
312 IEEE TRANSACTIONS ON EDUCATION, VOL. 50, NO. 4, NOVEMBER 2007

Experience Management Wikis for Reflective
Practice in Software Capstone Projects

Eric Ras, Ralf Carbon, Björn Decker, and Jörg Rech

Abstract—Software engineering curriculum guidelines state
that students should practice methods, techniques, and tools. A
capstone project is one possibility to address this aim. A cap-
stone project helps the students to increase their problem solving
competencies, improve their social skills (e.g., communication
skills), and gather practical experience. A crux of such projects
is that students perform “reflective” practice in order to learn
from their experiences. The authors believe that experience gath-
ering and reuse are effective techniques to stimulate reflective
activities. An adapted free- and open-source Wiki-based system
called software organization platform (SOP) is used to support
students in managing their observations and experiences. The
system can be used for experience exchange within the team and
for experience reuse in forthcoming projects. The results of a case
study show that standard Wiki functions improve communication
and information sharing by means of explicit observation and ex-
perience documentation. A total of 183 documented observations
and experiences at the end of the project provide a measure for
the amount of reflection students have had during the capstone
project. Still, the advantages of using Wikis will decrease when no
technical adaptations of the Wiki to the learning objectives and to
the software engineering tasks are made. Limitations of the case
study, future evaluation steps, and planned developments of SOP
will be provided in this paper.

Index Terms—Capstone project, experience management,
knowledge-based systems, open-source software, reflection, soft-
ware engineering.

I. INTRODUCTION

I N almost every software engineering curriculum, a capstone
course is a mandatory curriculum component. Educational

research in this domain has shown that practicing the learned
methods and techniques is essential before the students get
involved in industrial software development projects. Shaw
et al. also stated the importance of practicing what was
learned as a core pedagogical principle of software engineering
education [1]. Practicing should be performed on a reflective
basis since the students must learn to judge about the appli-
cation of specific methods and techniques, and to evaluate
critically the consequences of their actions and decisions.

Manuscript received December 15, 2006; revised June 20, 2007.
E. Ras is with the Department of Education and Training, Fraunhofer Insti-

tute for Experimental Software Engineering, 67663 Kaiserslautern, Germany
(e-mail: eric.ras@iese.fraunhofer.de).

R. Carbon is with the Department of Product Line Architectures, Fraunhofer
Institute for Experimental Software Engineering, 67663 Kaiserslautern, Ger-
many (e-mail: ralf.carbon@iese.fraunhofer.de).

B. Decker and J. Rech are with the Department of Experience Man-
agement, Fraunhofer Institute for Experimental Software Engineering,
67663 Kaiserslautern, Germany (e-mail: bjoern.decker@iese.fraunhofer.de;
joerg.rech@iese.fraunhofer.de).

Digital Object Identifier 10.1109/TE.2007.904580

Capstone projects have shown to support self-directed and
experiential learning [2], where students reflect and interpret
their experiences to build abstractions (e.g., models, principles,
strategies, theories, etc.), which are applied and tested in new
situations and which provide the foundation for having new
experiences.

The Software Engineering Curriculum Guidelines
(SE2004) [3] provide learning objectives, sample courses, and
key knowledge areas that should be taught to undergraduate
students. Two interesting learning outcomes to be highlighted
here are: “Show mastery of the software engineering knowl-
edge and skills necessary to begin practice” and “Demonstrate
skills such as interpersonal negotiation, effective work habits,
leadership, and communication.” SE2004 also mandates that
students undertake a capstone project to expose the students
to the application domain, and that software engineering (SE)
should be taught as a problem solving discipline.

However, many capstone projects risk overloading students
because they get overwhelmed with so many new topics, be-
cause they have to understand the different roles and respon-
sibilities assigned, and because they have to cope with obsta-
cles (e.g., changing software requirements) [4]. Teachers want
to provide realistic projects and conflicting situations as they
happen in the real world to prepare students for their jobs [5].
In addition, students are supposed to pass through all the tech-
nical development phases and perform project and quality man-
agement. Umphress et al. analyzed 49 capstone projects at the
graduate and undergraduate level and stated that most students
had difficulties in balancing and estimating the workload during
the project, that configuration management and defect tracking
was neglected, and that team members’ responsibilities were not
clear [6]. Students need a systematic guidance during such a
capstone project to lower the risk of these problems and ensure
that the students are not distracted from their learning objectives
and can perform “reflective” practice during problem solving.

A capstone project (i.e., a practicum project), conducted at
the research group Software Engineering of the University of
Kaiserslautern (UKL), Germany, is a project that lasts between
two to three months and covers all the software development
phases. The students get in contact with a real industrial cus-
tomer. They develop either a complete smaller software system
or a new component for an existing system by applying state of
the art SE approaches. The goal of these projects is not to teach
the students the usage of specific and complex SE tools, but to
focus more on SE principles, methods, and techniques. There-
fore, more and more easy-to-use, free- and open-source soft-
ware (FOSS) have been used in the projects during recent years
to keep the training period for getting familiar with the tools

0018-9359/$25.00 © 2007 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

RAS et al.: EXPERIENCE MANAGEMENT WIKIS FOR REFLECTIVE PRACTICE IN SOFTWARE CAPSTONE PROJECTS 313

as short as possible. In addition, academic institutions have to
bear with shrinking budgets, and they are not able to acquire the
newest commercial tools or the latest updates [7].

In this paper, a Wiki-based system is used to support the stu-
dent to practice in a more reflective way and to train his or her
metacognitive skills. The approach addresses the focus of this
issue by presenting a concrete success story about using a Wiki
in SE education for reflective practice and by providing first
evaluation results from a case study. The results provide a foun-
dation for more focused controlled evaluations in the future. An-
other intention for using a Wiki in the capstone project was to
further investigate the impact of FOSS Wikis on the effective-
ness and efficiency of specific SE activities.

Section II describes the potential of Wikis for higher educa-
tion and SE activities. After a description of the capstone project
setting, the conceptual infrastructure of the FOSS experience
management system is described, and the process of how obser-
vations evolve to software experiences through reflection and
abstraction is shown. Results from a recent case study show
the utility of the Wiki for different SE tasks and provide evi-
dence that a Wiki supports reflection activities through experi-
ence management.

II. FREE- AND OPEN-SOURCE WIKIS IN EDUCATION

A few years ago, higher education had begun to explore
the potential educational value of FOSS. Many educational
institutions have been running installations of FOSS learning
management systems, such as Sakai or Moodle, for several
years. In addition, many academic institutions use FOSS for
practicum projects, or they decide to let students participate in
FOSS projects to allow them to participate in big projects [7].
Using FOSS is not only a matter for easily accessing the code
and adapting the code, FOSS also affects the developed prod-
ucts and how the products are developed, still another reason
why FOSS should be used in SE education [8].

Currently, the amount of social FOSS used in education is
increasing constantly. FOSS supports people in connecting or
collaborating through computer-mediated communication and
in forming online communities [9]. Chat rooms and instant
messaging are just two common examples of social software.
Other social software such as Wikis, which have their origin in
SE, have been recognized as beneficial knowledge management
and group communication tools in the corporate world. A Wiki
system, by definition, is “the simplest online database that could
possibly work” [9]. Higher education is starting to investigate
the potential of Wikis (and also blogs) regarding their support
for learning, communication, and interaction processes [10],
[11]. Wikis have been used as platforms for documentation,
minutes, glossaries, or repositories for additional learning
materials. Their advantages for higher education are fast instal-
lation, easy adaptation to educational purposes, no acquisition
costs, and intuitive usage.

In addition, Wikis are also used in SE, and some of them
have even been used in capstone projects: Trac is a Wiki written
in Python that integrates an issue tracker and allows relating
Wiki pages to issues, and vice versa [12]; Master of Arts in
Special Education (MASE) (agile software engineering) offers
plug-ins for agile software development, in particular for iter-

ation planning and integration of automated measurement re-
sults [13]; SnipSnap, a Java-based Wiki, allows read-only in-
tegration of code documentation and offers support for the in-
tegration of Wiki entries into the integrated development envi-
ronment Eclipse [14]; EclipseWiki is a Wiki integrated into the
integrated development environment Eclipse [15]; Fitnesse is a
Wiki-based test management framework that allows capturing
and running test cases [16]. Recently, the software organization
platform (SOP), an adapted Wiki for SE that has also been used
for the case study in this article, has demonstrated its usefulness
for stakeholder participation in requirements engineering [17].

III. CAPSTONE PROJECT

Since 2001, the research group Software Engineering at the
University of Kaiserslautern has conducted an open-source (OS)
capstone project once a year in cooperation with an industrial
customer and Fraunhofer Institute for Experimental Software
Engineering (IESE), Kaiserslautern, Germany.

A. Background of Students

The computer science (CS) undergraduate curriculum con-
tains practical CS courses and technical and theoretical courses,
mathematics courses, and an elective field of study such as elec-
trical engineering or economics. When the students receive their
bachelor’s degree after three years, they are able to design small
object-oriented systems based on the knowledge obtained in the
courses Development of Software Systems I–III, and they are
able to implement and test small software systems in teams of
three to four people. If the students choose to focus on SE after
the third semester of their bachelor studies, they have to en-
roll in the course Foundations of Software Engineering. In the
two-year Master’s program, the students can again choose for
the SE option. These students can now sign up for the capstone
project. They already know and understand about processes,
methods, techniques, and tools that are used to develop large
and complex software systems from their bachelor studies. At
the end of their Master’s studies, they get a Master’s in CS.

B. Learning and Project Objectives

The main project goal is to fulfill the interests and require-
ments provided by the industrial customer and to get the stu-
dents involved in a real industrial project. Students are fully
responsible for eliciting the requirements, designing the proto-
type, and implementing and delivering the system on time. They
will be faced with changing requirements, communication prob-
lems, etc. After the project, the students should be able to:

• know and understand the different roles and responsibili-
ties in a software development project, especially the man-
agement-oriented roles such as the project manager;

• communicate and interact with a real customer;
• carry out project estimation (i.e., effort, time, quality);
• develop software in a team of 10 to 14 students;
• execute a well-defined software development process;
• judge existing OS components and understand the conse-

quences when they are integrated into a product;
• understand the importance of software and experience doc-

umentation for future projects (i.e., to document observa-
tions and experiences during the project);

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

314 IEEE TRANSACTIONS ON EDUCATION, VOL. 50, NO. 4, NOVEMBER 2007

• be aware of their own thinking and decision-making
processes;

• reflect about events and changes of situations that originate
from performed actions.

C. Roles and Processes

A team of students works full time for two months in a labora-
tory environment between the summer and winter terms on the
capstone project. Working between summer and winter terms
was proven to be successful because they can fully concentrate
on the project goals and tasks. Research staff of the working
group Software Engineering at UKL and of Fraunhofer IESE
coach the students during their work.

The students take over all roles in the project. The roles
cover management-oriented roles like project manager, quality
assurer, product manager, or experience manager and technical
roles such as requirements engineer, architect, or tester. Each
student must apply for one role during the kickoff meeting of
the practical course. The capstone project follows an iterative
development process with two iterations. Both iterations run
through the phases requirements analysis, architecture and
component design, implementation, and test.

D. Technical Environment of the Capstone Project

The technical laboratory environment, i.e., the tool environ-
ment, consists of FOSS and one commercial system:

• integrated development environment Eclipse;
• configuration management Subversion (product reposi-

tory);
• experience management system SOP, based on MediaWiki;
• a commercial workflow management system.1

The usage of an integrated development environment (IDE)
and a product repository is common sense. A workflow man-
agement system has been used to guide the students and assure
that they follow a prescribed development process. The role of
SOP will be described later.

IV. SUPPORTING REFLECTION THROUGH

EXPERIENCE MANAGEMENT

According to the last four learning objectives (see
Section III-B), reflective skills are key skills to be learned
by the students, in addition to the technical skills of SE. The
same has been stated by Socha et al. for other engineering
disciplines. They mention experiential learning as an effective
way to teach these skills, with students continually going
through a learning cycle: “practicing, reflecting on the diffi-
culties, discovering new models (or having them introduced
by facilitators or other students), and then practicing again”
[18]. Reflection is a phase of the well-known learning cycle of
Kolb and Fry [19], [20], who investigate the learning process
related to learning from experiences and whose research has its
foundation in the work of Lewin [21], Dewey [22], and Piaget
[23]. Reflection is the prerequisite for learning from experience
(e.g., in order to form abstract concepts) and for improving
actions and professional practice [20]. Self-regulated learning

1The name of the commercial workflow management system is not mentioned
because the choice is not motivated by the context of the capstone project.

theories focus on how students could activate, change, and
maintain their learning practices. In recent years these theories
have concentrated more on information processing and, in
particular, on the metacognitive process of self-reflection [24].
Metacognition is related to higher order thinking that involves
active control over the cognitive processes engaged in learning
[25]. As Anderson and Krathwohl describe in their book on
educational objectives, which revises the taxonomy of Bloom
[26], metacognitive skills are skills that make the learners aware
of their own knowledge and their ability to understand, control,
and manipulate their own cognitive processes [27]. Hence,
supporting self-reflective processes in a learning environment
could enhance the learning benefit of the performed activities
and give opportunity to review previous actions and decisions
before proceeding to a next activity. Angelo and Cross provide
an overview of how teachers can promote metacognition in a
classroom [28].

The value of reflection has already been proven in situated
cognition theory (e.g., cognitive apprenticeship and anchored
instruction). The work of Schön highlights the importance of
knowledge resulting from real experiences of professionals
[29], [30]. Schön distinguishes between two types of reflec-
tion that facilitate the learning and activity of professionals:
reflection-in-action and reflection-on-action. Short-term reflec-
tion-in-action is performed while people act and experience.
The activity is reshaped while the activity is performed. Re-
flection-on-action is retrospective thinking about an experience
after an activity or during an interruption. Other persons could
be involved. The latter provides an understanding of practice
and is a way practitioners may learn from their experience.

The accomplishment of teaching development and reflective
skills is aggravated by the short, two month duration of the
projects. This limited time requires the students to start as early
as possible with the assigned tasks. How can one ensure that the
customer requirements are met at the end of the project, that stu-
dents practice previously mentioned skills, and that they learn
efficiently based on their experiences made during the project?

A FOSS Wiki was adapted for experience in documentation,
understanding, and sharing to teach reflective skills and to sup-
port coaching and guidance. In addition, the strategic goal was
to build up an experience base and to gather data (effort, defects,
etc.) systematically to support future OS capstone projects.
Sections IV-A–C explain how experience management works
in SE, how experience management can support reflection,
and how observations and experiences are documented by the
students.

A. Experience Management in Software Engineering

The reuse of existing knowledge and experience is one of the
fundamental principles in many sciences. Engineers often use
existing components and apply established processes to con-
struct complex systems. Without the reuse of well proven com-
ponents, methods, or tools, the systems have to be rebuilt over
and over again.

During the last 30 years, the fields of software reuse and expe-
rience management (EM) have been gaining increasing impor-
tance. The roots of EM lie in experimental SE [“experience fac-
tory (EF)”], in artificial intelligence (“case-based reasoning”),

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

RAS et al.: EXPERIENCE MANAGEMENT WIKIS FOR REFLECTIVE PRACTICE IN SOFTWARE CAPSTONE PROJECTS 315

Fig. 1. Experience factory.

and in knowledge management. EM includes methods, tech-
niques, and tools for identifying, collecting, documenting, pack-
aging, storing, generalizing, reusing, adapting, and evaluating
experience, and for development, improvement, and execution
of all knowledge-related processes. The EF is an infrastructure
designed to support experience management (i.e., the reuse of
products, processes, and experiences from projects) in software
organizations [31]. EF supports the collection, preprocessing,
and dissemination of experiences. EF separates the project and
the experience organization physically or at least logically as
shown in Fig. 1. This separation is meant to relieve the project
teams from the burden to find, adapt, and reuse knowledge from
previous projects and to support them in collecting, analyzing,
and packaging valuable new experiences that might be reused
in later projects.

For example, if software engineers begin a project (“plan
project”), they can use the experience factory to search for
reusable experience in the form of reference architectures, de-
sign patterns, or process models based upon the project context.
In the execution phase (“execute project”), the EF is used to
retrieve experience “on demand” (e.g., to support decisions
or reuse source code). Furthermore, during the project and at
the end of the project, the project is analyzed (e.g., using a
retrospective workshop) to extract reusable observations and
experiences that might be useful in other projects.

B. Reflection Activities in the Project

Reflection activities are supported by the SOP, an adapted
Wiki for information and experience management in software
projects (Fig. 2). SOP provides information for guiding the stu-
dents and documented observations and experiences, in partic-
ular during project execution. SOP serves as a means to capture
observations and share all kinds of information relevant to the
project [32]. Examples of the content of SOP are descriptions of
roles and their responsibilities, process descriptions, document
templates, documentation guidelines, observations and experi-
ences on software engineering (SE) technologies, etc.

Most reflective activities refer to reflection-on-action, i.e., re-
flection after an activity or when an activity is interrupted (see
dashed ellipses in Fig. 2). They help to reflect about recent
observations/experiences, decisions made, and remaining prob-
lems. Everyday stand-up meetings, moderated by the coach, are
conducted every morning (status of project, discussion about
problems of the previous day, etc); an official feedback meeting
with the customer takes place after the requirements are doc-
umented in the Wiki; an internal review meeting where all the

project members attend occurs to discuss a first design of the ar-
chitecture; after the test, the system is presented to the customer.
The students receive valuable feedback about the system de-
veloped (focus on functionality); a goal-oriented retrospective
workshop summarizes the first iteration regarding development
process and technologies used, teamwork, roles, technical de-
velopment infrastructure, and decisions about possible improve-
ments for the second iteration. During or after these reflective
activities, the students are asked by the experience engineer to
document the observations and experiences into the Wiki. The
experience engineer defines processes and guidelines on how
to gather observations and experience, analyzes the findings,
and packages them (see Section V for more details). Appro-
priate templates, offered by SOP, stimulate the students to reflect
about the discussions and their own observations, and to self-re-
flect about their own knowledge, their learning process, and
the applied problem solving strategies, etc. These templates use
so-called reflective questions and reflective prompts that help the
students to revise the details of the learning experience, to move
toward critical thinking, and to create an action plan [33] after
documenting the experience. Questions are of a more general
nature, and prompts are more focused questions. Both types are
related to the attributes of the templates (see Section V for de-
tails about the templates). The same reflective actions take place
during the second iteration. At the end of the project, a final ret-
rospective workshop is conducted. The purpose of both retro-
spectives is to gather more observations and experiences from
students and to vote on lessons learned and reported.

SOP stimulates reflection-in-action by offering definitions,
examples, detailed descriptions, etc. about processes, technolo-
gies, roles, etc. (more about the information structures in [32]).
In addition to this information, SOP offers the reuse of already
available observations, experiences, patterns, and laws that have
been gathered in previous projects or during the first iteration.
This information not only guides the students through their tasks
but also leads them to reflections about current activities and to
thoughts about how to adapt the activity.

C. Gathering Experiences

The observations and raw experiences from the projects are
further refined by the students in the experience factory (Fig. 3).
In SOP, customized templates can be designed by means of
using an extended Wiki functionality that used the normal Wiki
syntax cascading style sheets (CSS). Currently, SOP offers two
templates for experience management: observations (O: name,
situation, problem, solution) are suitable for easy and fast doc-
umentation of experiences; experiences (: name, situation,
cause, solution, known exceptions, benefits, consequences,
metadata) enable the student to provide more details about the
experience and its context. In general, two main processes are
used for refinement: 1) the formalization of the subjective and
informal elements; and 2) the generalization of experiences to
more abstract and generally applicable representations. Both
require the student to perform reflection. As shown in Fig. 3,
formalization is used to transform observations (O) into semi-
formal experiences and finally into formal experiences

. Here, the aggregate or semiformal state refers to, for
example, a structured template such as a pattern or experience

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

316 IEEE TRANSACTIONS ON EDUCATION, VOL. 50, NO. 4, NOVEMBER 2007

Fig. 2. Reflection during a capstone project.

Fig. 3. Experience aggregate states.

template [34]. A formal experience represents a precise and
clear definition, for example, based on predicate logic [35].
Generalization is used to summarize multiple project-specific
experiences (E) into a pattern-aggregate of an experience

and finally into a law-aggregate of an experience
. The core goal of this step is the decontextualization

of the experience from its project, domain, (programming)
language, or technology context. The aggregate state “pattern”
represents, for example, a design pattern such as “abstract
factory” [36], which is applicable not only in one project but in
almost all object-oriented software systems. A law is a gener-
ally applicable statement, principle, or heuristic that is valid for
all software systems, e.g., Brooks’ Law “Adding manpower to
a late project makes it later” [37]. The focus during the project
was on observations and semiformal experiences. Pattern and
laws are defined together with the coaching staff of the project.

Fig. 4. Evaluation impact model.

Additional metadata for describing the experiences include:
type (the type of an experience denotes its origin; typical values
for type classification are: process, product, customer, organiza-
tion, people, or project); source (the source of the experience:
external, internal); aggregate state (denotes whether the element
can be classified as an observation, experience, pattern or an-
tipattern, or law); formality (formality describes the degree of
structure, completeness, precision, and unambiguity using the
levels: informal, semiformal, formal).

V. EVALUATION

The goal of the evaluation was to assess the general utility of
the FOSS platform for SE and experience management purposes
and to investigate whether students learn from their experiences.
The evaluation impact model in Fig. 4 shows which aspects were
covered by the evaluation. Communication is an essential aspect
in any short capstone project where the participants do not know
each other beforehand. Technically supported communication

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

RAS et al.: EXPERIENCE MANAGEMENT WIKIS FOR REFLECTIVE PRACTICE IN SOFTWARE CAPSTONE PROJECTS 317

has an impact on the usage and utility of the platform itself. In
addition, SOP is intended to offer an experience management
infrastructure. Experience gathering (i.e., through discussions,
documentation, prioritizing, abstraction, and formalization) re-
quires that the students reflect upon their experiences. Reflec-
tion-in-action is related to reusing existing experience of SOP
in the current context. By reusing experience descriptions, the
students reflect about their current activity and possible changes
to it. Sufficient reflection ensures that the students learn from
their experiences.

Each of the participants was asked to complete an online
questionnaire covering the aspects of the impact model. Two
types of questions have been used: most of the questions had to
be answered by the degree of agreement on a four-point scale
(i.e., fully agree, partially agree, partially disagree, and fully dis-
agree); the second type of question was multiple choice, where
zero or more options from a list could be selected. In addition,
the contributions of the participants were analyzed using the
Wikistats evaluation tool [38].

Thirteen of the 14 participants (93%) completed the ques-
tionnaire. Seventy-seven percent possessed programming expe-
rience, while 31% of all participants gained their experience in
industrial organizations. All participants stated that they used
the Wiki, and 69% used the Wiki regularly, which was also con-
firmed by the data of Wikistats.

Communication was rated by the participants as follows: The
improvement of information exchange was rated within the team
and among different teams. Except for the usage of contribu-
tions originating outside the team, all aspects achieved 100%
full/partial agreement. The results imply that SOP improves the
exchange of information, in particular within teams. Further-
more, the participants stated that by using SOP, they received
more information than they would get using only verbal commu-
nication, and 23% of them agreed fully. The number of edits per
day obtained via Wikistats confirmed that SOP improves com-
munication. The number of edits per day reached a maximum
of 175 during the requirements phase and dropped to about 100
edits per day later. (Because of privacy issues, a more detailed
investigation per role or per person was not possible.)

To evaluate the usage and utility of SOP, the Technology Ac-
ceptance Model (TAM)[39] has been used, a thoroughly tested
model to assess technology acceptance and of particular impor-
tance in capstone projects. These projects are expected to have
a rather short run time. Furthermore, the students are expected
to focus on the complexity of the project and should not be dis-
tracted by tool complexity. The ease of use was rated at a min-
imum of 77% (sum of answers fully/partially agree). An excep-
tion was the last item, (sometimes, SOP behaves unexpectedly),
where 69% disagreed fully or partially. The top three items con-
cerning ease of use were learnability, mastering of SOP features,
and easy interaction. Based on this data, the conclusion was de-
rived that SOP is easy to handle and to learn. Perceived usage
was agreed with fully or partially by a minimum of 69%. The
top item was access to information about the project, followed
by general usage and contribution of project information. These
results show that SOP can be used as a platform to exchange
(capstone) project information. Concerning self-predicted fu-
ture usage, more than 84% agreed fully or partially that they

would use SOP for managing experiences in particular and for
projects in general. Furthermore, 83% answered that they would
use SOP even more if the support for document templates and
visualization of related articles were improved. The answers in
the questionnaire are backed up by the data gained via Wik-
istats: More than 360 articles were created during the capstone
project, most of them during the requirements phase between
mid-August and the beginning of September. Seven participants
were also rated as very active (i.e., 100 or more edits within one
month).

Perceived utility as the second part of the TAM provided a
utility evaluation of SOP independent of concrete SE tasks. Six
of nine items had a rating of more than 50% full or partial
agreement. The minimum perceived utility was performance
with 38% partial agreement. The top three were general utility,
quality of products, and improvement in productivity. SOP is, in
general, perceived as useful (und usable) in capstone projects.
This rating might be caused by important features missing in
SOP during the run time of the capstone project. An example
was the missing export function from Wiki-Pages to office doc-
uments, which was needed several times in the capstone project
for reporting to the customer.

The utility of SOP was also investigated regarding its support
for SE tasks. The general utility for SE tasks was rated using
multiple choice. Five of eight tasks were rated useful by over
50% of the participants (i.e., experience management, require-
ments, design, quality assurance, and project management).
Therefore, the general utility of SOP is high. A reason for
the lower rating of the other tasks might be that they are not
supported by dedicated functions within the Wiki.

The perceived effort savings were captured according to the
tasks in a software project (requirements, design, quality assur-
ance, integration and test, implementation, product and configu-
ration management, project management, and experience man-
agement). Concerning these tasks, more than 50% of the par-
ticipants agreed fully or partially on four tasks that by using
SOP they would save effort (Fig. 5). The top three tasks were
experience management, project management, and configura-
tion management. For experience management, there was no
disagreement that SOP is actually saving effort. This agreement
shows that SOP needs to support hands-on, software develop-
ment tasks better, and that SOP provides support in managerial
tasks. Again, the low rating of the effort saving effects might be
caused by SOP not supporting these tasks—with one exception:
As mentioned above, the effort during the requirement phase
was increased because of creation of office documents by hand.
In the current SOP version, this export can be performed auto-
matically.

Because of the difficulty to assess the amount of reflec-
tion-in-action, other indirect measures regarding the quantity
and quality of experience reuse were used. The perceived
reusability of experience was rated as follows: That the cap-
tured experience will be reusable within the team was agreed
with fully or partially by 85%. Seventy-five percent stated that
the experience would also be reusable by other teams. That the
experience is of no use was disagreed fully and partially by
64%. This report shows that the experience reuse by students
is accepted and supposed to be helpful even across capstone

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

318 IEEE TRANSACTIONS ON EDUCATION, VOL. 50, NO. 4, NOVEMBER 2007

Fig. 5. Perceived effort savings in SE activities.

projects. The quality of reused experience was rated using
an inverse scale, since the item asked for quality deficits. All
quality issues (understandability, too abstract, not applicable,
missing context description, too specific) were disagreed with
partially and fully by at least 61%. The largest deficits identified
were in the areas of context and abstraction level. The students
had problems adapting the documented experience to their own
situation. However, the results implied that the overall quality
of experience was sufficient, but improvement is necessary.
The potential utility of types of experience, i.e., which type of
experiences would have been helpful in the project, provided
the following results. All types had at least 53% full or partial
agreement, and no full disagreement. The top three types
were experiences with tools (100%), processes (85%), and SE
methods (92%). This feedback will be used to prioritize the
types of experience which should be offered to the students in
future capstone projects.

Reflection-on-action is supported by the different types of
meetings and technically by SOP (i.e., experience gathering).
The following questions refer only to SOP. Each documen-
tation of an observation or experience requires self-reflection
of the students. Therefore, the number of documented items
can be used as an indirect measure for reflection. During the
project 178 observations and five experiences were gathered.
Wikistats showed the following results: the articles were used
throughout the capstone project, and the document structure
remained stable. That experience management is supported in

general by SOP was agreed with partially/fully by 92%. The
top three types of experience management are lessons learned
about tools (62%), processes (46%), and products/project
management (38%). Other types of experience such as SE
techniques, SE methods, SE principles, and fellow project team
members achieved 31%.

Concerning newly acquired topics (Fig. 6), the top three items
were products, fellow project workers (employees), and tools
concerning full or partial agreement. Five of eight topics were
rated better than 50%. New topics about processes were used
by 53%, while new project management topics were used by
46%. This data indicates that many new topics were used in
general. The topics of particular relevance in capstone projects
(processes, project management) also had a fair rating of about
50%. However, further improvement should be made.

VI. CONCLUSION AND FUTURE WORK

Wikis have several advantages for higher education, such as
fast installation, easy adaptation to educational purposes, no
acquisition costs, and intuitive usage. Many of these facts have
been proven by the application of SOP. The evaluation showed
that SOP is a suitable technical environment for gathering and
reusing experiences, supporting requirements engineering in
particular [17], accelerating feedback cycles, and for improving
communication among students. The results of this case study
help to convince other departments of the UKL to use FOSS
for educational purposes. Many observations and experiences

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

RAS et al.: EXPERIENCE MANAGEMENT WIKIS FOR REFLECTIVE PRACTICE IN SOFTWARE CAPSTONE PROJECTS 319

Fig. 6. Newly acquired topics.

have been gathered for future projects. Thus, students devel-
oped their reflective skills and learned from their experiences.
The evaluation showed that standard Wiki functions support
communication and information sharing, but a Wiki must
be further adapted to the educational objectives and tasks of
a capstone project. Without these extensions, no significant
effort savings will be obtained in specific SE tasks. Wikis are
not a replacement for continuous coaching and guidance of
the students by educational staff; they are merely a means to
support these activities.

One limitation of the evaluation is that no direct measures re-
lated to learning or reflection in particular have been used. In
addition, the evaluation did not contain a formal assessment to
find out whether the learning objectives have been met. There-
fore, two controlled experiments will be conducted in 2007 that
especially focus on identifying factors that have an impact on
learning outcome (i.e., response variable) by using SOP. A first
fractional factorial design will serve to find the two factors that
have the biggest impact on the response variables (i.e., higher
number of groups with few subjects in each group) and to build a
baseline for the hypotheses of the second experiment. A second
factorial experiment will use the identified factors (with a max-
imum of two alternatives each) to identify significantly the im-
pact on the response variable (i.e., small number of group with
higher number of students). The results of these experiments
will be published in 2008.

Currently, SOP is further extended to serve also as a learning
platform to integrate knowledge management with e-learning
[40]. SOP will be able to provide learning content to the students
during work. In addition, special emphasis will be put on the im-
provement of experience reuse by means of learning spaces [41].

To support further research and development of FOSS sys-
tems such as SOP, the authors decided to provide a stable ver-
sion of SOP to the public in summer 2007. Other research in-
stitutions could then further develop and evaluate SOP for their
own educational purposes and interests.

REFERENCES

[1] M. Shaw, J. Herbsleb, and I. Ozkaya, “Deciding what to design:
Closing a gap in software engineering education,” in Software
Engineering Education in the Modern Age. Berlin, Germany:
Springer-Verlag, 2006, vol. 4309, pp. 28–58.

[2] D. L. Evans, B. W. McNeill, and G. C. Beakley, “Design in engineering
education: Past views of future directions,” Eng. Educ., vol. 80, no. 5,
pp. 517–22, 1990.

[3] Software Engineering 2004: Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering, Joint Task Force on Com-
puting, Curricula, 2004.

[4] H. van Vliet, “Reflections on software engineering education,” IEEE
Softw., vol. 23, no. 3, pp. 55–61, May-Jun. 2006.

[5] L. J. Burnell, J. W. Priest, and J. B. Durrett, “Teaching distributed mul-
tidisciplinary software development,” IEEE Softw., vol. 19, no. 5, pp.
86–93, Sep.–Oct. 2002.

[6] D. A. Umphress, T. D. Hendrix, and J. H. Cross, “Software process in
the classroom: The capstone project experience,” IEEE Softw., vol. 19,
no. 5, pp. 78–81, Sep.-Oct. 2002.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

320 IEEE TRANSACTIONS ON EDUCATION, VOL. 50, NO. 4, NOVEMBER 2007

[7] K. Toth, “Experiences with open source software engineering tools,”
IEEE Softw., vol. 23, no. 6, pp. 44–52, Nov.-Dec. 2006.

[8] D. Spinellis and C. Szyperski, “How is open source affecting software
development?,” IEEE Softw., vol. 21, no. 1, pp. 28–33, Jan.-Feb. 2004.

[9] B. Leuf and W. Cunningham, The Wiki Way. Collaboration and
Sharing on the Internet. Reading, MA: Addison-Wesley, 2001.

[10] J. Williams and J. Jacobs, “Exploring the use of blogs as learning spaces
in the higher education sector,” Aust. J. Educ. Technol., 2004.

[11] S. Reinhold, “WikiTrails: Augmenting Wiki structure for collaborative,
interdisciplinary learning,” in Proc. Int. Symp. Wikis, Odense, Den-
mark, Aug. 21–23, 2006, pp. 47–58.

[12] Integrated SCM and Project Management, Trac, 2007 [Online]. Avail-
able: http://www.edgewall.com/trac

[13] Agile Software Engineering, MASE, 2007 [Online]. Available: http://
sourceforge.net/projects/mase

[14] The Easy Weblog and Wiki Software, SnipSnap, 2007 [Online]. Avail-
able: http://www.snipsnap.org

[15] An Open Development Platform, Eclipse, 2007 [Online]. Available:
http://www.eclipse.org

[16] The Fully Integrated Standalone Wiki and Acceptance Testing Frame-
work, Fitnesse, 2007 [Online]. Available: http://www.fitnesse.org

[17] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth, “Wiki-based stake-
holder participation in requirements engineering,” IEEE Softw., vol. 24,
no. 2, pp. 28–35, Mar.-Apr. 2007.

[18] D. Socha, V. Razmov, and E. Davis, “Teaching reflective skills in an
engineering course,” in Proc. Amer. Soc. for Engineering Education
Annu. Conf. Exposition, Nashville, TN, Jun. 2003, pp. 10317–10336.

[19] D. A. Kolb and R. Fry, “Toward an applied theory of experiential
learning,” in Theories of Group Process, C. Cooper, Ed. New York:
Wiley, 1975.

[20] D. A. Kolb, Experiential Learning: Experience as the Source of
Learning and Development. Englewood Cliffs, N.J.: Prentice-Hall,
1984.

[21] K. Lewin, Field Theory in Social Science. New York: Harpers & Row,
1951.

[22] J. Dewey, Experience and Education. New York: Collier, 1938.
[23] J. Piaget, Psychology and Epistemology. Middlesex, U.K.: Penguin,

1971.
[24] B. J. Zimmerman and D. H. Schunk, Self-Regulated Learning and Aca-

demic Achievement: Theoretical Perspectives, 2nd ed. Mahwah, NJ:
Erlbaum, 2001.

[25] G. Schraw and D. Moshman, “Metacognitive theories,” Educ. Psychol.
Rev., vol. 7, pp. 351–371, 1995.

[26] B. S. e. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill, and D. R.
Krathwohl, Taxonomy of Educational Objectives; the Classification of
Educational Goals, 1st ed. White Plains, NY: Longman, 1956.

[27] L. W. Anderson and D. R. Krathwohl, A Taxonomy for Learning,
Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educa-
tional Objectives. White Plains, NY: Longman, 2001.

[28] T. A. Angelo and K. P. Cross, Classroom Assessment Techniques: A
Handbook for College Teachers, 2nd ed. San Francisco, CA: Jossey-
Bass, 1993.

[29] D. A. Schön, The Reflective practitioner: How Professionals Think in
Action. London, U.K.: Arena, 1995.

[30] D. A. Schön, Educating the Reflective Practitioner: Toward a New De-
sign for Teaching and Learning in the Professions, 1st ed. San Fran-
cisco, CA: Jossey-Bass, 1990.

[31] V. R. Basili, G. Caldiera, and H. D. Rombach, “Experience factory,”
Encycl. Softw. Eng., vol. 1, pp. 469–476, 1994.

[32] J. Rech, E. Ras, and B. Decker, “Riki: A system for knowledge transfer
and reuse in software engineering projects: Strategies beyond tools,” in
Open Source for Knowledge and Learning Management, M. Lytras and
A. Naeve, Eds. Hershey, PA: Idea, 2006.

[33] M. Scardamalia and C. Bereiter, “Fostering the development of
self-regulation in children’s knowledge processing,” in Thinking and
Learning Skills: Research and Open Questions, S. F. Chipman, J. W.
Segal, and R. Glaser, Eds. Mahwah, NJ: Erlbaum, 1985, vol. 2, pp.
563–577.

[34] A. Kamel, M. Chandra, and P. Sorenson, “Building an experience-base
for product-line software development process,” in Proc. 4th Int. Conf.
Case-Based Reasoning, Vancouver, BC, Canada, 2001, pp. 13–20.

[35] T. Taibi, Design Pattern Formalization Techniques. Hershey, PA:
Idea, 2007.

[36] E. Gamma, J. Vlissides, R. Johnson, and R. Helm, Design Patterns: El-
ements of Reusable Object Orientated Software. Reading, MA: Ad-
dison Wesley Longman, 1998.

[37] A. Endres and H. D. Rombach, A Handbook of Software and Systems
Engineering: Empirical Observations, Laws, and Theories. Harlow,
U.K.: Pearson, 2003.

[38] Analyzing and Visualizing the Semantic Coverage of Wikipedia and
Its Authors, Wikistats, 2007 [Online]. Available: http://arxiv.org/
abs/cs.IR/0512085

[39] F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” Mange. Inf. Syst. Q., vol. 13,
pp. 319–340, 1989.

[40] J. Rech, E. Ras, and B. Decker, “Riki: A system for knowledge transfer
and reuse in software engineering projects,” in Open Source for Knowl-
edge and Learning Management, M. Lytras and A. Naeve, Eds. Her-
shey, PA: Idea, 2007, pp. 52–122.

[41] E. Ras, J. Rech, and B. Decker, “Workplace learning in software en-
gineering reuse,” in Proc. Int. Conf. Knowledge Management, Spe-
cial Track: Integrating Working and Learning, Graz, Austria, 2006, pp.
437–445.

Eric Ras received the B.S. (Vordiplom) and M.S. (Diplom) degrees in computer
science from the University of Kaiserslautern, Germany.

He is currently Scientific Coordinator of the International Distance
Learning Program, Software Engineering for Engineers, at the University
of Kaiserslautern. He organizes a workshop on learning-oriented knowledge
management and KM-oriented e-learning. He is a program committee member
of different workshops and conferences in the domain of software engineering,
e-learning, and knowledge management. He has worked as a Scientist on
different public and industrial projects in the domain of knowledge manage-
ment, e-learning, and document engineering at the Fraunhofer Institute for
Experimental Software Engineering. He has gathered experience in reuse-based
learning material production and work-process oriented vocational training
methods. He has worked intensively with current e-learning standards and tools
and has done research in the domain of social free- and open-source software.

Ralf Carbon received the B.S. (Vordiplom) and M.S. (Diplom) degrees in com-
puter science with a minor in economics from the University of Kaiserslautern,
Germany.

He is currently a Researcher at Fraunhofer Institute for Experimental Soft-
ware Engineering (IESE), Kaiserslautern, Germany. He is in charge of an em-
pirical software engineering laboratory and is assigned to research and indus-
trial projects in the competence center, “Virtual Office of the Future.” His re-
search focuses on product line engineering, agility and flexibility, service-ori-
ented computing, and open-source software. He has been involved in open-
source evaluation projects with the University of Kaiserslautern since 2002. Be-
fore joining Fraunhofer IESE in 2005, he worked in the Software Engineering
Research Group, University of Kaiserslautern.

Björn Decker received the B.S. (Vordiplom) and M.S. (Diplom) degrees in
computer science with a minor in economics from the University of Kaiser-
slautern, Germany.

He is currently a Project Manager and Scientist at the Fraunhofer Institute
for Experimental Software Engineering, Kaiserslautern, Germany. His research
mainly concerns experience management, the usage of Wikis in software engi-
neering, business process management, and collaborative maintenance. He has
authored a number of papers on software engineering and knowledge manage-
ment. He is organizing the 2007 German Workshop on Experience Management
and is a program committee member of different workshops and conferences.

Jörg Rech received the B.S. (Vordiplom) and M.S. (Diplom) degrees in com-
puter science with a minor in electrical science from the University of Kaiser-
slautern, Germany.

He was a Research Assistant to Prof. Dieter Rombach in the Software Engi-
neering Research Group, University of Kaiserslautern. He is currently a Project
Manager and Scientist at the Fraunhofer Institute for Experimental Software En-
gineering, Kaiserslautern, Germany. His research mainly concerns defect dis-
covery, (anti-) patterns, model driven software development, knowledge dis-
covery in software repositories, code mining, code retrieval, software analysis,
software visualization, software quality assurance, and knowledge management.
He has authored a number of papers on software engineering and knowledge
management.

Mr. Rech is a member of the German Computer Society [Gesellschaft für
Informatik (GI)]. He is also the speaker of the GI working group on architectural
and design patterns.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 07:52 from IEEE Xplore. Restrictions apply.

