
ACM SIGSOFT Software Engineering Notes vol 20 no 3 July 1995 Page 13

Experimental Design and Analysis in
Software Engineering

Part 4: Choosing an Experimental Design

Shari Lawrence Pfleeger
Centre for Software Reliability

City University
N o r t h a m p t o n Square

London E C l V 0HB England
phone: -4-44-71-477-8426- fax: +44-71-477-8585

shari@csr.city.ac.uk

In the previous tutorials, we began to explore the reasons
for choosing one experimental design over another. Now, we
continue that discussion.

A C T O R S VS. B L O C K S

Once you decide on the number of factors appropriate for
your experiment, you must determine how to use blocking to
improve the experiment's precision. However, it is not always
easy to tell when something should be a block instead of a
factor. To see how to decide, we use the example of staff
experience with software design.

In many experiments, we suspect that the experience of the
subjects will affect the outcome. One option in the experi-
mental design is to treat experience as a blocking factor, as
described in part 2 of this tutorial. To do this, we can as-
sess the experience of the designers in terms of the number
of years each has had experience with design. We can match
staff with similar experience backgrounds and then assign staff
randomly to the different treatments. Thus, if we are investi-
gating design methods A and B, each block will have at least
two subjects of approximately equal experience; within each
block, the subjects are assigned randomly to methods A and
B.

On the other hand, if we treat experience as a factor, we
must define levels of experience and assign subjects in each
level randomly to the alternative levels of the other factor.
In the design example, we can classify designers as having
high and low experience (the two levels of experience); then,
within each group, subjects are assigned at random to design
method A or B.

To determine which approach (factor or block) is best, con-
sider the basic hypothesis. If we are interested in whether
design A is better than design B, then experience should be
treated as a blocking variable. However, if we are interested in
whether the results of using design methods A and B are influ-
enced by staff experience, then experience should be treated
as a factor. Thus, if we are not interested in interactions,
then blocking will suffice; if interactions are important, then
multiple factors are needed.

In general, then, we offer the following guidelines about block-
ing:

• If you are deciding between two methods or tools, then
you should identify state variables that are likely to af-
fect the results and sample over those variables using
blocks to ensure an unbiased assignment of experimen-
tal units to the alternative methods or tools.

• If you are deciding among methods or tools in a variety
of circumstances, then you should identify state vari-
ables that define the different circumstances and treat
each variable as a factor.

In other words, use blocks to ehminate bias; use factors to
distinguish cases or circumstances.

CHOOSING B E T W E E N N E S T E D A N D CROSSED
DESIGNS

When you have decided on the appropriate number of factors
for your experiment, you must select a structure that sup-
ports the investigation and answers the questions you have.
As we shall see, this decision is more complicated in soft-
ware engineering than in other disciplines, because assigning
a group not to use a factor may not be sensible or even pos-
sible. That is, there are hidden effects that must be made
explicit, and there are built-in biases that must be addressed
by the structure of the experiment. In addition, other issues
can complicate this choice.

Suppose that a company wants to test the effectiveness of two
design methods, A and B, on the quality of the resulting de-
sign, with and without tool support. The company identifies
twelve projects to participate in the experiment. For this ex-
periment, we have two faetors: design method and tool usage.
The first factor has two levels, A and B, and the second factor
also has two levels, use of the tool and lack of use. A crossed
design makes use of every possible treatment combination,
and it would appear that a crossed design could be used for
this experiment.

Crossed

Not
used

Tool
Usage

Used

Design Method

Method A Method B

Projects Projects
1,2and 3 7,8and 9

Projects Projects
4,5 and 6 10,11 and 12

Figure 5. Crossed design for design methods and tool usage

As shown in Figure 5, the twelve projects are organized so that
three projects are assigned at random to each treatment in the
design. Consider the imphcations of the design as shown. Any
project has been assigned to any treatment. However, unless
the tools used to support method A are exactly the same as
the tools used to support method B, the factor levels for tool
usage are not comparable within the two methods. In other
words, with a crossed design such as this, we must be able to
make sense of the analysis in terms of interaction effects. We
should be able to investigate down columns (in this example,
does tool usage make a difference for a given method?) as well

ACM SIGSOFT Software Engineering Notes vol 20 no 3 July 1995 Page 14

as across rows (in this example, does method make a difference
with the use of a given tool?). With the design in Figure 5, the
interaction between method and tool usage (across rows) is
not really meaningful. The crossed design yields four different
t reatments based on method and tool usage that allow us
to identify which t reatment produces the best result. But
the design does not allow us to make statements about the
interaction between tool usage and method type.

We can remedy this situation by using a nested design, as
shown in Figure 6. The nested design is analyzed differently
from the crossed design (a one-way analysis of variance, as
opposed to a two-way analysis of variance), so there is no
risk of meaningless interaction effects, as there was with the
crossed design.

Design Method

Method A Method B

Tool Usage Tool Usage

Not Used Not Used
used used

Projs. Projs. Projs. Projs.
1,2,3 4,5,6 7,8,9 10,11,12

Figure 6. Nested design for design methods and tool usage

Thus, a nested design is useful for investigating one factor
with two or more conditions, while a crossed design is useful
for looking at two factors, each with two or more conditions.
This rule of thumb can be extended to situations with more
than two factors. However, the more factors, the more com-
plex the resulting analysis. For the remainder of the tutorial,
we focus on at most two factors, as most situations in software
engineering research will involve only one or two factors, with
blocking and randomization used to ameliorate the effects of
other state variables.

nCuh°m~Slnogf factors ~ , r ~ a t ~ No .xp l

Use >1 ,actor: look at ~ ~
It reatmen, combinations] ~ ' - ~ " ~ co m pet In g t r eal rnent s]

I " ~ r
Factors
VS. Use blocks and level

,o ensure unbiased ["--'~-.~best t rea tment~gu ish cases or
blocks lasslgnment circumstances [

i ' ~ ' I

Nested ~ N I
vs.
crossed y

meaningful for eac N [use nested design[

[Use crossed design I

Figure 7. Flow chart for choosing design

Figure 7 summarizes some of the considerations explained so
far. Its flow chart helps you to decide on the number of fac-
tors, whether to use blocks, and whether to consider a crossed
or nested design.

However, there are other, more subtle issues to consider when
selecting a design. Let us examine two more examples to see
what kinds of problems may be hidden in an experimental
design. Consider first the crossed design described by Figure
8. The design shows an experiment to investigate two factors:
staff experience and design method type. There are two levels
of experience, high and low, and two types of design method.
The staff can be assigned to a project after the project 's sta-
tus is determined by a randomization procedure. Then, the
project can be assigned to a t rea tment combination. This
example illustrates the need to randomize in several ways, as
well as the importance of assigning subjects and t reatments
in an order that makes sense to the design and the goals of
the experiment.

Crossed

Staff
Experience

Design Method

Method A Method B

Projects Projects
1,2and3 7,8and 9

Projects Projects
4,5 and 6 10,11 and 12

Low

High

Figure 8. Crossed design for method types and staff experi-
ence

Figure 9 is similar to Figure 8, except that it is examining
method usage, as opposed to method type. In this case, it
is important to define exactly what is meant by "not used."
Unlike medicine and agriculture, where "not used" means the
use of a placebo or the lack of t rea tment with a chemical,
"not used" in software engineering may be difficult or impos-
sible to control. If we tell designers not to use a particular
method, they are likely to use an alternative method, rather
than no method at all. The alternative method may be hid-
den, based on how they were trained or what experience they
have, rather than an explicitly-defined and well-documented
other method. In this case, the design is inappropriate for the
goals of the experiment. However, if the goal of the exper-
iment is to assess the benefit of a tool to support the given
method, then the design is sufficient.

Crossed

Staff
Experience

Low

High

Design Method

Used Not used

Projects Proiects
1, 2 and 3 7, 8and 9

Projects Projects
4, 5 and 6 10,11 and 12

Figure 9. Crossed design for method usage and staff experi-
ence

F I X E D A N D R A N D O M E F F E C T S

Some factors allow us to have complete control over them. For
example, we may be able to control what language is used to
develop a system, or what processor the system is developed
on. But other factors are not easy to control, or are pre-

ACM SIGSOFT Software Engineering Notes vol 20 no 3 July 1995 Page 15

determined; staff experience is an example of this type of fac-
tor. The degree of control over factor levels is an important
consideration in choosing an experimental design. A fixed-
effects model has factor levels or blocks that are controlled.
A random-effects model has factor levels or blocks that are
random samples from a population of values. If staff experi-
ence is used as a blocking factor to match subjects of similar
experience prior to assigning them to a treatment, then the
actual blocks are a sample of all possible blocks, and we have
a random-effects model. However, if staff experience is de-
fined as two levels, low and high, the model is a fixed-effects
model.

The difference between fixed- and random-effects models af-
fects the way the resulting data is analyzed. For completely
randomized experiments, there is no difference in analysis.
But for more complex designs, the difference affects the sta-
tistical methods needed to assess the results. If you are not
using a completely randomized experiment, you should con-
sult a statistician to verify that you are planning to use tech-
niques appropriate to the type of effects in your model.

The degree of randomization also affects the type of design
that is used in your experiment. You can choose a crossed
design when subjects can be assigned to all levels (for each
factor) at random. For example, you may be comparing the
use of a tool (in two levels: using the tool and not using the
tool) with the use of a hardware platform (using a Sun, a PC
or a Macintosh, for instance). Since you can assign develop-
ers to each level at random, your crossed design allows you to
look for interaction between the tool and the platform. On
the other hand, if you are comparing tool usage and experi-
ence (low level of experience versus high level of experience),
then you cannot assign people at random to the experience
category; a nested design is more appropriate here.

M A T C H E D O R S A M E S U B J E C T D E S I G N S

Sometimes, economy or reality prevents us from using differ-
ent subjects for each type of t reatment in our experimental
design. For instance, we may not find enough programmers
to participate in an experiment, or we do not have enough
funds to pay for a very large experiment. We can use the
same subjects for different treatments, or we can try to match
subjects according to their characteristics in order to reduce
the scale and cost of the experiments. For example, we can
ask the same programmer to use tool A in one situation and
then tool B in another situation. The design of matched-
or same-subject experiments allows variation among staff to
be assessed and accounts for the effects of staff differences in
analysis. This type of design usually increases the precision
of an experiment, but it complicates the analysis.

Thus, when designing your experiment, you should decide how
many and what type of subjects you want to use. For exper-
iments with one factor, you can consider testing the levels of
the factor with the same subjects or with different subjects.
For two or more variables, you can consider the question of
same-or-different separately for each variable. To see how,
suppose you have an experimental design with four different

treatments, generated by a crossed design with two factors.
If different subjects are used for each t reatment (that is, for
each of both variables), then you have a completely unre-
lated between-subjects design. Alternatively, you could use
the same subjects (or subjects matched for similar values of
each level) and subject them to all four treatments; this is a
completely related within-subjects design. Finally, you can
use the same subjects for one factor but different subjects for
the other factor to yield a mixed between- and within-subjects
design.

R E P E A T E D M E A S U R E M E N T S

In many experiments, one measurement is made for each item
of interest. However, it can be useful to repeat measurements
in certain situations. Repeating a measurement can be useful
in validating it, by assessing the error associated with the
measurement process. We explain the added value of repeated
measurements by describing an example.

Function
points

o
0 0

0
o

0

I] I "
specification design code

Time of calculation

Figure 10. Repeated measurements on function point calcu-
lations

Figure 10 depicts the results of an experiment involving one
product and three developers. Each developer was asked to
calculate the number of function points in the product at each
of three different times during development: after the specifi-
cation was completed, after the design was finished, and after
the code was done. Thus, in the figure, there are three points
marked at each of the three estimation times. For example, at
specification, each of the three developers produced a slightly
different function point estimate, so there are three distinct
points indicated above "specification" on the x-axis. The fig-
ure shows that there were two kinds of variation in the da ta
that resulted. The horizontal variation indicates the variation
over time, while the vertical differences at each measurement
time indicates the variation due to the differences among the
developers. Clearly, these repeated measurements add value
to the results of the experiment, but at the cost of the more
complex analysis required. The horizontal variation helps us
to understand the error about the line connecting the means
at each measurement time, and the vertical error helps us to
understand observational error.

As you can see, there are many issues to consider when choos-
ing a design for your experiment. Once it is chosen and the
experiment is run, the resulting data can be anMyzed. The
next issue's tutorial will explain how to select appropriate
analysis techniques.

