
Information and Software Technology 52 (2010) 923–933
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Investigating the impact of a measurement program on software quality

Houari Sahraoui a,*, Lionel C. Briand b, Yann-Gaël Guéhéneuc c, Olivier Beaurepaire d

a DIRO, Université de Montréal, Canada
b Simula Research Laboratory & University of Oslo, Norway
c Ptidej Team, DGIGL, École Polytechnique de Montréal, Canada
d Rail Solutions, SNCF, France

a r t i c l e i n f o
Article history:
Received 9 July 2009
Received in revised form 25 March 2010
Accepted 26 March 2010
Available online 11 April 2010

Keywords:
Measurement program
Software quality
Empirical study
0950-5849/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.infsof.2010.03.013

* Corresponding author. Tel.: +1 514 343 5746; fax
E-mail addresses: sahraoui@iro.umontreal.ca (H.

(L.C. Briand), yann-gael.gueheneuc@polymtl.ca (
beaurepaire@sncf.fr (O. Beaurepaire).
a b s t r a c t

Context: Measurement programs have been around for several decades but have been often misused or
misunderstood by managers and developers. This misunderstanding prevented their adoption despite
their many advantages.
Objective: In this paper, we present the results of an empirical study on the impact of a measurement
program, MQL (‘‘Mise en Qualité du Logiciel”, French for ‘‘Quality Software Development”), in an indus-
trial context.
Method: We analyzed data collected on 44 industrial systems of different sizes: 22 systems were devel-
oped using MQL while the other 22 used ad-hoc approaches to assess and control quality (control group,
referred to as ‘‘ad-hoc systems”). We studied the impact of MQL on a set of nine variables: six quality fac-
tors (maintainability, evolvability, reusability, robustness, testability, and architecture quality), correc-
tive-maintenance effort, code complexity, and the presence of comments.
Results: Our results show that MQL had a clear positive impact on all the studied indicators. This impact
is statistically significant for all the indicators but corrective-maintenance effort.
Conclusion: We bring concrete evidence that a measurement program can have a significant, positive
impact on the quality of software systems if combined with appropriate decision making procedures
and corrective actions.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The software engineering community generally agrees on the
usefulness of measurement programs and quality-aware processes
to improve the quality of software systems. This consensus has
evolved from the pioneering work by DeMarco [1] and Fenton [2]
to current trends in metrics definitions [3] and capability and
maturity models, for example [4]. Yet, only a few empirical studies
[5–10] in industrial contexts support this consensus.

In this paper, we present a study to assess the impact of a mea-
surement program in an industrial context. This large-scale con-
trolled study targeted a measurement program at SNCF, the
French public railway company [11]. The results obtained show
that a well-defined measurement program helps significantly im-
prove the quality of the produced software systems and, thus, pro-
vides empirical evidence that the implementation of such a
program can be cost-effective in industry.
ll rights reserved.

: +1 514 343 5834.
Sahraoui), briand@simula.no
Y.-G. Guéhéneuc), olivier.
The implementation of the measurement program at SNCF and
the impact study presented in this paper were motivated by eco-
nomical reasons. Indeed, SNCF is a key carrier of freight and pas-
sengers in France and Europe. After the deregulation of the
transportation sector in Europe in the 1990s and in anticipation
of the opening of the sector to the European competition in
2003, SNCF faced many challenges for cost reduction. In particular,
DSIV, SNCF IT division, was the first entity to control its costs after
two internal studies conducted in 2000 and 2001 revealed that it
was necessary to improve the internal software development pro-
cess and the management of sub-contracted projects. These studies
found that more than 30% of the faults were detected after release,
as shown in Fig. 1. Following these studies, DSIV managers decided
to define and implement a measurement program to reduce the
costs and improve the quality of the delivered systems.

At the end of 2003, the MQL measurement program (‘‘Mise en
Qualité du Logiciel”, French for ‘‘Quality Software Development”)
was implemented in DSIV. Before the implementation of MQL, no
standard measurement program was uniformly used across project
teams. Few teams followed repeatable development/maintenance
processes. The quality team had to rely on testing and code inspec-
tion (check lists) to assess the quality of software systems and to
make decisions. MQL is now used internally and by sub-contractors

http://dx.doi.org/10.1016/j.infsof.2010.03.013
mailto:sahraoui@iro.umontreal.ca
mailto:briand@simula.no
mailto:yann-gael.gueheneuc@polymtl.ca
mailto:olivier. beaurepaire@sncf.fr
mailto:olivier. beaurepaire@sncf.fr
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

Fig. 1. Defect distribution in DSIV projects.

924 H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933
during software development and maintenance. It is partly based
upon the ISO 9126 Standard [12] and was developed using the
Goal-Question-Metric (GQM) approach [13]. After 2 years of opera-
tion of the MQL measurement program, we conducted an empirical
study to evaluate the impact of MQL on the quality of the delivered
systems. We selected 22 systems developed/maintained using MQL
for quality control. As control group, we selected 22 other similar
systems for which ad-hoc approaches were used to assess and con-
trol quality (referred to as ‘‘ad-hoc systems”). We chose nine quality
indicators, including six quality factors, one factor related to correc-
tive-maintenance effort, and two code cognitive complexity factors.
This study shows that MQL has a positive impact on all the indica-
tors. It provides concrete, industrial evidence that a measurement
program improves the quality of software systems.

The remainder of this paper is organized as follows. The follow-
ing section presents the MQL measurement program. Section 3 de-
scribes the design of the MQL impact study. Section 4 presents and
discusses the study results. Section 5 describes potential threats to
the validity of our study and explains how we addressed them. Fi-
nally, Section 7 concludes and outlines future work.
Fig. 2. MQL process (UM
2. The MQL measurement program

MQL was defined and implemented by DSIV, the SNCF IT
department. DSIV is responsible for the development and mainte-
nance of all software systems for SNCF customers. It is similar to
large software companies with more than 1,000 employees, has
an annual turnover of 200 million euros, and owns several hundred
live systems. Systems use various technologies, from assembly lan-
guage on mainframes to Java on J2EE platforms. DSIV works with
several sub-contractors who develop and maintain many of the
systems.

MQL was gradually implemented with the involvement of pro-
ject managers and developers. Dozens of internal and sub-con-
tracted projects are now managed using MQL. The long-term
objectives of MQL were to:

� improve predefined quality factors;
� reduce the cost of corrective maintenance;
� reduce code cognitive complexity to facilitate inspections and

evolution;

We now present the process and the measures defined in the
MQL measurement program. We also briefly discuss some lessons
learned from the implementation of MQL.
2.1. MQL process

Fig. 2 shows the process of applying MQL during software
development. Before release, project managers submit develop-
ment artifacts (source code, documentation, test suites, etc.) for
evaluation to the DSIV quality team. The evaluation takes the form
of a quality analysis (the details are given in Section 2.2). After the
evaluation, the results are discussed. In the case where quality
anomalies are found (entities with abnormal measures), project
managers could acknowledge these anomalies or explain why they
could be justified. Justifications include performance consider-
ation, schedule and cost constraints, and resource availability.
L activity diagram).

H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933 925
Unjustified new anomalies trigger the creation of new anomaly re-
ports. New and recurrent anomalies are corrected prior to the next
evaluation iteration.

For discussion and follow-up purposes, MQL evaluation results
are published using an automated reporting mechanism on an
internal Web portal.

Reports show the results of quality factors at different levels of
granularities (methods, classes, packages/modules, systems). In
addition to the factors, they include the occurrences of detected
code and design smells. Fig. 3 shows a screen shot of the first page
of an analysis report, which presents the aggregated scores of var-
ious factors for a system. Detailed scores for basic elements (such
as classes and methods) can be viewed using the navigation bar
on the top of the page.
Fig. 3. An example of a synthesis page of the web portal. (Translation from French. Tab-m
Robustness, Architecture. Tab-menu second line: Factors, ScatterPlot, Complete list, Critical cl
of code, % of intra-method comments, number of classes, number of methods, % of complex and
the six factors of the tab-menu second line. Color legend at the bottom: Actual, Accepted, Ac

Fig. 4. An example of a score evolution page of the web portal. (Translation from French.
in Fig. 3.)
These results are also compared to those of previous releases,
stored in a historical database. The Web portal helps to visualize
the evolution of quality from release to release, which makes it
possible to assess whether the objectives are reached and whether
the project quality is improving. Fig. 4 shows a screen shot of a
page with the evolution of the quality factor scores for the last
10 releases of a system. After a steady period (versions 3 to 7),
most the factors were improved in the last three versions.

The Web portal, as well as the provided information, requires
proper authentication for access. Thus, managers only access the
top-level aggregations of the data related to their projects, while
developers have access to the detailed scores given to each class/
file and method/function on which they are working. Quality ex-
perts have access to all the projects. The authentication mechanism
enu first line: Summary and the six factors Maintainability, Evolvability, Reusability,
asses, Critical Methods, History. Summary of size measures on the left: number of lines
destructured code, raw data.) Keviat diagram on the right: Summary of the Factors, and

ceptable with reservation, Rejected.

Header: Evolution of factors. Plot Y-axis: Score. Color legend of curves: the six factors

Fig. 5. Example of architectural violation (highlighted in the ellipse).

926 H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933
ensures confidentiality of the information across projects and also
reassures developers and managers that the Web portal, and by
extension the measurement program, are not used for dubious
purposes, such as hidden evaluations of personnel.

Using the Web portal and in cooperation with the project teams,
the quality team defines improvement objectives and decides
which actions to take based on measurement results, contextual
information, and the history of the system. These actions include
corrective and perfective maintenance, process improvement,
and personnel training. Project teams are required to address the
improvement objectives and perform agreed-upon actions for the
subsequent releases.

2.2. MQL analyses

Within the MQL measurement program, five types of analyses
are performed. All of them use/produce measurement and are then
components of the measurement program. In the remainder of this
section, we briefly present each of them.

2.2.1. Terminology
Before going further, we define the terminology that is used

within MQL.
A quality Factor is a quality characteristic (according to the def-

inition of the ISO 9126 Standard [12]) that might impact the cost of
development and maintenance activities. In MQL, six factors were
defined and used: maintainability, evolvability, reusability, robust-
ness, testability, and architecture quality. Quality factors cannot be
directly measured on the software products. They are estimated
based on a set of criteria.

A criterion is a product internal attribute. It could be used to
estimate one or more factors. There are four types of criteria: (1)
structural attributes such as size and dependencies between ele-
ments [14], (2) the presence of anti-patterns such as copy-paste
[15], and (3) the conformance to standards and conventions such
as naming conventions [16]. There is also one additional criterion
that is not an internal attribute, namely unit-test coverage. Criteria
are evaluated using metrics.

The relationships between factors and criteria and between cri-
teria and metrics are defined following a GQM approach. In the re-
minder of this section, we summarize how the process of
evaluating factors using criteria, and criteria using metrics. The de-
tailed application of GQM to the construction of the measurement
program MQL is beyond the scope of this paper.

2.2.2. From metrics to criteria
Basic metrics are extracted from the code using commercial

tools to calculate the scores of the criteria. Each criteria is evalu-
ated on a 1-to-4 scale, where 1 means unacceptable and 4, accept-
able. The mapping of the metric values to the 1-to-4 scale is
realized by sets of satisfaction-level rules. For example, the crite-
rion complexity of a method, a structural attribute, is derived from
the metric v(g), McCabe’s cyclomatic complexity [17] using the fol-
lowing rules:

vðgÞP 15;Complexiy score ¼ 1
10 6 vðgÞ < 15;Complexiy score ¼ 2
5 6 vðgÞ < 10;Complexiy score ¼ 3
vðgÞ < 5;Complexiy score ¼ 4

Satisfaction-level rules and thresholds are defined following the
company standards, internal experiments, and literature review.
In general, the threshold values are first set using heuristics found
in the literature. They are refined by the quality team following
an iterative process that consists of evaluating some systems and
discussing the results with the project teams. The satisfaction-level
rules could involve more than one metric. For example, rules for the
code readability involve cyclomatic complexity, size, and comment
metrics.

For the criteria related to the presence of anti-patterns, a detec-
tion mechanism is first applied. Two types of mechanisms are used,
both are based on metrics: comparing entity-metric values to rel-
ative or absolute thresholds and comparing the metrics values be-
tween pairs of entities. An example of the first type is the detection
of the presence of a blob. When the value of a complexity metric of
a class exceeds the average value of the system multiplied by a
coefficient, the class is a considered to be a blob. The second type
of detection mechanism is used for example for the anti-pattern
copy-paste. A similarity distance is calculated on metric-value vec-
tors representing pairs of methods. If this distance is lower than a
threshold, the anti-pattern is considered to be present. When the
presence of an anti-pattern is established in an entity (method,
class, or system), this entity receive a score of 4 for the presence
of the anti-pattern. Otherwise the score is 1.

For the standard-conformance criteria, the score is attributed
according to satisfaction rules that map the number of violation
to scores following predefined thresholds. In the case of architec-
ture conformance for example, the architecture of a system is re-
verse-engineered from its source code and compared against the
architectures described in the design documents. The numbers of
potential violations, as described in [18], is then derived. Fig. 5
shows an example of architectural violation. The boxes are compo-
nents (main packages/modules) and the arrows are reference links
such as invocation relationships. The arrow highlighted by the el-
lipse indicates that the component Service is using Applets, while
in the designed architecture Applets uses Service but the inverse
link is forbidden.

In the particular case of unit-test coverage, a coverage percent-
age is derived from the tests cases according to the guidelines pro-
vided in [19]. The percentage is then converted to a score using
again satisfaction-level rules.

Criteria are evaluated at different levels of granularity. For
example, code readability is evaluated at the method level whereas
the architecture conformance is evaluated at the system level. A
criteria, measured at a certain level, could be used to derive a score
at the upper level as a weighted average. For example, the code-
readability scores of a class is calculated as the average of the read-
ability scores of its methods weighted by their respective sizes in
LOC.

Criteria scores are used to calculate factor scores as it is de-
scribed in the next section. They are also used to point out prob-
lematic entities after the evaluation.

H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933 927
2.2.3. From criteria to factors
At this step all the criteria that are used to assess the quality

factors have scores in the 1-to-4 scale of satisfaction. For each fac-
tor, the result of the application of GQM is a set of influencing cri-
teria. Consequently, the factors are evaluated as a weighted
average of the corresponding criteria scores. For example, main-
tainability is derived from the following criteria: presence of some
anti-patterns (copy-paste and recursive programming), structural
complexity, code readability, conformance to some standards,
and size. The highest weight is assigned to code readability (5)
whereas the lowest one is assigned to the one of the presence of
the recursive programming anti-pattern.

Similar to the threshold values, weights are defined using heu-
ristics and then refined based on experiments and feedback from
the project teams. For example, the weight of code readability
was set to 3 in the first version of MQL. Some criteria were even re-
moved because their impact was not judged to be significant. This
was the case of the poltergeist anti-pattern that was part of the cal-
culation of the maintainability score and was removed in the third
version of MQL.

2.3. Lessons learned

The experience of implementing MQL confirmed most pub-
lished observations. We discuss here some of the most interesting
lessons that were not reported before or that slightly differ from
common beliefs.

2.3.1. Technical staff and adoption
Previous studies reported that the project technical staff was

reticent to the adoption of measurement programs (‘‘Big brother”
syndrome). The experience of MQL showed that this was not the
case. Developers were receptive to the program and perceived it
as a quality control tool rather than a management tool. This was
probably because MQL was designed and introduced by technical
staff.

2.3.2. Project managers and adoption
Project managers with little technical expertise were difficult to

convince on the ROI of MQL. The link between improving software
quality and reducing maintenance effort was perceived to be
unclear.

2.3.3. Process change management
MQL was an intrusive program with respect to the software

development process. A planned project focused on process change
management was considered vital. Such a project made the initial
adoption overhead a part of the company strategy. To this end,
long-term support from the upper-management was a necessity.

2.3.4. Impact on the adoption of new practices
When implemented, MQL helped in the adoption of new tech-

nologies and practices. After MQL, model-driven engineering and
code generation practices were easier to implement, though a sub-
stantial effort.
3. MQL impact study

The implementation of the MQL measurement program was
done in two phases. In the first (pilot) phase, some project teams
used MQL on a voluntary basis. In a second phase, the use of
MQL was generalized to almost all the project teams. The study de-
scribed in this paper is based on the data collected during the first
phase.
We present the objectives of the study, its hypotheses, and its
variables. We describe and justify the data collection and analysis.
In addition to an objective evaluation, we conducted a subjective
evaluation using a questionnaire to compare our study results with
the perception of the project and quality teams.

3.1. Objectives

The objective of this study is to evaluate and report on the im-
pact of the MQL measurement program on a set of indicators of
software development process and product quality. We investigate
three sets of quality indicators corresponding to the long-term
objectives of MQL defined in Section 4:

� product quality factors, as defined by the DSIV;
� corrective-maintenance effort;
� and, code cognitive complexity.

3.2. Hypotheses

For each of the three sets of quality indicators, we define a
hypothesis to be tested with respect to the use of the MQL mea-
surement program. For each hypothesis, HQPi, we provide its for-
mulation and rationale, based on the quality analysis process in
Fig. 2:

� HQP1: MQL-monitored systems have higher quality factor scores.
The goal of implementing the MQL measurement program is
to improve the different quality factors of the delivered systems
through, for example, refactoring and the removal of code and
design smells. Thus, we study whether the MQL measurement
program actually helps to reach this goal;
� HQP2: MQL-monitored systems require less effort on corrective

maintenance. As stated in Section 1, before the MQL measure-
ment program was designed and implemented, many defects
were detected after release, thus requiring an important correc-
tion effort. We refer to this effort as corrective maintenance
effort. We therefore study the variation of corrective effort dis-
tributions among systems using MQL and ad-hoc approaches;
� HQP3: MQL-monitored systems have less complex and more docu-

mented code. One of the objectives of the MQL measurement
program is to ease evolution due to frequent changes in require-
ments by reducing code complexity and increasing the number
of comments in the code. This is particularly crucial for SNCF
because many components are sub-contracted and there is an
important personnel turnover.

A null hypothesis HQPi0, stating that there is no difference be-
tween the two groups of systems (MQL versus ad-hoc approaches),
is defined for each alternative hypotheses HQPi. Following standard
procedures [20], we study the rejection of these null hypotheses as
a means of supporting the HQPi hypotheses.

3.3. Variables

We choose the following variables as means to assess whether
the previous hypotheses are verified or not.

3.3.1. Independent and mitigating variables
The main independent variable in our study is the program used

to monitor the quality of the systems, either MQL or ad-hoc, re-
ferred to as quality approach (QP). This variable takes value 1 for
systems monitored with MQL and 0 for ad-hoc systems.

There are, however, mitigating variables that could affect the
impact of QP on the indicators. These variables include system size
(LOC), team size (TS), team maturity (TM), and team nature (TN). In

928 H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933
addition to using these variables for sampling the systems to be
analyzed, we investigate their interaction effects with QP.

We chose a reference period (RP) to measure these variables on
each studied system to collect comparable data. The period varies
across selected systems and corresponds to the development cycle
of last completed versions of the systems, from the requirement
phase to the release. System size is measured as the number of
lines of code of the delivered release of the system at the end of
RP. The team size is the average number of team members during
RP. The team maturity is the median expertise of the team mem-
bers during the RP. The expertise of each member corresponds to
the number of years of practice for the technology and language
used. It is measured on a 0-to-4 scale where 0 (‘‘beginner”) denotes
‘‘less than 1 year” and 4 (‘‘expert”) denotes ‘‘more than 4 years”. Fi-
nally, ‘‘team nature” specifies whether the system is developed by
an internal team or a sub-contractor.

3.3.2. Dependent variables
Dependent variables are interesting indicators that may be

influenced by the independent variables. We select nine dependent
variables corresponding to the three stated hypotheses, including
six quality factors, one factor related to corrective-maintenance ef-
fort, and two code cognitive complexity factors.

Related to quality factors (first hypothesis), for consistency with
the objectives of MQL, we select the six quality factors defined by
DSIV: maintainability, evolvability, reusability, robustness, test-
ability, and architecture quality (see Section 2.2.

Using the factors that the MQL measurement program tries to
optimize could be seen as a bias. We further discuss this threat
to the validity in Section 5. However, the fact that MQL purports
to improve these indicators does not automatically imply that it
succeeds in doing so. Indeed, the relationship between MQL correc-
tive actions and the factors is not straightforward. Thus, one
important objective of our study is to verify whether applying
MQL will lead to significant improvements.

Related to corrective maintenance (second hypothesis), we use
the corrective-maintenance effort as a dependent variable. This ef-
Fig. 6. Influencing elements dist
fort is measured as the proportion of effort dedicated to fault cor-
rection during RP. Maintenance effort (time) is divided in three
categories: design, development (new features, excluding correc-
tion), and correction. For each category, we define a variable:

� PDsT: percentage of time spent in design;
� PDvT: percentage of time spent in development, including

refactoring;
� PCoT: percentage of time spent in fault correction;

with PDsT + PDvT + PCoT = 100% for a system.
Time distribution over the categories is obtained by analyzing

time sheets of project teams, covering RP. As we are interested in
corrective maintenance, only PCoT is compared across quality
approaches.

Related to code cognitive complexity (third hypothesis), we use
two dependent variables based on our assumption that code com-
plexity and comments are essential factors for facilitating
evolution:

� PCUC: proportion of complex and unstructured code. PCUC is
computed as the percentage of methods/functions with an
essential complexity ev [17] higher than 10;
� PCoC: proportion of commented methods/functions.

3.4. Data collection

We use random sampling to create the treatment group: 22 sys-
tems selected randomly from those using MQL measurement pro-
gram. To create the control group, we use matched-pair sampling
[21]: 22 systems where ad-hoc approaches were used by the pro-
ject teams to assess and control quality. These systems were se-
lected to be comparable with MQL systems in terms of the
number of lines of code, team sizes, team maturities, and team
natures.

The population of systems using MQL from which we selected
randomly our treatment group is composed of systems covering
ribution among QP groups.

H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933 929
a representative sample of the types of systems that are developed
under the supervision of DSIV. The adoption of MQL by project
teams was done on a voluntary basis. Teams were encouraged to
use MQL through tutorials given by the quality team. After discus-
sions with these teams and DSIV quality staff, we ensured that
there was no particular reason for systems using MQL to have
had a higher quality prior to the use of MQL in comparison to
non-MQL systems.

For the selection of the control group, it was difficult to find per-
fect matches for system pairs as required in random-paired sam-
pling because of the limited number of systems at hand.
However, we obtained comparable groups for the team size (TS),
maturity(TM), and nature (TN) as shown in Fig. 6, where similar
distributions can be observed across QP groups. In this figure, the
frequencies (or counts) of the systems are represented as pyramids
where the left-hand (respectively, right-hand) sides give the distri-
butions of the control (respectively, experimental) group systems
over the four mitigating factors. For system size (LOC), a single
large system that does not use MQL introduces an important differ-
ence in size between the groups. We confirm that this difference is
not statistically significant by performing a mean difference t-test.

Tables 1 and 2 gives some descriptive statistics of the depen-
dent variables. It shows that data is missing for the three effort
variables, where we succeeded in collecting data for 27 systems
only. For the remaining 17 systems, it was difficult to establish
the effort distribution accurately. Most of them are external sys-
tems (11) for which sub-contractors communicated incomplete
data. For the missing internal systems, the effort reported was
ambiguously labeled.

We performed normality tests on the extracted data to select
the more appropriate statistical test for each dependent variable.
Robustness is the only variable that is not normally distributed.

3.5. Analysis techniques

In case of normally distributed dependent variables (all but
robustness), we use a Student t-test after checking equality of vari-
Table 1
Descriptive statistics of the experimental group.

systems Min Max Mean Std. Dev.

Maintainability 22 2.51 3.89 3.42 0.37
Evolvability 22 1.87 3.89 3.34 0.53
Reusability 22 1.23 4.00 3.50 0.70
Robustness 22 2.44 4.00 3.87 0.33
Testability 22 1.72 3.82 3.07 0.58
Archi_qual 22 1.00 4.00 3.45 0.70
PCUC 22 0 16 5.27 5.43
PCoC 22 0 28 13.03 6.69
PDsT 15 0 0.60 0.24 0.17
PDvT 15 0 0.96 0.59 0.25
PCoT 15 0 1 0.17 0.25

Table 2
Descriptive statistics of the control group.

systems Min Max Mean Std. Dev.

Maintainability 22 2.35 3.54 2.85 0.32
Evolvability 22 1.85 3.45 2.61 0.47
Reusability 22 1.23 4.00 2.63 0.91
Robustness 22 2.01 4.00 3.04 0.70
Testability 22 1.69 3.47 2.31 0.48
Archi_qual 22 1.00 4.00 2.45 0.89
PCUC 22 0 45 12.29 12.38
PCoC 22 0 27 13.57 6.59
PDsT 12 0 0.70 0.22 0.20
PDvT 12 0 0.90 0.45 0.25
PCoT 12 0.05 1 0.33 0.31
ances (Levene’s test). We tested robustness, non-normally distrib-
uted, with the Mann–Whitney test. We chose a level of confidence
of 95% to reject the null hypothesis, i.e., a significance (Sig.) less
than 0.05. We also studied the distribution of data in the samples
to assess the practical significance of differences in central tenden-
cies between systems using the MQL and ad-hoc approaches.

Our study involves multiple tests, one for each of the nine
dependent variables. We correct the p-values using the Benja-
mini–Hochberg correction [22]. This correction is based on control-
ling the false discovery rate (FDR)—the expected proportion of false
discoveries among the rejected hypotheses. In general, the correc-
tion provides a good balance between discovery of statistically sig-
nificant differences and limitation of false positive occurrences.
The calculation of the correction is as follows. First, p-values of
the nine tests are sorted from the largest p-value to the smallest
one (p9 P p8 P � � �P p1). The largest p-value p9 is not corrected.
Then, each remaining p-value pi is corrected by considering its po-
sition i and the adjusted (i + 1)th p-value p0iþ1; formally:

p09 ¼ p9;

p0i ¼min p0iþ1;min
9
i
� pi;1

� �� �
:

To study the interaction effects between the quality approach and
the four mitigating variables (project size, team size, maturity,
and nature), we use a general linear model (GLM) test [23].

Finally, we compare our results of the impact of the MQL pro-
gram with subjective analyses from the project teams that MQL.
We use a questionnaire to collect the answers of the project teams
to the following questions, using a three-point Lickert scale (‘‘Yes”,
‘‘No”, ‘‘I don’t know”):

1. Does MQL impact the development effort?
2. Does MQL impact the maintenance effort?
3. Does MQL impact the number of defects?
4. Does MQL impact the sub-contractor-management effort?
5. Does MQL impact the training effort?

For each question, project members could provide an additional
explanation.
4. Results and discussion

We now present the study results for the three hypotheses on
the use of the MQL measurement program. When analyzing the
corrective-maintenance effort, the sizes of the treatment and con-
trol groups change due to missing values.
4.1. Hypothesis HQP1

Our first hypothesis is that MQL-monitored systems have high-
er quality factor scores than the other systems. As shown by the
box-plots in Fig. 7, for all quality factors, MQL systems show better
scores than ad-hoc systems. Moreover, scores of the MQL systems
show more predictable quality levels with narrower box-plots
indicating less variability in quality among MQL systems compared
to those using ad-hoc approaches.

Only one system has scores lower than the median of ad-hoc
systems for each quality factor (it appears as an outlier in the fig-
ure). After discussion with the involved project and quality teams,
we understand that this system was initially a very large and
poorly structured system using an ad-hoc quality monitoring.
The evaluated version is the result of a restructuring period using
MQL. Although several improvements took place, they were not
sufficient to significantly improve the overall quality of the system.

QA
10

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Archi_qual
Testability

Robustness
Reusability

Evolvability

Maintainability

Fig. 7. Score distribution for quality factors for MQL and ad-hoc systems.

10

12.09%

62.54%

25.36%27.03%

48.74%

24.23%

PCoT
PDvT
PDsT

Fig. 8. Effort distribution for MQL and ad-hoc systems.

930 H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933
The impact of MQL is statistically significant with a confidence
of nearly 100% (bold-face in Tables 3 and 4) for all quality factors.
The corrected p-values allow us to reject the null hypothesis HQP10

and the box-plots support the alternative hypothesis that MQL sig-
nificantly improves the quality of the systems. This improvement
is also practically significant because, for almost all of the factors,
ad-hoc systems show scores that average between 2 and 3 (accept-
able with modifications), whereas MQL system scores are consis-
tently greater than 3 (acceptable).
4.2. Hypothesis HQP2

For the second hypothesis, we want to check if MQL-monitored
systems require less effort on corrective maintenance than their
ad-hoc counterparts. MQL systems require indeed relatively less
corrective maintenance than ad-hoc systems: on average 12% of
the total development effort for MQL systems compared to 27%
for ad-hoc systems, as shown in the pie charts in Fig. 8. Though
development and fault correction effort percentages change, de-
sign effort remains almost the same across QP groups. The box-
plots in the same figure show that all but two MQL systems show
a small proportion of corrective maintenance (less than 20%). Ad-
hoc systems show higher variances in their results. The average
Table 3
Significance testing for mean differences of normally-distributed quality factors.

t-Test

t df Sig.
(2-tailed)

Mean
difference

Standard
error
difference

Maintainability �5.377 42.000 0.000 �.56364 0.105
Evolvability �4.809 42.000 0.000 �.72636 0.151
Reusability �3.584 39.489 0.001 �.87591 0.244
Testability �4.743 42.000 0.000 �.76136 0.160
Architecture

quality
�4.136 39.626 0.000 �1.00000 0.242

Table 4
Significance testing for mean differences of robustness.

Mann–Whitney test

Mann–Whitney U Wilcoxon Sig. (2-tailed) Z

Robustness 71.000 302.000 0.000 �3.643
difference between the two groups (15%) can be considered practi-
cally significant, especially for large systems with long and re-
source-consuming development cycles.

Although the effort distribution is largely in favor of MQL sys-
tems, the p-value is slightly higher than the significance threshold
set for rejecting the null hypothesis (Sig. 0.054), as shown in Table
5. Considering the objectives of our study, which is about assessing
the benefit of using a method in a company, and not establishing
scientific truth in conservative terms, we can reasonably conclude
that the proportion of the effort dedicated to corrective mainte-
nance will more likely than not decrease when using the MQL mea-
surement program.

4.3. Hypothesis HQP3

The goal of our third hypothesis is to investigate whether MQL-
monitored systems have less complex and more documented code.
We found that with the MQL measurement program, the percent-
age of complex and unstructured code drops significantly from, on
average, 13.82% to 5.27%. This difference is visible in the box-plots
of Fig. 9. More than a third of MQL systems contain less than 10% of
unstructured code. The difference between the groups is practi-
cally significant. Indeed, an increase by more than 8% of unstruc-
tured code in a large system is likely to lead to significantly
higher maintenance costs, especially if that unstructured source
code is frequently modified. Regarding the proportion of com-
mented code, we observe only a negligible difference (nearly the
same median).

While the improvement in code complexity is statistically sig-
nificant to reject the null hypothesis HQP30 (even after correction),
the improvement in terms of commented code is not, as shown in
Table 6. We believe that MQL project teams are more careful about
Table 5
Significance testing for mean differences of correction effort.

t-Test

t df Sig. (2-tailed) Mean
difference

Standard error
difference

PCoT 2.019 25 0.054 0.138 0.068

Fig. 9. Percentages of complex and commented code in MQL and ad-hoc systems.

Table 6
Significance testing for mean differences of percentages of complex and commented
code.

t-Test

t df Sig. (2-tailed) Mean
difference

Standard error
difference

PCUC 2.863 28.227 0.008 8.545 2.985
PCoC �0.142 42.000 0.888 �0.364 2.557

H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933 931
code complexity because they know that complexity metrics are
used to compute the scores of some of the reported quality factors.
This is not the case for the comments, which are perceived to be of
minor concern to the project teams. Another explanation is that in
the tools used in SNCF to extract metrics, the proportion of com-
mented code for a program is calculated on the basis of the pres-
ence of comments inside the method/function bodies. This does
not consider other forms of comments such as class comments
and our measurement may therefore be incomplete.
4.4. Subjective evaluation

Fig. 10 summarizes the results of our survey of the perceived
impact of the MQL measurement program by project teams. 82%
of the respondents stated that the MQL program does impact the
maintenance effort. When reading their explanations, a large
Fig. 10. Subjective evaluation results.
majority of teams stated that the maintenance effort is lower when
using MQL. With a similar proportion (77%), they reckoned that
MQL makes it easier to manage sub-contractor relationships.

For the other questions, more than half of the respondents
agrees that MQL does impact the number of defects (55%) and
the development effort (59%). In the first case, they indicate that
the number of defects decreases when using MQL. In contrast with
the diminution of maintenance effort, respondents note an in-
crease in development effort. This could be explained by the over-
head introduced by MQL.

Finally, unexpectedly, few respondents found that MQL facili-
tated the training of new employees. One could conjecture that
MQL, proposing documented best practices, would help training
new employees.
4.5. Conclusion

The study results confirm that systems monitored with the MQL
measurement program obtain better quality scores for all the vari-
ables on the studied systems. This improvement is statistically sig-
nificant for quality factors and code complexity. It is however
slightly above our significance threshold (0.054 > 0.05) for correc-
tive maintenance. We believe that the indicators that are signifi-
cantly improved are those on which a new measurement
program can have a rapid and measurable impact, over the chosen
reference period, such as code quality. Conversely, a longer period
of use of the MQL program may be needed before a larger impact
can be observed on corrective maintenance. Indeed, defects that
appear in a version may be due to design decisions made in earlier
versions or incorrect previous changes.

To refine our understanding of the impact of MQL, we also stud-
ied the interaction effects of the four mitigating variables defined
in Section 3.3. We have not found any significant interaction effect
after removing outliers, thus suggesting that the impact of MQL
does not depend on these variables. Our results were confirmed
by a subjective evaluation.
5. Study validity

Regarding construct validity, when mapping the hypotheses to
variables, we selected quality factors defined by SNCF rather than
defining new study-specific variables. This choice has two advanta-
ges: (1) measurement data is already available in the SNCF project
repository and (2) the selected factors are those that MQL is in-
tended to improve. However, although these indicators are docu-
mented and systematically measured, they could be significantly
improved to better capture the aspects they measure.

When establishing the hypotheses, we were particularly careful
to avoid any experimenter expectancy by conducting the study at
the University of Montreal in collaboration with Simula Research
Laboratory, while the co-author from DSIV participated only in
data collection and results interpretation. SNCF project teams
and external sub-contractors were not informed beforehand of
the study. The data was collected as part of a SNCF-wide initiative.

We did identify a possible threat to internal validity, that was
unfortunately not avoidable in our context. Indeed, 12 of the 22
MQL project teams have a permanent quality analyst attached to
the teams. In contrast, only one team of the ad-hoc systems has
such an analyst. It is, however, difficult to assess how serious this
threat is.

We are confident about the validity of our statistical analyses.
We followed a rigorous analysis protocol that enabled us to choose
the most appropriate statistical technique for each hypothesis con-
sidering the data properties. The only threats that may affect our
conclusions are ‘‘fishing and high type I error rate” and errors in

Fig. 11. Influencing elements distribution among QP groups for the 27 projects with effort data.

932 H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933
data measurement. For the first threat, since we performed multi-
ple tests (nine variables), we corrected the level of significance
using the Benjamini–Hochberg correction procedure [22]. All the
significant tests remained significant after the correction.

In the case of measurement, robustness is calculated on the ba-
sis of the unit tests actually performed. The data was provided by
the project teams, and in a few systems, it was given in a format
that made it difficult to determine the actual coverage. This diffi-
culty in analyzing the data explains in large part some surprising
results obtained for robustness. Indeed, robustness was the only
quality factor with non-normal distribution with almost all the
MQL systems having a score close to 4.

Finally, we consider that the selected systems are representa-
tive of those developed by SNCF in terms of variability in sizes
and domains and thus are not a threat to the external validity of
the study. However, as some data was missing for the effort distri-
bution, the treatment and control groups were less balanced in
terms of the number of systems (15 vs. 12) and the distributions
of team maturity and team nature, as shown in Fig. 11. This is a
possible explanation for the lack of statistical significance obtained
for the corrective-maintenance effort in Section 4.2.

More generally, SNCF itself is representative of many large com-
panies in the transportation sector and we therefore expect that
the obtained results can be interesting and generalizable to other
organizations.
6. Related work

Requirements, guidelines and principles for implementing mea-
surement programs have been discussed in many publications (see
for example [24]). These principles are usually based and illus-
trated through concrete examples of measurement programs, such
as for the program of MOTOROLA described in [25]. There are,
however, few contributions on the evaluation of measurement pro-
grams in industrial contexts. The existing contributions are in gen-
eral case studies. Very few are controlled empirical studies.

In case studies [5–7,10], the experience of implementing mea-
surement programs is discussed from different perspectives and
lessons learned are reported. Examples of these lessons are the
necessity of considering the motivation and the perception of the
developers, the reduction of the overhead introduced by the pro-
gram, and the careful use and dissemination of the collected data.

Closer to our work is the study described in [8]. The authors
conducted a survey by means of a questionnaire. Using the col-
lected data, they investigated the relationship between some orga-
nizational and technical variables, and measures of the program
success. The obtained results confirmed many general beliefs,
e.g., data collected in the programs facilitate the process of decision
making, and the involvement of the upper-management in the pro-
grams as well as the project managers improves the organisational
performance.

Another similar study is described in [9]. The authors evaluated
a measurement program implemented in Samsung in a prelimin-
ary phase by applying it on nine projects. In this case also, the re-
sults suggested that the program does improve the software
quality in the long run.

From the methodological point of view, the work presented in
[26] is particularly interesting. An approach is proposed for mea-
suring the performance of measurement programs. The approach
was tested successfully on a sample of measurement programs.

The main differences between the study reported in this paper
and the ones discussed above is that we work on a much larger
sample of projects (44), that also include a control group where
quality is not monitored or controlled by a carefully planned mea-
surement program. This enabled us to perform a quantitative and
rigorous evaluation of the implemented measurement program.
7. Conclusion

We presented an empirical study following a rigorous method-
ology to assess the impact of a measurement program (MQL) on a
set of product and project quality indicators. The study was con-
ducted in an industrial context, on 44 real-life systems of the
French-railway company SNCF. We specifically studied the impact
of the MQL measurement program (‘‘Mise en Qualité du Logiciel”,
French for ‘‘Quality Software Development”) developed and imple-
mented by the SNCF IT division DSIV, which consists of a continu-
ous process that, for each system release, allows for semi-

H. Sahraoui et al. / Information and Software Technology 52 (2010) 923–933 933
automated quality evaluations, comparisons with historical data,
and suggestions of corrective actions.

The results showed that the use of MQL has an impact on all
studied indicators. This impact is statistically significant for six
quality factors (maintainability, evolvability, reusability, robust-
ness, testability, and architecture quality) as well as for code com-
plexity. The differences between the experimental and control
groups are large enough to be of practical significance. Moreover,
all the significant benefits observed for the studied quality aspects
cumulate to bring an overall important improvement in the quality
of delivered systems. More specifically, our study demonstrated
that the MQL measurement program already meets the long-term
objectives defined by SNCF. Indeed, quality factor scores are signif-
icantly better for projects using MQL. The proportion of effort ded-
icated to corrective maintenance was reduced when using MQL.
Finally, although MQL does not improve the practice of comment-
ing the code, our study showed that it helped to better master
complexity of the produced code. More generally, our study con-
cretely supports the idea that measurement programs can have a
significant, positive impact on the quality of software systems if
put into place carefully and thoughtfully.

As expected for any industrial study, we faced many challenges,
mainly related to data collection. In particular, when dealing with
sub-contractors, it was difficult to validate the accuracy of the pro-
vided data. However, as explained in Section 5, most data was sys-
tematically collected from an existing central repository. We also
made sure to prevent possible biases that may limit the generaliza-
tion of the results, at least in the context of SNCF.

In addition to experimental results, this study highlighted pos-
sible improvements in the studied measurement program. A pro-
ject has been set up to implement these improvements. First,
more sophisticated quality models are defined using large sets of
historical data available at DSIV. These models will capture the
context of SNCF better than existing general models (aggregation
of weighted metrics following ISO 9126 [12]). Second, the algo-
rithms for code and design smell detection are refined and aug-
mented. Finally, visualization techniques are developed to better
display the analysis results and compare them with historical data.

Acknowledgments

The authors would like to thank Yvon Borri and Yves Duport for
their support in the MQL project and the SNCF DSIV quality team
for its invaluable assistance during this study. This work has been
partially funded by the Natural Sciences and Engineering Research
Council of Canada and the Research Council of Norway.

References

[1] T. DeMarco, Controlling Software Projects: Management, Measurement, and
Estimation, Yourdon Press, 1982.
[2] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
Course Technology, 1998.

[3] T. Nakamura, V.R. Basili, Metrics of software architecture changes based on
structural distance, in: Proceedings of the 11th International Software Metrics
Symposium, 2005, pp. 78–87.

[4] M.B. Chrissis, M. Konrad, S. Shrum, CMMI: Guidelines for Process Integration
and Product Improvement, first ed., Addison-Wesley, 2003.

[5] S.L. Pfleeger, Lessons learned in building a corporate metrics program, IEEE
Software 10 (3) (1993) 67–74.

[6] T. Hall, N. Fenton, Implementing effective software metrics programs, IEEE
Software 14 (2) (1997) 55–65.

[7] J. Iversen, L. Mathiassen, Lessons from implementing a software metrics
program, in: HICSS ’00: Proceedings of the 33rd Hawaii International
Conference on System Sciences, vol. 7, IEEE Computer Society, Washington,
DC, USA, 2000, p. 7040.

[8] A. Gopal, M.S. Krishnan, T. Mukhopadhyay, D.R. Goldenson, Measurement
programs in software development: determinants of success, IEEE Trans.
Software Eng. 28 (9) (2002) 863–875.

[9] H. Lee, Y. Jang, An experience of implementing software metrics in an
industrial environment, in: Proceedings of the Second International
Conference on Software Engineering Advances, 2007, pp. 42–47.

[10] I.D. Coman, A. Sillitti, G. Succi, A case-study on using an automated in-process
software engineering measurement and analysis system in an industrial
environment, in: Proceedings of the 31st International Conference on Software
Engineering, 2009, pp. 89–99.

[11] O. Beaurepaire, B. Lecardeux, C. Havart, Exploring industrial data repositories:
where software development approaches meet, in: Proceedings of the 8th
Workshop on Quantitative Approaches in Object-oriented Software
Engineering, 2004, pp. 47–59.

[12] ISO/IEC, Information Technology – Software Product Evaluation – Quality
Characteristics and Guidelines for their Use, iSO/IEC 9126:1991(E), December
1991.

[13] R. Basili, D.M. Weiss, A methodology for collecting valid software engineering
data, IEEE Trans. Software Eng. 10 (6) (1984) 728–738.

[14] S. Henry, D. Kafura, Software structure metrics based on information flow,
Trans. Software Eng. 7 (5) (1981) 510–518.

[15] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the
Design of Existing Code, Addison-Wesley, 1999.

[16] S. Hommel, Java code conventions, Technical Report, Sun Microsystems, 2000.
[17] A.H. Watson, T.J. McCabe, Structured testing: a testing methodology using the

cyclomatic complexity metric, Technical Report, NIST Special Publication 500-
235, Computer Systems Laboratory, National Institute of Standards and
Technology, 1996.

[18] N. Sangal, E. Jordan, V. Sinha, D. Jackson, Using dependency models to manage
complex software architecture, in: Proceedings of the 20th Conference on
Object Oriented Programming, Systems, Languages, and Applications, 2005,
pp. 167–176.

[19] H. Zhu, P.A.V. Hall, J.H.R. May, Software unit test coverage and adequacy,
Comput. Surveys 29 (4) (1997) 366–427.

[20] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslen,
Experimentation in Software Engineering: An Introduction, first ed., Kluwer
Academic Publishers, 1999.

[21] D.S. Moore, G.P. McCabe, Introduction to the Practice of Statistics, fifth ed.,
W.H. Freeman & Co., New York, NY, USA, 2006.

[22] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and
powerful approach to multiple testing, J. Roy. Stat. Soc. Ser. B 57 (1) (1995)
289–300.

[23] N.H. Timm, T.A. Mieczkowski, Univariate & Multivariate General Linear
Models: Theory and Applications Using SAS Software, SAS Publishing, 1997.

[24] R.J. Offen, R. Jeffery, Establishing software measurement programs, IEEE
Software 14 (2) (1997) 45–53.

[25] M.K. Daskalantonakis, A practical view of software measurement and
implementation experiences within motorola, IEEE Trans. Software Eng. 18
(11) (1992) 998–1010.

[26] M. Berry, R. Jeffery, An instrument for assessing software measurement
programs, Empirical Software Eng. 5 (3) (2000) 183–200.

	Investigating the impact of a measurement program on software quality
	Introduction
	The MQL measurement program
	MQL process
	MQL analyses
	Terminology
	From metrics to criteria
	From criteria to factors

	Lessons learned
	Technical staff and adoption
	Project managers and adoption
	Process change management
	Impact on the adoption of new practices

	MQL impact study
	Objectives
	Hypotheses
	Variables
	Independent and mitigating variables
	Dependent variables

	Data collection
	Analysis techniques

	Results and discussion
	Hypothesis HQP1
	Hypothesis HQP2
	Hypothesis HQP3
	Subjective evaluation
	Conclusion

	Study validity
	Related work
	Conclusion
	Acknowledgments
	References

