flow graph of a non-
trivial program (i.e., one that contains at least one loop) is infinite. Therefore,
base path coverage or other measures are used instead.

• Definition-use path coverage, i.e., the percentage of definition-use paths of P
that are executed by at least one test in TD . A definition-use path is defined as
the path between the statement in which a variable receives a value and the
statement in which that variable's value is used.

8. Measures for External Product Attributes

Several external attributes have been studied and quantified through measures.
External attributes are usually attributes of industrial interest, since they are related to
the interaction between software entities and their environment. Examples of these
attributes are reliability, maintainability, and portability. Despite their practical interest,
these attributes are often the least well-understood ones. One of the reasons is that they
have several facets, i.e., there are several different ways to interpret them.

Reliability is one of the external software attributes that have received the most
attention, because it probably is one of the best-understood one, and the one for which
it is easiest to use for mathematical concepts. Reliability as an attribute has been
studied in several other fields, including computer hardware. Therefore, a vast literature
was available when software reliability studies began and an accepted definition of
reliability was available. For software engineering applications, reliability may be
defined as the probability that a specified program behaves correctly in a specified
environment in a specified period of time. As such, reliability depends on the
environment in which the program is used. For instance, it is to be expected that a
program's reliability is different during testing than it is during operational use. There is
an important difference between software and other traditional fields in which
reliability has been studied. Software does not wear out, as does hardware, for instance.
Thus, software reliability studies have devised new reliability models that can be used
in the software field. Most of these models [29] provide an estimate of reliability based
on the time series of the failures, i.e., the the times at which failures have occurred.

Another important product attribute is the detectability of faults in a software
artifact. It is an external attribute in that it depends on the environment (e.g.,
techniques) and the time span in which the software artifact is examined. Therefore, it
is not to be confused with the presence of faults in a software artifact. Faults may be
detected in all software artifacts, and the nature of the specific artifact at hand
influences the type of methods used to uncover faults. For instance, testing may be used
to uncover faults on formal artifacts, such as programs, but executable specifications as
well. As another example, inspections may be used with most sorts of artifacts. The
simplest measure of the detectability of faults is the number of faults uncovered in a
software artifact. This number may provide an idea of the quality of the artifact.
However, it is usually useful to identify different categories of faults, which can be for
instance classified according to their criticality from the user's viewpoint or the



software developers' viewpoint. A problem may be the definition itself of a fault. For
instance, suppose that a variable is used in several points of a program instead of
another one. Does the program contain one fault or is every occurrence of the incorrect
variable to be considered a single fault? Unambiguous guidelines should be provided
and consistently applied to prevent these problems. A related attribute is the
detectability of software failures in software products.

9. Measures for Process Attributes

A number of process attributes are well understood, because they are closer to
intuition than product attributes. For instance, these attributes include development
effort, cost, and time. Process attributes often have an industrial interest. Building
measures for these attributes is not a problem, as long as some consistent criterion is
used, so measures are reliable and comparable across projects or environments. Process
attributes are also used for tracking software project progress and checking whether
there are problems with its schedule and resources. A number of derived attributes are
of industrial attributes. For instance, productivity is a popular attribute and may have
different facets depending on the process phase in which it is applied. As an example,
in the coding phase, one may interpret productivity in terms of the amount of product
or functionality delivered per unit time; in the verification phase, productivity may be
interpreted in terms of the failures caused per unit time. These derived attributes may
pose a definition problem. For instance, measuring coding productivity as the number
of lines of code produced in the unit time may unjustly reward long programs. A more
general problem that involves many process attributes is prediction, i.e., managing to
link their measures with measures for internal product and process attributes, especially
those that are available in the early development phases. Examples on how measures
for process attributes may be used are shown in Section 10.3.

Software process measurement is an important part of improvement and maturity
assessment frameworks. An example of improvement framework is the QIP, as briefly
mentioned in Section 2. Several maturity assessment framework exist, among which
the Capability Maturity Model (CMM) [30] is probably the best known one. The CMM
defines five maturity levels at which a software organization may be classified. At each
level, the CMM defines a number of Key Problem Areas (KPAs), i.e., issues that a
software organization needs to address to progress up to the next maturity level.
Process measurement is one of the KPAs addressed at the CMM level 3 (Defined
Level), so the software organization may reach the CMM level 4 (Managed Level). The
reader may refer to [31] for further information on software process measurement.

10.Practical Application of Measurement

There are several important aspects in the practical application of measurement, all of
which derive from the fact that measurement should be seen as an activity that provides
value added to the development process.



10.1. Experimental Design

The measurement goals also determine the specific ``experimental design" to be
used. We have put ``experimental design" in quotes, because that is the term used by
the scientific literature, but application of software measurement does not necessarily
entail carrying out a full-fledged scientific experiment, i.e., one where hypotheses are
confirmed or disconfirmed. What we mean here is that the measures to be defined, the
data to be collected, and the results that can be expected should be clearly specified,
and that a suitable measurement process should be put in place. At any rate, it is not the
goal of this paper to describe the various experimental designs that can be used in
software measurement even when one wants to carry out a real scientific experiment.
We simply want to highlight that it is important to identify an experimental design that
is consistent with the defined goals and the expected results. This might seem obvious,
but problems sometimes have arisen in the scientific literature and practical
applications for a variety of reasons, e.g., the measures were not the right ones for the
quantification of the attributes, the specific experimental design could not lead to the
stated conclusions, other reasons could be found for the results obtained, hidden
assumptions were present, etc.

10.2. Data Collection

Data collection is not a trivial part of software measurement, and may well take a
large amount of time and effort. Therefore, data collection should be designed and
planned carefully. Based on the measures that have been defined, data collection
requires the identification of

• all the points of the process at which data can and should be collected
• the artifacts that need to be analyzed
• who is responsible for collecting data
• who should provide data
• the ways in which data can/should be collected (e.g., via questionnaires,

interviews, automated tools, manual inspection)

Data collection should be as little invasive as possible, i.e., it should not perturb the
software development process and distract developers from their primary goals.
Therefore, all activities that can be automated should be automated indeed. This can be
done by building automated analyzers for software code, to obtain data for the
measures of internal software attributes.

More importantly, the collection of data that involves human intervention should be
automated to the extent possible. For instance, electronic data forms should be used to
collect project data from the software developers and managers, instead of other kinds
of data collection. These forms should be

• complete but concise, i.e., ask for only for the information that is necessary to
collect from developers and managers so that they should not use much time
filling the forms out



• clear, i.e., the meaning of the information that is required should be
straightforward to developers and managers, so they can provide accurate and
precise answers in little time

Automated collection has also the positive effect of feeding the data directly into
the database that contains the values, so they can be used for interpretation and
analysis.

Data collection should be timely. Sometimes, data are reconstructed a posteriori.
Though this procedure may provide useful pieces of information, there is a danger that
these data are not reliable.

Not all the collected data can be used. Some data may be incomplete (e.g., some
important pieces of information are missing), inconsistent (e.g., they conflict with each
other), or incorrect (e.g., some values may be out of the admissible range). Before the
data analysis, all these data should be removed from the database and lessons should be
learned to prevent—to the extent possible—the reoccurrence of such problems.

10.3. Data Analysis

Data analysis can be used to carry out the so-called empirical validation of software
measures, i.e., show that a measure is useful towards some parameter of industrial
interest (as opposed to the so-called theoretical validation of measures as described in
Sections 5 and 6, which entails providing sufficient evidence that a measure really
quantifies the attribute it purports to measure). This is obtained through the building of
models, based on a number of techniques.

It would be well beyond the scope of this article to provide a thorough examination
of the techniques that can be used to analyze software measurement data, since a vast
literature is available about data analysis. At any rate, we would like to point out that,
beside well-known and well-established statistical techniques such as linear regression
or principal component analysis [32], there are a number of other techniques that have
been used for data analysis in software engineering measurement. However, it is
necessary to point out a few problems of statistical analyses (e.g., see [33]). For
instance, the existence of a statistical correlation between two variables does not show
the existence of causal relation between them. In addition, given a large number of
variables, there is a high likelihood that at least two of them are linked by a statistical
correlation. Therefore, some care should be used in interpreting a statistical correlation
relation between variables.

New statistical techniques have been borrowed from other disciplines. For instance,
Logistic Regression [34] has been used originally in medicine. In its simplest form,
Logistic Regression estimates the probability that an object belongs to either of two
classes, based on the values of measures of attributes of the object. Based on a
threshold value on the estimated probability, objects are classified as belonging to
either class. For instance, Logistic Regression has been used in software measurement
to predict whether a software module is faulty based on the values of measures
collected on the module.



Machine-learning based techniques have been borrowed from artificial intelligence,
e.g., classification trees [35]. Other machine-learning techniques, e.g., Optimized Set
Reduction [36] have been defined in the context of software measurement. These
techniques divide a set of objects into subsets in a stepwise fashion based on the values
of measures for classification purposes. The goal is to obtain subsets that are
homogeneous with respect to the values of a measure for some attribute of interest. For
instance, these techniques can be used to predict which modules are faulty.

Models have been built that relate measures for internal product attributes and
process attributes, on the one side, to measures for external product attributes or
process attributes, on the other side. For instance, models have been defined that relate
a number of measures such as LOC, v(G), etc., to software fault-proneness, cost, etc. (a
review can be found in [1]). Among the best known ones, COnstructive COst MOdel
(COCOMO) [37] defines a family of models that allow for the estimation of software
cost based on LOC and a number of attributes belonging to four categories, i.e., product
attributes, computer attributes, personnel attributes, and project attributes. The
measures for these attributes are computed in a subjective way. COCOMO has
undergone several changes over the years, with the new COCOMO 2 [38].

At any rate, the derivation and use of sophisticated models may not be justified in
various application cases. For instance, suppose that software measurement is used in a
software project for tracking purposes and the focus is on elapsed time, to check
whether the project is being carried out according to the original schedule. A simple
comparison between the original schedule and the actual one will be probably sufficient
for identifying schedule slippage. Figure 6 shows the comparison between two simple
GANTT diagrams of a project that is running behind its original schedule.

requirements specification design coding verification

PLANNED

ACTUAL

requirements specification design

time

time

Fig. 6. Simple GANTT diagrams for a project.

As another example, Figure 7 shows the number of failures (divided according to
their criticality level) found in a series of consecutive baselines (i.e., intermediate
releases) through which a software product goes during coding and testing.
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Fig. 7. Failures per priority per baseline.

The data in Figure 7 may be used during coding and verification to monitor,
evaluate, and control the software process. For instance, Figure 7 shows that the
number of failures decreases in the last baselines, which suggests that the number of
faults in the software is decreasing too. The figure also shows that the number of
highest priority failures is kept under control. More information on the topic may be
found in [39, 40].

10.4. Interpretation and Use of Results

The final goal of measurement in industrial environments is not to validate
measures or build models, but to make the results obtained available to software
practitioners, who can use them in future projects. First, measurement results should be
interpreted by the software developers and managers of the environment(s) in which
the data have been collected. They are the ones that have the necessary knowledge to
understand and explain the phenomena that have been studied through measurement.
Researchers might provide tentative explanations and interpretations, but these can
hardly be conclusive if they are not validated by software practitioners. For instance,
only the knowledge of the software process and the specific project may explain why
there are few failures before baseline 4 in the project whose data are shown in Figure 7
and there is a peak for baseline 7.

Second, it is imperative to understand how the measurement results are to be used.
It should be clear from the start of a measurement program that measurement will not
be used to judge people, but to help them. If this is not clear, the measurement program



is doomed to failure, because a measurement program should always be seen as a part
of an improvement process, which entails providing better ways for software
practitioners to carry out their duties. In addition, there is a danger that software
practitioners will not cooperate in data collection or, if they do, provide reliable
information. Thus, the measurement program will be doubly unsuccessful, in that it
provides bad data and results that are not used to improve software development [39].

10.5. Standards

Standards for software quality have been defined. The best known of these is
probably ISO/IEC 9126 [41], which defines software quality as composed of six
external attributes of interest, namely, functionality, reliability, efficiency, usability,
maintainability, and portability. In turn, each of these qualities is refined into sub-
attributes. For instance, maintainability is refined into analyzability, modifiability,
stability, and testability. The ``weights" of the external attributes and sub-attributes
may vary according to the product whose quality is under evaluation. The main
problems with this standard and other quality models (e.g., see McCall's quality model
[42]) are that it is not clear

• whether the set of attributes is complete
• whether an attribute should be such or it should be a sub-attribute, and whether a

sub-attribute should be an attribute, instead
• what the definitions are for the attributes and their measures (as explained in

Sections 5 and 6).

11.Future Developments

Future work on software measurement will encompass both theoretical and
practical activities. On the theoretical side, studies are needed to better characterize the
relevant attributes to be studied and the properties of their measures. On the application
side, measurement needs to be introduced in traditional development environments and
in new ones, such as web-based applications.
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