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Abstract

ISO/IEC 15504 is an emerging international standard on software process assessment. It de®nes a number of software engi-

neering processes, and a scale for measuring their capability. A basic premise of the measurement scale is that higher process

capability is associated with better project performance (i.e., predictive validity). This paper describes an empirical study that

evaluates the predictive validity of the capability measures of the ISO/IEC 15504 software development processes (i.e., develop

software design, implement software design, and integrate and test). Assessments using ISO/IEC 15504 were conducted on projects

world-wide over a period of two years. Performance measures on each project were also collected using questionnaires, such as the

ability to meet budget commitments and sta� productivity. The results provide evidence of predictive validity for the development

process capability measures used in ISO/IEC 15504 for large organizations (de®ned as having more than 50 IT sta�). Furthermore, it

was found that the ``Develop Software Design'' process was associated with most project performance measures. For small or-

ganizations evidence of predictive validity was rather weak. This can be interpreted in a number of di�erent ways: that the measures

of capability are not suitable for small organizations, or that software development process capability has less e�ect on project

performance for small organizations. Ó 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

Improving software processes is by now recognized as
an important endeavor for software organizations.
A commonly used paradigm for improving software
engineering practices is the benchmarking paradigm
(Card, 1991). This involves identifying an ÔexcellentÕ
organization or project and documenting its practices. It
is then assumed that if a less-pro®cient organization or
project adopts the practices of the excellent one, it will
also become excellent. Such best practices are commonly
codi®ed in an assessment model, like the SW-CMM 1

(Software Engineering Institute, 1995) or the emerging
ISO/IEC 15504 international standard (El Emam et al.,
1998). These assessment models also order the practices

in a recommended sequence of implementation, hence
providing a prede®ned improvement path. 2

Improvement following the benchmarking paradigm
almost always involves a software process assessment
(SPA). 3 An SPA provides a quantitative score re¯ecting
the extent of an organizationÕs or projectÕs implemen-
tation of the best practices de®ned in the assessment
model. The more of these best practices that are
adopted, the higher this score is expected to be. The
obtained score provides a baseline of current imple-
mentation of best practices, serves as a basis for making
process improvement investment decisions, and also
provides a means of tracking improvement e�orts.

The emerging ISO/IEC 15504 international standard
is an attempt to harmonize the existing assessment
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2 The logic of this sequencing is that this is the natural evolutionary

order in which, historically, software organizations improve (Hum-

phrey, 1988), and that practices early in the sequence are prerequisite

foundations to ensure the stability and optimality of practices

implemented later in the sequence (Software Engineering Institute,

1995).
3 Here we use the term ``SPA'' in the general sense, not in the sense of

the SEI speci®c assessment method (which was also called an SPA).
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models that are in common use. It de®nes a scheme for
measuring the capability of software processes. A basic
premise of 15504 is that the quantitative score from the
assessment is associated with the performance of the
organization or project. In fact, this is a premise of all
assessment models. Therefore, improving the software
engineering practices according to the assessment model
is expected to subsequently improve the performance.
This is termed the predictive validity of the process
capability score. Empirically validating the verisimili-
tude of such a premise is of practical importance since
substantial process improvement investments are made
by organizations guided by the assessment results.

While there have been some correlational studies that
substantiate the above premise, none evaluated the
predictive validity of the process capability measures
de®ned in ISO/IEC 15504. The implication then is that it
is not possible to substantiate claims that improvement
by adopting the practices stipulated in 15504 really
results in performance improvements.

In this paper we empirically investigate the relation-
ship between the capability of the software development
processes (namely design, coding, and integration and
testing) as de®ned in the emerging ISO/IEC 15504 in-
ternational standard 4 and the performance of software
projects. The study was conducted in the context of the
SPICE Trials, which is an international e�ort to em-
pirically evaluate the emerging international standard
world-wide. To our knowledge, this is the ®rst study to
evaluate the predictive validity of software development
process capability using the ISO/IEC 15504 measure of
process capability.

Brie¯y, our results can be summarized in the form of
Table 1. This indicates that for small organizations
(less than or equal to 50 IT sta�), we only found evi-
dence that the ``Develop Software Design'' process is
related with a projectÕs ability to meet schedule com-
mitments. For large organizations, the same process is
related to ®ve di�erent project performance measures,
including customer satisfaction and the ability to sat-
isfy speci®ed requirements. The ``Implement Software
Design'' process is associated with an improved ability
to meet budget commitments, and the ``Integrate and
Test Software'' process is associated with improved
productivity.

In the next section, we provide the background to our
study. This is followed in Section 3 with an overview of
the ISO/IEC 15504 architecture and rating scheme that
was used during our study. Section 4 details our research
method, and Section 5 contains the results. We conclude

the paper in Section 6 with a discussion of our results
and directions for future research.

2. Background

A recent survey of assessment sponsors found that
baselining process capability and tracking process im-
provement progress are two important reasons for
conducting an SPA (El Emam and Goldenson, 2000).
Both of these reasons rely on the quantitative score
obtained from an assessment, indicating that sponsors
perceive assessments as a measurement procedure.

As with any measurement procedure, its validity must
be demonstrated before one has con®dence in its use.
The validity of measurement is de®ned as the extent to
which a measurement procedure is measuring what it
is purporting to measure (Kerlinger, 1986). During
the process of validating a measurement procedure one
attempts to collect evidence to support the types of
inferences that are to be drawn from measurement
scores.

A basic premise of SPAs is that the resultant quan-
titative scores are predictors of the performance of the
project and/or organization that is assessed. Testing this
premise can be considered as an evaluation of the pre-
dictive validity of the assessment measurement proce-
dure (El Emam and Goldenson, 1995).

In this section, we review existing theoretical and
empirical work on the measurement of development
process capability and the predictive validity of such
measures.

2.1. Theoretical model speci®cation

A predictive validity study typically tests the
hypothesized model shown in Fig. 1. This shows that
there is a relationship between process capability and
performance, and that this relationship is dependent
upon some context factors (i.e., the relationship func-
tional form or direction may be di�erent for di�erent
contexts, or may exist only for some contexts).

The hypothesized model can be tested for di�erent
units of analysis (Goldenson et al., 1999). The three
units of analysis are the life cycle process (e.g., the design
process), the project (which could be a composite of the
capability of multiple life cycle processes of a single
project, such as design and coding), or the organization
(which could be a composite of the capability of the
same or multiple processes across di�erent projects). All
of the three variables in the model can be measured at
any one of these units of analysis. 5

4 In this paper we only refer to the PDTR version of the ISO/IEC

15504 document set since this was the one used during our empirical

study. The PDTR version re¯ects one of the stages that a document

has to go through on the path to international standardization. The

PDTR version is described in detail in El Emam et al. (1998).

5 Although, if process capability is measured on a di�erent unit from

the performance measure, then the results of a predictive validity study

may be more di�cult to interpret.
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The literature refers to measures at di�erent units of
analysis using di�erent terminology. To remain consis-
tent, we will use the term ``process capability'', and
preface it with the unit of analysis where applicable. For
example, one can make a distinction between measuring
process capability, as in ISO/IEC 15504, and measuring
organizational maturity, as in the SW-CMM (Paulk and
Konrad, 1994). Organizational maturity can be consid-
ered as a measure of organizational process capability.

2.2. Theoretical basis for validating software development
process capability

Three existing models explicitly hypothesize bene®ts
as software development process capability is improved.
These are reviewed below.

The SW-CMM de®nes 18 KPAs that are believed to
represent good software engineering practices (Software
Engineering Institute, 1995). The main design, con-
struction, integration, and testing processes are em-

bodied in the Software Product Engineering KPA
(Software Engineering Institute, 1998a). This is de®ned
at Level 3.

As organizations increase their organizational pro-
cess capability by implementing progressively more of
these processes, it is hypothesized that three types of
bene®ts will accrue (Paulk et al., 1993):
· the di�erences between targeted results and actual

results will decrease across projects,
· the variability of actual results around targeted

results decreases, and
· costs decrease, development time shortens, and pro-

ductivity and quality increase.
However, these bene®ts are not posited only for the

Software Product Engineering KPA, but rather as a
consequence of implementing combinations of practices.

The emerging ISO/IEC 15504 international standard,
on the other hand, de®nes a set of processes, and a scale
that can be used to evaluate the capability of each
process separately (El Emam et al., 1998) (details of the
ISO/IEC 15504 architecture are provided in Section 3).
The initial requirements for ISO/IEC 15504 state that an
organizationÕs assessment results should re¯ect its ability
to achieve productivity and/or development cycle time
goals (El Emam et al., 1998). It is not clear however,
whether this is hypothesized for each individual process,
or for combinations of processes.

The Software Engineering Institute has published a
so-called Technology Reference Guide (Software Engi-
neering Institute, 1997), which is a collection and clas-
si®cation of software technologies. Its purpose is to
foster technology dissemination and transfer. Each
technology is classi®ed according to processes in which

Fig. 1. Theoretical model being tested in a predictive validity study of

process capability.

Table 1

Summary of the ®ndings from our predictive validity study a

Performance measure Process(es)

Small organizations

Ability to meet budget commitments Develop Software Design

Ability to meet schedule commitments

Ability to achieve customer satisfaction

Ability to satisfy speci®ed requirements

Sta� productivity

Sta� morale/job satisfaction

Large organizations

Ability to meet budget commitments Develop Software Design, Implement Software Design

Ability to meet schedule commitments Develop Software Design

Ability to achieve customer satisfaction Develop Software Design

Ability to satisfy speci®ed requirements Develop Software Design

Sta� productivity Integrate and Test Software

Sta� morale/job satisfaction Develop Software Design
a In the ®rst column are the performance measures that were collected for each project. In the second column are the development processes whose

capability was evaluated. The results are presented separately for small (equal to or less than 50 IT sta�) and large organizations (more than 50 IT

sta�). For each performance measure we show the software development processes that were found to be related to it. For example, for large or-

ganizations, we found that the ``Develop Software Design'' and ``Implement Software Design'' processes were associated with the ``Ability to meet

budget commitments''. Also, for instance, we did not ®nd any processes that were associated with ``Sta� productivity'' in small organizations. A

process was considered to be associated with a performance measure if it had a correlation coe�cient that was greater than or equal to 0.3, and that

was statistically signi®cant at a one-tailed (Bonferonni adjusted) alpha level of 0.1.
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it can be applied (application taxonomy) and according
to qualities of software systems that can be expected as a
result of applying the technology (quality measures
taxonomy). The classi®cations have passed a compre-
hensive review by a large number of noted software
engineering experts. This accumulated expert opinion
can be used as another source of claims on the impact of
design, implementation, integration and testing pro-
cesses on overall project performance.

The technologies listed for the process categories
related to design, implementation, integration and test-
ing can be mapped to quality measures such as cor-
rectness, reliability, maintainability, understandability,
and cost of ownership. Through such a mapping, one
can posit relationships between the practices and the
quality attributes.

Therefore, the existing literature does strongly sug-
gest that there is a relationship between software de-
velopment process capability and performance.
However, the models di�er in the expected bene®ts that
they contend will accrue from their implementation, and
also the former two in their process capability mea-
surement schemes.

2.3. Evidence of the predictive validity of development
process capability measures

To our knowledge, no empirical evidence exists sup-
porting the predictive validity of the software develop-
ment process capability measures as de®ned in ISO/IEC
15504. The Technology Reference Guide is based largely
on expert judgment. Nevertheless, there have been
studies of predictive validity based on the SW-CMM
and other models. In the following we review these
studies.

Two classes of empirical studies have been conducted
and reported thus far: case studies and correlational
studies (Goldenson et al., 1999). Case studies describe
the experiences of a single organization (or a small
number of selected organizations) and the bene®ts it
gained from increasing its process capability. Case
studies are most useful for showing that there are or-
ganizations that have bene®ted from increased process
capability. Examples of these are reported in Humphrey
et al. (1991), Herbsleb et al. (1994), Dion (1992), Dion
(1993), Wohlwend and Rosenbaum (1993), Benno and
Frailey (1995), Lipke and Butler (1992), Butler (1995)
Lebsanft (1996) and Krasner (1999). However, in this
context, case studies have a methodological disadvan-
tage that makes it di�cult to generalize the results from
a single case study or even a small number of case
studies. Case studies tend to su�er from a selection bias
because:
· Organizations that have not shown any process

improvement or have even regressed will be highly
unlikely to publicize their results, so case studies tend

to show mainly success stories (e.g., all the references
to case studies above are success stories), and

· The majority of organizations do not collect objective
process and product data (e.g., on defect levels, or
even keep accurate e�ort records). Only organiza-
tions that have made improvements and reached a
reasonable level of maturity will have the actual ob-
jective data to demonstrate improvements (in produc-
tivity, quality, or return on investment). Therefore
failures and non-movers are less likely to be consid-
ered as viable case studies due to the lack of data. 6

With correlational studies, one collects data from a
larger number of organizations or projects and investi-
gates relationships between process capability and per-
formance statistically. Correlational studies are useful
for showing whether a general association exists between
increased capability and performance, and under what
conditions.

There have been a few correlational studies in the
past that evaluated the predictive validity of various
process capability measures. For example, Goldenson
and Herbsleb (1995) evaluated the relationship between
SW-CMM capability scores and organizational perfor-
mance measures. They surveyed individuals whose or-
ganizations have been assessed against the SW-CMM.
The authors evaluated the bene®ts of higher process
capability using subjective measures of performance.
Organizations with higher capability tend to perform
better on the following dimensions (respondents chose
either the ``excellent'' or ``good'' response categories
when asked to characterize their organizationÕs perfor-
mance on these dimensions): ability to meet schedule,
product quality, sta� productivity, customer satisfac-
tion, and sta� morale. The relationship with the ability
to meet budget commitments was not found to be sta-
tistically signi®cant.

A more recent study considered the relationship
between the implementation of the SW-CMM KPAs
and delivered defects (after correcting for size and per-
sonnel capability) (Krishnan and Kellner, 1998). They
found evidence that increasing process capability is
negatively associated with delivered defects.

Another correlational study investigated the bene®ts
of moving up the maturity levels of the SW-CMM
(Flowe and Thordahl, 1994; Lawlis et al., 1996). 7 They
obtained data from historic US Air Force contracts.
Two measures were considered: (a) cost performance
index which evaluates deviations in actual vs. planned
project cost, and (b) schedule performance index which

6 Exceptions would be where contractual requirements mandate the

collection and reporting of performance data, such as schedule and

cost performance. This, for instance, occurs with DoD contracts.
7 This data set was reanalyzed by El Emam and Goldenson (2000) to

address some methodological questions. Although, the conclusions of

the reanalysis are the same as the original authorsÕ.
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evaluates the extent to which schedule has been over/
under-run. Generally, the results show that higher
maturity projects approach on-target cost and on-target
schedule.

McGarry et al. (1998) investigated the relationship
between assessment scores using an adaptation of the
SW-CMM process capability measures and project
performance for 15 projects within a single organization.
They did not ®nd strong evidence of predictive validity,
although all relationships were in the expected direction.

Clark (1997) investigated the relationship between
satisfaction of SW-CMM goals and software project
e�ort, after correcting for other factors such as size and
personnel experience. His results indicate that the more
KPAs are implemented, the less e�ort is consumed on
projects.

Gopal et al. (1999) performed a study with two
Indian software ®rms, collecting data on 34 application
software projects. They investigated the impact of pro-
cess capability as measured by the SW-CMM KPAs.
Speci®cally, they identi®ed two dimensions of capabili-
ty: Technical Processes (consisting of Requirements
Management, Software Product Engineering, Software
Con®guration Management, and Software Product
Planning) and Quality Processes (consisting of Training
Program, Peer Reviews, and Defect Prevention). The
Technical Processes dimension embodies the software
development processes that are of primary interest in
our study. They found that the Quality Processes were
related to a reduction in rework and increases in overall
e�ort, and the Technical Processes were associated with
a reduction in e�ort and increases in elapsed time.

Harter et al. (1999) report on a comprehensive study to
evaluate the impact of process maturity as measured by
the SW-CMM levels. They found that higher maturity is
associated with higher product quality. No direct e�ect of
maturity on cycle time was found, but the net e�ect of
process maturity on cycle time was negative due to the
improvements in product quality (i.e., higher maturity
leads to better quality which in turn leads to reduced cycle
time due to less rework). Also, the direct e�ect of maturity
on development e�ort was found to be positive. But the
net e�ect of higher maturity on e�ort was negative due to
improvements in quality (i.e., higher maturity leads to
higher quality which in turn leads to reduced e�ort due to
less rework). In this particular study, product quality was
measured as the reciprocal of defect density for defects
found during system and acceptance testing.

Jones presents the results of an analysis on the ben-
e®ts of moving up the 7-level maturity scale of Software
Productivity Research (SPR) Inc.'s proprietary model
(Jones, 1996, 1999). These data were collected from
SPR's clients. His results indicate that as organizations
move from Level 0 to Level 6 on the model they witness
(compound totals): 350% increase in productivity, 90%
reduction in defects, 70% reduction in schedules.

Deephouse et al. (1995) evaluated the relationship
between individual processes and project performance.
As would be expected, they found that evidence of
predictive validity depends on the particular perfor-
mance measure that is considered. One study by El
Emam and Madhavji (1995) evaluated the relationship
between four dimensions of organizational process ca-
pability and the success of the requirements engineering
process. Evidence of predictive validity was found for
only one dimension. However, neither of these studies
used the ISO/IEC 15504 measure of process capability.

As can be seen from the above review that despite
there being studies with other capability measurement
schemes, no evidence exists that demonstrates the rela-
tionship between the capability of software development
processes as de®ned in ISO/IEC 15504 and the perfor-
mance of software projects. This means that we cannot
substantiate claims that improving the capability of the
ISO/IEC 15504 software development processes will
lead to any improvement in project performance, and we
cannot be speci®c about which performance measures
will be a�ected. Hence, the rationale for the current
study.

2.4. Moderating e�ects

A recent review of the empirical literature on software
process assessments noted that existing evidence sug-
gests that the extent to which a projectÕs or organiza-
tionÕs performance improves due to the implementation
of good software engineering practices (i.e., increasing
process capability) is dependent on the context (El
Emam and Briand, 1999). This highlights the need to
consider the project and/or organizational context in
predictive validity studies. However, it has also been
noted that the overall evidence remains equivocal as to
which context factors should be considered in predictive
validity studies (El Emam and Briand, 1999).

In our current study we consider the size of the or-
ganization as a context factor. This is not claimed to be
the only context factor that ought to be considered, but
is only one of the important ones that has been men-
tioned repeatedly in the literature.

Previous studies provide inconsistent results about the
e�ect of organizational size. For example, there have
been some concerns that the implementation of some of
the practices in the CMM, such as a separate Quality
Assurance function and formal documentation of poli-
cies and procedures, would be too costly for small or-
ganizations (Brodman and Johnson, 1994). Therefore,
the implementation of certain processes or process
management practices may not be as cost-e�ective for
small organizations as for large ones. However, a mod-
erated analysis of the relationship between organiza-
tional capability and requirements engineering process
success (using the data set originally used in El Emam
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and Madhavji (1995)) found that organizational size
does not a�ect predictive validity (El Emam and Briand,
1999). This result is consistent with that found in Gold-
enson and Herbsleb (1995) for organization size and
(Deephouse et al., 1995) for project size, but is at odds
with the ®ndings from Brodman and Johnson (1994).

To further confuse the issue, an earlier investigation
by Lee and Kim (1992) studied the relationship between
the extent to which software development processes are
standardized and MIS success. 8 It was found that
standardization of life cycle processes was associated
with MIS success in smaller organizations but not in
large ones. This is in contrast to some of the ®ndings
cited above. In summary, it is not clear if and how or-
ganization size moderates the bene®ts of process and the
implementation of process management practices.

We therefore explicitly consider organizational size as
a factor in our study to identify if the predictive validity
results are di�erent for di�erent sized organizations.

3. Overview of the ISO/IEC PDTR 15504 rating scheme

3.1. The architecture

The architecture of ISO/IEC 15504 is two-dimen-
sional as shown in Fig. 2. One dimension consists of the
processes that are actually assessed (the Process di-
mension) that are grouped into ®ve categories. The
second dimension consists of the capability scale that is
used to evaluate the process capability (the Capability
dimension). The same capability scale is used across all
processes. Software development processes are de®ned
in the Engineering process category in the Process
dimension.

During an assessment it is not necessary to assess all
the process in the process dimension. Indeed, an orga-
nization can scope an assessment to cover only the subset
of processes that are relevant for its business objectives.
Therefore, not all organizations that conduct an assess-
ment based on ISO/IEC 15504 will necessarily cover all
of the development processes within their scope.

In ISO/IEC 15504, there are ®ve levels of capability
that can be rated, from Level 1 to Level 5. A Level 0 is
also de®ned, but this is not rated directly. These six levels
are shown in Table 2. In Level 1, one attribute is directly
rated. There are two attributes in each of the remaining
four levels. The attributes are also shown in Table 2, and
explained in more detail in El Emam et al. (1998).

The rating scheme consists of a 4-point achievement
scale for each attribute. The four points are designated
as F, L, P, N for Fully Achieved, Largely Achieved,

Partially Achieved and Not Achieved. A summary of the
de®nition for each of these response categories is given
in Table 3.

It is not required that all the attributes in all ®ve levels
be rated during an assessment. For example, it is per-
missible that an assessment only rate attributes up to say
level 3, and not rate at levels 4 and 5.

The unit of rating in an ISO/IEC PDTR 15504 pro-
cess assessment is the process instance. A process in-
stance is de®ned as a singular instantiation of a process
that is uniquely identi®able and about which informa-
tion can be gathered in a repeatable manner (El Emam
et al., 1998).

The scope of an assessment is an Organizational Unit
(OU) (El Emam et al., 1998). An OU deploys one or
more processes that have a coherent process context and
operate within a coherent set of business goals. The
characteristics that determine the coherent scope of ac-
tivity ± the process context ± include the application
domain, the size, the criticality, the complexity, and the
quality characteristics of its products or services. An OU
is typically part of a larger organization, although in a
small organization the OU may be the whole organiza-
tion. An OU may be, for example, a speci®c project or
set of (related) projects, a unit within an organization
focused on a speci®c life cycle phase (or phases), or a
part of an organization responsible for all aspects of a
particular product or product set.

3.2. Measuring software development process capability

In ISO/IEC 15504, the software development process
is embodied in three processes: Develop Software Design,
Implement Software Design, Integrate and Test Software.

One of the ISO/IEC 15504 documents contains an
exemplar assessment model (known as Part 5). This
provides further details of how to rate the development

Fig. 2. An overview of the ISO/IEC 15504 two-dimensional

architecture.

8 Process standardization is a recurring theme in process capability

measures.
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processes. Almost all of the assessments that were part
of our study used Part 5 directly, and those that did not
used models that are based on Part 5. Therefore a dis-
cussion of the guidance for rating the software devel-
opment processes in Part 5 is relevant here.

For each process there are a number of base practices
that can be used as indicators of performance (attribute
1.1 in Table 2). A base practice is a software engineering

or project management activity that addresses the pur-
pose of a particular process. Consistently performing the
base practices associated with a process will help in
consistently achieving its purpose. The base practices are
described at an abstract level, identifying ``what'' should
be done without specifying ``how''. The base practices
characterize performance of a process. Implementing
only the base practices of a process may be of minimal

Table 2

Overview of the capability levels and attributes

ID Title

Level 0 Incomplete process

There is general failure to attain the purpose of the process. There are no easily identi®able work products or outputs of the

process

Level 1 Performed process

The purpose of the process is generally achieved. The achievement may not be rigorously planned and tracked. Individuals

within the organization recognize that an action should be performed, and there is general agreement that this action is

performed as and when required. There are identi®able work products for the process, and these testify to the achievement

of the purpose

1.1 Process performance attribute

Level 2 Managed process

The process delivers work products of acceptable quality within de®ned timescales. Performance according to speci®ed

procedures is planned and tracked. Work products conform to speci®ed standards and requirements. The primary

distinction from the Performed Level is that the performance of the process is planned and managed and progressing

towards a de®ned process

2.1 Performance management attribute

2.2 Work product management attribute

Level 3 Established process

The process is performed and managed using a de®ned process based upon good software engineering principles.

Individual implementations of the process use approved, tailored versions of standard, documented processes. The

resources necessary to establish the process de®nition are also in place. The primary distinction from the Managed Level is

that the process of the Established Level is planned and managed using a standard process

3.1 Process de®nition attribute

3.2 Process resource attribute

Level 4 Predictable process

The de®ned process is performed consistently in practice within de®ned control limits, to achieve its goals. Detailed

measures of performance are collected and analyzed. This leads to a quantitative understanding of process capability and

an improved ability to predict performance. Performance is objectively managed. The quality of work products is

quantitatively known. The primary distinction from the Established Level is that the de®ned process is quantitatively

understood and controlled

4.1 Process measurement attribute

4.2 Process control attribute

Level 5 Optimizing process

Performance of the process is optimized to meet current and future business needs, and the process achieves repeatability in

meeting its de®ned business goals. Quantitative process e�ectiveness and e�ciency goals (targets) for performance are

established, based on the business goals of the organization. Continuous process monitoring against these goals is enabled

by obtaining quantitative feedback and improvement is achieved by analysis of the results. Optimizing a process involves

piloting innovative ideas and technologies and changing non-e�ective processes to meet de®ned goals or objectives. The

primary distinction from the Predictable Level is that the de®ned process and the standard process undergo continuous

re®nement and improvement, based on a quantitative understanding of the impact of changes to these processes

5.1 Process change attribute

5.2 Continuous improvement attribute

Table 3

The four-point attribute rating scale

Rating and designation Description

Not achieved ± N There is no evidence of achievement of the de®ned attribute

Partially achieved ± P There is some achievement of the de®ned attribute

Largely achieved ± L There is signi®cant achievement of the de®ned attribute

Fully achieved ± F There is full achievement of the de®ned attribute
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value and represents only the ®rst step in building pro-
cess capability, but the base practices represent the un-
ique, functional activities of the process, even if that
performance is not systematic. The base practices are
summarized below for each of our three processes.

3.2.1. Develop software design
The purpose of the Develop software design process is

to de®ne a design for the software that accommodates
the requirements and can be tested against them. As a
result of successful implementation of the process:
· an architectural design will be developed that de-

scribes major software components which accommo-
date the software requirements;

· internal and external interfaces of each software com-
ponent will be de®ned;

· a detailed design will be developed that describes soft-
ware units that can be built and tested;

· traceability will be established between software re-
quirements and software designs.
Base practices that should exist to indicate that the

purpose of the Develop Software Design process has
been achieved are:

Develop software architectural design. Transform the
software requirements into a software architecture
that describes the top-level structure and identi®es
its major components.
Design interfaces. Develop and document a design
for the external and internal interfaces.
Develop detailed design. Transform the top level de-
sign into a detailed design for each software compo-
nent. The software components are re®ned into
lower levels containing software units. The result
of this base practice is a documented software design
which describes the position of each software unit in
the software architecture. 9

Establish traceability. Establish traceability between
the software requirements and the software designs.

3.2.2. Implement software design
The purpose of the Implement software design process

is to produce executable software units and to verify that
they properly re¯ect the software design. As a result of
successful implementation of the process:
· veri®cation criteria will be de®ned for all software

units against software requirements;
· all software units de®ned by the design will be pro-

duced;
· veri®cation of the software units against the design is

accomplished.
Base practices that should exist to indicate that the

purpose of the Implement Software Design process has
been achieved are:

Develop software units. Develop and document each
software unit. 10

Develop unit veri®cation procedures. Develop and
document procedures for verifying that each soft-
ware unit satis®es its design requirements. 11

Verify the software units. Verify that each software
unit satis®es its design requirements and document
the results.

3.2.3. Integrate and test software
The purpose of the Integrate and test software process

is to integrate the software units with each other pro-
ducing software that will satisfy the software require-
ments. This process is accomplished step by step by
individuals or teams. As a result of successful imple-
mentation of the process:
· an integration strategy will be developed for software

units consistent with the release strategy;
· acceptance criteria for aggregates will be developed

that verify compliance with the software require-
ments allocated to the units;

· software aggregates will be veri®ed using the de®ned
acceptance criteria;

· integrated software will be veri®ed using the de®ned
acceptance criteria;

· test results will be recorded;
· a regression strategy will be developed for retesting

aggregates or the integrated software should a change
in components be made.
Base practices that should exist to indicate that the

purpose of the Integrate and Test Software process has
been achieved are:

Determine regression test strategy. Determine the
strategy for retesting aggregates should a change
in a given software unit be made.
Build aggregates of software units. Identify aggre-
gates of software units and a sequence or partial
ordering for testing them. 12

Develop tests for aggregates. Describe the tests to be
run against each software aggregate, indicating soft-
ware requirements being checked, input data and
acceptance criteria.
Test software aggregates. Test each software aggre-
gate against the acceptance criteria, and document
the results.
Integrate software aggregates. Integrate the ag-
gregated software components to form a complete
system.

9 The detailed design includes the speci®cation of interfaces between

the software units.

10 This base practice involves creating and documenting the ®nal

representations of each software unit.
11 The normal veri®cation procedure will be through unit testing, and

the veri®cation procedure will include unit test cases and unit test data.
12 Typically, the software architecture and the release strategy will

have some in¯uence on the selection of aggregates.
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Develop tests for software. Describe the tests to be
run against the integrated software, indicating soft-
ware requirements being checked, input data, and
acceptance criteria. The set of tests should demon-
strate compliance with the software requirements
and provide coverage of the internal structure of
the software. 13

Test integrated software. Test the integrated soft-
ware against the acceptance criteria, and document
the results.

3.2.4. Rating level 2 and 3 attributes
For higher capability levels, a number of Manage-

ment practices have to be evaluated to determine the
attribute rating. For each of the attributes in levels 2 and
3, the management practices are summarized below. We
do not consider levels above 3 because we do not include
higher level ratings within our study.

3.2.4.1. Performance management attribute. This is de-
®ned as the extent to which the execution of the process
is managed to produce work products within stated time
and resource requirements. In order to achieve this ca-
pability, a process needs to have time and resources
requirements stated and produce work products within
the stated requirements. The related Management
Practices are:

3.2.4.2. Work product management attribute. This is de-
®ned as the extent to which the execution of the process
is managed to produce work products that are docu-
mented and controlled and that meet their functional
and non-functional requirements, in line with the work
product quality goals of the process. In order to achieve
this capability, a process needs to have stated functional
and non-functional requirements, including integrity,
for work products and to produce work products that
ful®l the stated requirements. The related Management
practices are:

3.2.4.3. Process de®nition attribute. This is de®ned as the
extent to which the execution of the process uses a
process de®nition based upon a standard process, that
enables the process to contribute to the de®ned business
goals of the organization. In order to achieve this
capability, a process needs to be executed according to a
standard process de®nition that has been suitably tai-
lored to the needs of the process instance. The standard
process needs to be capable of supporting the stated
business goals of the organization. The related
Management Practices are:

3.2.4.4. Process resource attribute. This is de®ned as the
extent to which the execution of the process uses suitable
skilled human resources and process infrastructure
e�ectively to contribute to the de®ned business goals of
the organization. In order to achieve this capability, a
process needs to have adequate human resources and
process infrastructure available that ful®l stated needs to
execute the de®ned process. The related Management
practices are:

Management practices

Identify resource requirements to enable planning
and tracking of the process.
Plan the performance of the process by identifying
the activities of the process and the allocated
resources according to the requirements.
Implement the de®ned activities to achieve the
purpose of the process.
Manage the execution of the activities to produce the
work products within stated time and resource
requirements.

Management practices

Identify requirements for the integrity and quality of
the work products.
Identify the activities needed to achieve the integrity
and quality requirements for work products.
Manage the con®guration of work products to ensure
their integrity.
Manage the quality of work products to ensure that
the work products meet their functional and non-
functional requirements.

Management practices

Identify the standard process de®nition from those
available in the organization that is appropriate to
the process purpose and the business goals of the
organization.
Tailor the standard process to obtain a de®ned
process appropriated to the process context.
Implement the de®ned process to achieve the process
purpose consistently, and repeatably, and support
the de®ned business goal of the organization.
Provide feedback into the standard process from
experience of using the de®ned process.

Management practices

De®ne the human resource competencies required to
support the implementation of the de®ned process.
De®ne process infrastructure requirements to support
the implementation of the de®ned process.

13 Tests can be developed during processes Develop software design

and Implement software design. Commencement of test development

should generally not wait until software integration.
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3.3. Summary

In this section we have presented a summary of the
two-dimensional ISO/IEC 15504 architecture. An im-
portant element of that architecture for our purposes is
the process capability measurement scheme. This con-
sists of nine attributes that are each rated on a 4-point
``achievement'' scale. We are only interested in the ®rst
®ve of these (i.e., the ®rst three levels) since these are the
ones we use in our study. We also presented some details
about the type of information that an assessor would
typically look for when making a rating on each of these
®ve attributes.

4. Research method

4.1. Approaches to evaluating predictive validity in
correlational studies

Correlational approaches to evaluating the predictive
validity of a process capability measure can be classi®ed
by the manner in which the variables are measured.
Table 4 shows a classi®cation of approaches. The col-
umns indicate the manner in which the criterion (i.e.,
performance) is measured. The rows indicate the man-
ner in which the process capability is measured. The
criterion can be measured using a questionnaire whereby
data on the perceptions of experts are collected. It can
also be measured through a measurement program. For
example, if our criterion is defect density of delivered
software products, then this could be measured through
an established measurement program that collects data
on defects found in the ®eld. Process capability can also
be measured through a questionnaire whereby data on
the perceptions of experts on the capability of their
processes are collected. Alternatively, actual assessments
can be performed, which are a more rigorous form of
measurement. 14

A di�culty with studies that attempt to use criterion
data that are collected through a measurement program
is that the majority of organizations do not collect ob-
jective process and product data (e.g., on defect levels,
or even keep accurate e�ort records). Primarily organi-
zations that have made improvements and reached a
reasonable level of process capability will have the

actual objective data to demonstrate improvements (in
productivity, quality, or return on investment). 15 This
assertion is supported by the results in Brodman and
Johnson (1995) where, in general, it was found that
organizations at lower SW-CMM maturity levels are
less likely to collect quality data (such as the number of
development defects). Also, the same authors found that
organizations tend to collect more data as their CMM
maturity levels rise. It was also reported in another
survey (Rubin, 1993) that for 300 measurement pro-
grams started since 1980, less than 75 were considered
successful in 1990, indicating a high mortality rate for
measurement programs. This high mortality rate indi-
cates that it may be di�cult right now to ®nd many
organizations that have implemented measurement
programs. This means that organizations or projects
with low process capability would have to be excluded
from a correlational study. Such an exclusion would
reduce the variation in the performance measure, and
thus reduce (arti®cially) the validity coe�cients. There-
fore, correlational studies that utilize objective perfor-
mance measures are inherently in greater danger of not
®nding signi®cant results.

Furthermore, when criterion data are collected
through a measurement program, it is necessary to have
the criterion measured in the same way across all ob-
servations. This usually dictates that the study is done
within a single organization where such measurement
consistency can be enforced, hence reducing the gener-
alizability of the results.

Conducting a study where capability is measured
through an assessment as opposed to a questionnaire
implies greater costs. This usually translates into smaller
sample sizes and hence reduced statistical power.

Therefore, the selection of a quadrant in Table 4 is a
trade-o� amongst cost, statistical power, measurement
rigor and generalizability.

There are a number of previous studies that evaluated
the relationship between process capability (or organi-
zational maturity) and the performance of projects that
can be placed in quadrant Q1, e.g. Goldenson and
Herbsleb (1995), Deephouse et al. (1995), Clark (1997)
and Gopal et al. (1999). These studies have the advan-
tage that they can be conducted across multiple projects
and across multiple organizations, and hence can pro-
duce more generalizable conclusions.

A more recent study evaluated the relationship be-
tween questionnaire responses on implementation of the
SW-CMM KPAs and defect density (Krishnan and
Kellner, 1998), and this would be placed in quadrant
Q2. However, this study was conducted across multiple
projects within a single organization, reducing its

Provide adequate skilled human resources meeting
the de®ned competencies.
Provide adequate process infrastructure according to
the de®ned needs of the process.

14 ``More rigorous'' is intended to mean with greater reliability and

construct validity.

15 This is the same disadvantage of case studies as described in

Section 2.3.
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generalizability compared with studies conducted across
multiple organizations.

Our current study can be placed in quadrant Q3 since
we use process capability measures from actual assess-
ments, and questionnaires for evaluating project per-
formance. This retains the advantage of studies in
quadrant Q1 since it is conducted across multiple pro-
jects in multiple organizations, but utilizes a more rig-
orous measure of process capability. Similarly, the study
of Jones can be considered to be in this quadrant (Jones,
1996, 1999). 16

Studies in quadrant Q4 are likely to have the same
limitations as studies in quadrant Q2: being conducted
across multiple projects within the same organization.
For instance, the study of McGarry et al. (1998) was
conducted within a single company, the AFIT study was
conducted with contractors of the Air Force (Flowe and
Thordahl, 1994; Lawlis et al., 1996), and the study by
Harter et al. (1999) was performed on 30 software
products created by the systems integration division
within one organization.

Therefore, the di�erent types of studies that can be
conducted in practice have di�erent advantages and
disadvantages, and predictive validity studies have been
conducted in the past that populate all four quadrants.
It is reasonable then to encourage studies in all four
quadrants. Consistency in the results across correla-
tional studies that use the four approaches would in-
crease the weight of evidence supporting the predictive
validity hypothesis.

4.2. Source of data

The data that were used for this study were obtained
from the SPICE Trials. The SPICE Trials are an inter-
national e�ort to empirically evaluate the emerging ISO/
IEC 15504 international standard world-wide. The
SPICE Trials have been divided into three broad phases
to coincide with the stages that the ISO/IEC 15504
document was expected to go through on its path to
international standardization. The analyses presented in
this paper come from phase 2 of the SPICE Trials. Phase
2 lasted from September 1996 to June 1998.

During the trials, organizations contribute their as-
sessment ratings data to an international trials database
located in Australia, and also ®ll up a series of ques-
tionnaires after each assessment. The questionnaires
collect information about the organization and about
the assessment. There is a network of 26 SPICE Trials
co-ordinators around the world who interact directly
with the assessors and the organizations conducting the
assessments. This interaction involves ensuring that as-
sessors are quali®ed, making questionnaires available,
answering queries about the questionnaires, and fol-
lowing up to ensure the timely collection of data.

During Phase 2 of the SPICE Trials a total of 70
assessments had been conducted and contributed their
data to the international database. The distribution of
assessments by region is given in Fig. 3. 17 In total 691
process instances were assessed. Since more than one
assessment may have occurred in a particular OU (e.g.,
multiple assessments each one looking at a di�erent set
of processes), a total of 44 OUs were assessed. Their
distribution by region is given in Fig. 4.

Given that an assessor can participate in more than
one assessment, the number of assessors is smaller than
the total number of assessments. In total, 40 di�erent
lead assessors took part.

The employment status of the assessors is summa-
rized in Fig. 5. As can be seen, most assessors consider
themselves in management or senior technical positions
in their organizations, with a sizeable number of the rest
being consultants.

The variation in the number of years of software
engineering experience and assessment experience of the

Table 4

Di�erent correlational approaches for evaluating predictive validity

Measuring the criterion

Questionnaire Measurement program

Measuring capability Questionnaire Q1 Q2 (low cost)

assessment Q3 Q4 (high cost)

(across organizations) (within one organization)

16 Since it is di�cult to ®nd low maturity organizations with

objective data on e�ort and defect levels, and since there are few high

maturity organizations, Jones' data rely on the reconstruction of, at

least, e�ort data from memory, as noted in Jones (1994): ``The SPR

approach is to ask the project team to reconstruct the missing elements

from memory''. The rationale for that is stated as ``the alternative is to

have null data for many important topics, and that would be far

worse''. The general approach is to show sta� a set of standard

activities, and then ask them questions such as which ones they used

and whether they put in any unpaid overtime during the performance

of these activities. For defect levels, the general approach is to do a

matching between companies that do not measure their defects with

similar companies that do measure, and then extrapolate for those that

donÕt measure. It should be noted that SPR does have a large data

base of project and organizational data, which makes this kind of

matching defensible. However, since at least some of the criterion

measures are not collected from measurement programs, we place this

study in the same category as those that utilize questionnaires.

17 Within the SPICE Trials, assessments are coordinated within each

of the ®ve regions shown in the ®gures above.
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assessors is shown in Fig. 6. The median experience in
software engineering is 12 years, with a maximum of 30
years experience. The median experience in assessments
is three years, indicating a non-trivial background in
assessments.

The median number of assessments performed in the
past by the assessors is 6, and the median number of
15504-based assessments is 2. This indicates that, in
general, assessors had a good amount of experience with
software process assessments.

4.3. Unit of analysis

The unit of analysis for this study is the software
project. This means that process capability ratings are
obtained for the relevant process in each project, and
project performance measures are collected for the same
project.

4.4. Measurement

4.4.1. Measuring process capability
A previous study had identi®ed that the capability

scale of ISO/IEC 15504 is two-dimensional (El Emam,
1998). 18 The ®rst dimension, which was termed ``Pro-
cess Implementation'', consists of the ®rst three levels.
The second dimension, which was termed ``Quantitative
Process Management'', consists of levels 4 and 5. It was
also found that these two dimensions are congruent with
the manner in which assessments are conducted in
practice: either only the ``Process Implementation'' di-
mension is rated or both dimensions are rated (recall
that it is not required to rate at all ®ve levels in an ISO/
IEC 15504 assessment).

In our data set, 33% of the Develop Software Design
processes, 31% of the Implement Software Design pro-
cesses, and 44% of the Integrate and Test Software
processes were not rated on the ``Quantitative Process
Management'' dimension. If we exclude all processes
with this rating missing then we lose a substantial pro-
portion of our observations. Therefore, we limit our-
selves in the current study to the ®rst dimension only.

To construct a single measure of ``Process Implemen-
tation'' we code an ÔFÕ rating as 4, down to a 1 for an ÔNÕ
rating. Subsequently, we construct an unweighted sum of
the attributes at the ®rst three levels of the capability
scale. This is a common approach for the construction of

Fig. 5. Employment status of (lead) assessors. The possible options

were as follows: ``Exec'' stands for executive, ``Manag'' stands for

management, ``SenTech'' stands for senior technical person, ``Tech''

stands for a technical position, and ``Consult'' stands for consultant.

Fig. 6. Software engineering (left panel) and assessment experience

(right panel) of the (lead) assessors who participated in the SPICE

Trials. The ®gure is a box and whisker plot. A description of box and

whisker plots and how to interpret them is provided in Appendix B.

Fig. 3. Distribution of assessments by region.

Fig. 4. Distribution of assessed OUs by region.

18 A similar study was performed by Curtis (1996) to identify the

underlying dimensions of the SW-CMM practices, and a number of

di�erent dimensions were identi®ed. El Emam and Goldenson (2000)

reanalyzed the data in Clark (1997) also to identify the underlying

dimensions in the SW-CMM. Gopal et al. (1999) also identi®ed two

dimensions of a subset of the SW-CMM KPAs. Therefore, current

literature does clearly signify that process capability is indeed a

multidimensional construct.
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summated rating scales (McIver and Carmines, 1981).
The range of this summated scale is 4±20.

4.4.2. Measuring project performance
The performance measures were collected through a

questionnaire. The respondent to the questionnaire was
the sponsor of the assessment, who should be knowl-
edgeable about the projects that were assessed. In cases
where the sponsor was not able to respond, s/he dele-
gated the task to a project manager or senior technical
person who completed the questionnaire.

To maintain comparability with previous studies, we
de®ne project performance in a similar manner. In the
Goldenson and Herbsleb (1995) study performance was
de®ned in terms of six variables: customer satisfaction,
ability to meet budget commitments, ability to meet
schedule commitments, product quality, sta� produc-
tivity, and sta� morale/job satisfaction. We use these six
variables, except that product quality is generalized to
``ability to satisfy speci®ed requirements''. We therefore
de®ne project performance in terms of the six variables
summarized in Table 5. Deephouse et al. (1995) consider
software quality (de®ned as match between system ca-
pabilities and user requirements, ease of use, and extent
of rework), and meeting targets (de®ned as within
budget and on schedule). One can argue that if ``ease of
use'' is not in the requirements then it ought not be a
performance criterion, therefore we can consider it as
being a component of satisfying speci®ed requirements.
Extent of rework can also be considered as a component
of productivity since one would expect productivity to
decrease with an increase in rework. Therefore, these
performance measures are congruent with our perfor-
mance measures, and it is clear that they represent
important performance criteria for software projects.

The responses were coded such that the ``Excellent''
response category is 4, down to the ``Poor'' response
category which was coded 1. The ``DonÕt Know''
responses were treated as missing values. 19 The impli-
cation of this coding scheme is that all investigated re-
lationships are hypothesized to be positive.

4.5. Data analysis

4.5.1. Evaluating the relationships
A common coe�cient for the evaluation of predictive

validity in general is the correlation coe�cient (Nun-
nally and Bernstein, 1994). It has also been used in the
context of evaluating the predictive validity of project
and organizational process capability measures

(McGarry et al., 1998; El Emam and Madhavji, 1995).
We therefore use this coe�cient in our study to indicate
the magnitude of a relationship.

We follow a two-staged analysis procedure. During
the ®rst stage we determine whether the association
between ``Process Implementation'' of the development
processes and each of the performance measures is
``clinically signi®cant'' (using the Pearson correlation
coe�cient). This means that it has a magnitude that is
su�ciently large. If it does, then we test the statistical
signi®cance of the association. The logic of this is
explained below.

It is known that with a su�ciently large sample size
even very small associations can be statistically signi®-
cant. Therefore, it is also of importance to consider the
magnitude of a relationship to determine whether it is
meaningfully large. Cohen has provided some general
guidelines for interpreting the magnitude of the corre-
lation coe�cient (Cohen, 1988). We consider ``medium''
sized (i.e., r� 0.3) correlations as the minimal magni-
tude that is worthy of consideration. The logic behind
this choice is that of elimination. If we take ``small''
association (i.e., r� 0.1) as the minimal worthy of
consideration we may be being too liberal and giving
credit to weak associations that are not congruent with
the broad claims made for the predictive validity of as-
sessment scores. Using a ``large'' association (i.e., r�
0.5) as the minimal value worthy of consideration may
place a too high expectation on the predictive validity of
assessment scores; recall that many other factors are
expected to in¯uence the success of a software project
apart from the capability of the development processes.

In the social sciences predictive validity studies with
one predictor rarely demonstrate correlation coe�cients
exceeding 0.3±0.4 (Nunnally and Bernstein, 1994). The
rationale is that ``people are far too complex to permit a
highly accurate estimate of their pro®ciency in most
performance-related situations from any practicable
collection of test materials'' (Nunnally and Bernstein,
1994). Therefore, we would expect that such guidelines
would be at least equally applicable to studies of pro-
jects and organizations.

For statistical signi®cance testing, we perform an
ordinary least squares regression:

PERF � a0 � a1CAP;

where PERF is the performance measure according to
Table 5 and CAP is the ``Process Implementation'' di-
mension of process capability. We test whether the a1

regression coe�cient is di�erent from zero. If there is
su�cient evidence that it is, then we claim that CAP is
associated with PERF. The above model is constructed
separately for each of the performance measures. All
tests performed were one-tailed since our hypotheses are
directional.

19 It is not uncommon to treat ``DonÕt Know'' (DK) responses as

missing values when there is no intrinsic interest in the fact that a DK

response has been provided (Rubin et al., 1995).
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4.5.2. Scale type assumption
According to some authors, one of the assumptions

of the OLS regression model is that all the variables
should be measured at least on an interval scale (Bo-
hrnstedt and Carter, 1971). This assumption is based on
the mapping originally developed by Stevens (1951)
between scale types and ``permissible'' statistical proce-
dures. In our context, this raises two questions. First,
what are the levels of our measurement scales? Second,
to what extent can the violation of this assumption have
an impact on our results?

The scaling model that is used in the measurement of
the process capability construct is the summative model
(McIver and Carmines, 1981). This consists of a number
of subjective measures each on a 4-point scale that are
summed up to produce an overall measure of the con-
struct. Some authors state that summative scaling pro-
duces interval level measurement scales (McIver and
Carmines, 1981), while others argue that this leads to
ordinal level scales (Galletta and Lederer, 1989) . In
general, however, our process capability is expected to
occupy the gray region between ordinal and interval
level measurement.

Our criterion measures utilized a single item each. In
practice, single-item measures are treated as if they are
interval in many instances. For example, in the con-
struction and empirical evaluation of the User Infor-
mation Satisfaction instrument, inter-item correlations
and principal components analysis are commonly per-
formed (Ives et al., 1983).

It is also useful to note a study by Spector (1980) that
indicated that whether scales used have equal or unequal
intervals does not actually make a practical di�erence.
In particular, the mean of responses from using scales of
the two types do not exhibit signi®cant di�erences, and
that the test-retest reliabilities (i.e., consistency of
questionnaire responses when administered twice over a
period of time) of both types of scales are both high and
very similar. He contends, however, that scales with
unequal intervals are more di�cult to use, but that
respondents conceptually adjust for this.

Given the proscriptive nature of Stevens' mapping,
the permissible statistics for scales that do not reach an
interval level are distribution-free (or non-parametric)

methods (as opposed to parametric methods, of which
OLS regression is one) (Siegel and Castellan, 1988).
Such a broad proscription is viewed by Nunnally as
being ``narrow'' and would exclude much useful re-
search (Nunnally and Bernstein, 1994). Furthermore,
studies that investigated the e�ect of data transforma-
tions on the conclusions drawn from parametric meth-
ods (e.g., F ratios and t tests) found little evidence
supporting the proscriptive viewpoint (Labovitz, 1967,
1970; Baker et al., 1966). Su�ce it to say that the issue of
the validity of the above proscription is, at best, debat-
able. As noted by many authors, including Stevens
himself, the basic point is that of pragmatism: useful
research can still be conducted even if, strictly speaking,
the proscriptions are violated (Stevens, 1951; Bohrnstedt
and Carter, 1971; Gardner, 1975; Velleman and Wil-
kinson, 1993). A detailed discussion of this point and the
literature that supports our argument is given in Briand
et al. (1996).

4.5.3. Multiple hypothesis testing
Since we are performing multiple hypotheses testing

(i.e., a regression model for each of the six performance
measures), it is plausible that many a1 regression coef-
®cients will be found to be statistically signi®cant since
the more null hypothesis tests that one performs, the
greater the probability of ®nding statistically signi®cant
results by chance. We therefore use a Bonferonni ad-
justed alpha level when performing signi®cance testing
(Rice, 1995). We set our overall alpha level to be 0.1.

4.5.4. Organization size context
It was noted earlier that the relationships may be of

di�erent magnitudes for small vs. large organizations.
We therefore perform the analysis separately for small
and large organizations. Our de®nition of size is the
number of IT sta� within the OU. We dichotomize this
IT sta� size into SMALL and LARGE organizations,
whereby small is equal to or less than 50 IT sta�. This is
the same de®nition of small organizations that has been
used in a European Commission project that is provid-
ing process improvement guidance for small organiza-
tions (The SPIRE Project, 1998).

Table 5

The criterion variables that were studieda

De®nition Variable name

Ability to meet budget commitments BUDGET

Ability to meet schedule commitments SCHEDULE

Ability to achieve customer satisfaction CUSTOMER

Ability to satisfy speci®ed requirements REQUIREMENTS

Sta� productivity PRODUCTIVITY

Sta� morale/job satisfaction MORALE
a These were evaluated for every project. The question was worded as follows: ``How would you judge the process performance on the following

characteristics . . .''. The response categories were: ``Excellent'', ``Good'', ``Fair'', ``Poor'', and ``DonÕt Know''.
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4.5.5. Reliability of measures
It is known that lack of reliability in measurement

can attenuate bivariate relationships (Nunnally and
Bernstein, 1994). It is therefore important to evaluate
the reliability of our subjective measures, and if appli-
cable, make corrections to the correlation coe�cient
that take into account reliability.

In another related scienti®c discipline, namely Man-
agement Information Systems (MISs), researchers tend
to report the Cronbach alpha reliability coe�cient
(Cronbach, 1951) most frequently (Subramanian and
Nilakanta, 1994). Also, it is considered by some re-
searchers to be the most important reliability estimation
approach (Sethi and King, 1991). This coe�cient eval-
uates a certain type of reliability called internal consis-
tency, and has been used in the past to evaluate the
reliability of the ISO/IEC 15504 capability scale (El
Emam, 1998; Fusaro et al., 1997). We also calculate the
Cronbach alpha coe�cient for the development process
capability measures.

The Cronbach alpha coe�cient varies between 0 and
1, where 1 is perfect reliability. Nunnally and Bernstein
(1994) recommend that a coe�cient value of 0.8 is a
minimal threshold for applied research settings, and a
minimal threshold of 0.7 for basic research settings.

In our study we do not incorporate corrections for
attenuation due to less than perfect reliability on the
process capability measure, however. As suggested in
Nunnally (1978), it is preferable to use the unattenuated
correlation coe�cient since this re¯ects the predictive
validity of the process capability measure that will be
used in actual practice (i.e., in practice it will have less
than perfect reliability).

4.5.6. Multiple imputation
In the performance measures that we used (see

Table 5) there were some missing values. Missing values
are due to respondents not providing an answer on all or
some of the performance questions, or they selected the
``DonÕt Know'' response category. Ignoring the missing
values and only analyzing the completed data subset can
provide misleading results (Little and Rubin, 1987). We
therefore employ the method of multiple imputation to
®ll in the missing values repeatedly (Rubin, 1987).
Multiple imputation is a preferred approach to handling
missing data problems in that it provides for proper
estimates of parameters and their standard errors.

The basic idea of multiple imputation is that one
generates a vector of size M for each value that is
missing. Therefore an nmis �M matrix is constructed,
where nmis is the number of missing values. Each column
of this matrix is used to construct a complete data set,
hence one ends up with M complete data sets. Each of
these data sets can be analyzed using complete-data
analysis methods. The M analyses are then combined
into one ®nal result. Typically a value for M of 3 is used,

and this provides for valid inference (Rubin and
Schenker, 1991). Although, to err on the conservative
side, some studies have utilized an M of 5 (Treiman et al.,
1988), which is the value that we use.

For our analysis the two parameters of interest are
the correlation coe�cient, r, and the a1 parameter of the
regression model (we shall refer to this estimated pa-
rameter as Q̂). Furthermore, we are interested in the
standard error of Q̂, which we shall denote as

����
U
p

, in
order to test the null hypothesis that it is equal to zero.
After calculating these values for each of the ®ve data
sets, they can be combined to give an overall r value, �r,
an overall value for Q̂, �Q, and its standard error

����
T
p

.
Procedures for performing this computation are detailed
in Rubin (1987), and summarized in Rubin and Schen-
ker (1991). In Appendix A we describe the multiple
imputation approach in general, its rationale, and how
we operationalized it for our speci®c study.

4.6. Summary

In this section we presented the details of how data
was collected, how measures were de®ned, and how the
data were analyzed. In brief, the data were collected
from phase 2 of the SPICE Trials. During the trials the
process capability measures were obtained from 70 ac-
tual assessments. Six performance measures were de-
®ned, and data on the performance of each project were
collected from the sponsor (or their designate) using a
questionnaire during the assessment. We analyze the
data separately for small and large organizations. Our
analysis method consists of constructing an ordinary
least squares regression model for each performance
variable. We ®rst determine whether the correlation is
meaningfully large, and if it is, we test the statistical
signi®cance of the slope of the relationship between
capability and performance.

5. Results

5.1. Description of projects and assessments

In this section we present some descriptive statistics
on the projects that were assessed, and on the assess-
ments themselves. In the SPICE Phase 2 trials, a total of
44 organizations participated. Their primary business
sector distribution is summarized in Fig. 7. As can
be seen, the most frequently occurring categories are
Defence, IT Products and Services, and Software
Development organizations.

Since it is not necessary that an assessment include all
development processes within its scope, it is possible
that the number of assessments that cover a particular
development process is less than the total number of
assessments, and it is also possible that a di�erent
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number of OUs assess each of the development pro-
cesses. Furthermore, since it is possible that an assess-
mentÕs scope covers more than one project, the number
of projects is not necessarily equal to the number of OUs
assessed. Table 6 shows the number of OUs that as-
sessed each of the development processes, the number of
projects that were actually assessed, and the number of
projects in small versus large OUs.

5.1.1. Develop software design
Fig. 8 shows the primary business sector distributions

for those 25 organizations that assessed the Develop
Software Design process. The most frequently occurring
categories are similar to those for all organizations that
participated in the trials. However, three categories
disappeared altogether as well: Public Utilities, Health
and Pharmaceutical and Manufacturing.

Of the 25 OUs, they were distributed by country as
follows: Australia (12), Canada (1), Italy (2), France (2),
Turkey (1), South Africa (4), Germany (1) and Japan
(2). Of these nine were not ISO 9001 registered, and 16
were ISO 9001 registered.

Fig. 9 shows the variation in the number of projects
that were assessed in each OU. The median value is one
project per OU, although in one case an OU assessed the

Develop Software Design process in six di�erent
projects.

The distribution of peak sta� load for the projects
that assessed the Develop Software Design process is
shown in Fig. 10. The median value is 13, with a mini-
mum of two and a maximum of 80 sta�. Therefore, there
is non-negligible variation in terms of project sta�ng.

In Fig. 11 we can see the variation in the two mea-
sures of process capability. For the second dimension,
D2 (Quantitative Process Management), there is little
variation. The median of D2 is 4, which is the minimal
value, indicating that at least 50% of projects do not
implement any quantitative process management prac-
tices for their Develop Software Design process. On the
®rst dimension, D1 (Process Implementation), there is
substantially more variation with a median value of 14.

Fig. 12 shows the variation along the D1 dimension
for the two OU sizes that were considered during our
study. Larger OUs tend to have greater implementation
of Develop Software Design processes, although the
di�erence is not marked.

5.1.2. Implement software design
Fig. 13 shows the primary business sector distribution

for those 18 organizations that assessed the Implement
Software Design process. In this particular subset, the
``Software Development'' category dropped in occur-
rence compared with the overall trials participants.
Moreover, three categories disappeared altogether:
Finance, Banking and Insurance, Public Utilities and
Health and Pharmaceutical.

Of the 18 OUs, they were distributed by country as
follows: Australia (5), Canada (1), Italy (2), Spain (1),
Luxemburg (1), South Africa (4), France (1), Germany
(1), Japan (2). Of these eight were not ISO 9001 regis-
tered, and 10 were ISO 9001 registered.

Fig. 14 shows the variation in the number of projects
that were assessed in each OU. The median value is one
project per OU, although in one case an OU assessed the
Implement Software Design process in six di�erent
projects.

The distribution of peak sta� load for the projects
that assessed the Implement Software Design process is
shown in Fig. 15. The median value is 14.5, with a
minimum of two and a non-outlier maximum of 80 sta�.
Although, one project had a peak load of 200 sta�.

Table 6

Number of OUs and projects that assessed each of the three software development processes, and their breakdown into small vs. large organizations

Number of OUs Number of projects Number of projects

in small OUs

Number of projects

in large OUs

Develop Software Design 25 45 18 27

Implement Software Design 18 32 18 14

Integrate and Test Software 25 36 18 18

Fig. 7. Business sector of all organizations that took part in SPICE

Trials Phase 2 assessments (n� 44).
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Therefore, there is non-negligible variation in terms of
project sta�ng.

In Fig. 16 we can see the variation in the two mea-
sures of process capability. For D2 (Quantitative Pro-
cess Management) there is little variation. The median
of D2 is 4, which is the minimal value, indicating that at
least 50% of projects do not implement any quantitative
process management practices for their Implement
Software Design process. On D1 there is substantially
more variation with a median value of 15.

Fig. 17 shows the variation along the D1 dimension
for the two OU sizes that were considered during our

Fig. 8. Business sector of all OUs that assessed the Develop Software

Design process.

Fig. 9. Box and whisker plot showing the variation in the number of

projects that assessed their Develop Software Design process in each

OU. A description of box and whisker plots and how to interpret them

is provided in Appendix B.

Fig. 10. Box and whisker plot showing the variation in the peak sta�

load for projects that assessed the Develop Software Design process. A

description of box and whisker plots and how to interpret them is

provided in Appendix B.

Fig. 12. Box and whisker plot showing the variation in the ``Process

Implementation'' capability dimension of the Develop Software

Design process for the di�erent OU sizes that were considered in our

study (in terms of IT sta�). A description of box and whisker plots and

how to interpret them is provided in Appendix B.

Fig. 11. Box and whisker plot showing the variation in the measures of

the two dimensions of Develop Software Design process capability.

The ®rst dimension, denoted D1, is ``Process Implementation'' and

consists of levels 1±3. The second dimension, denoted D2, is ``Quan-

titative Process Management'' and consists of levels 4 and 5. The D2

measure used the same coding scheme as for the D1 measure, except

that it consists of only four attributes. For the second dimension it is

assumed that processes that were not rated would receive a rating of N

(Not Achieved) if they would have been rated. This was done to ensure

that the sample size for both dimensions was the same. Note that it is

common practice not to rate the higher levels if there is strong a priori

belief that the ratings will be N. A description of box and whisker plots

and how to interpret them is provided in Appendix B.
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study. Larger OUs tend to have greater implementation
of Implement Software Design processes, and in this
case the di�erences would seem to be marked.

5.1.3. Integrate and test software
Fig. 18 shows the primary business sector distribution

for those 25 organizations that assessed the Integrate
and Test Software process. The most frequently occur-
ring categories are the same as those for the whole of the
trials. However, two categories disappeared altogether:
Aerospace and Health and Pharmaceutical.

Of the 25 OUs, they were distributed by country as
follows: Australia (10), Canada (1), Italy (1), France (2),

Fig. 16. Box and whisker plot showing the variation in the measures of

the two dimensions of Implement Software Design process capability.

The ®rst dimension, denoted D1, is ``Process Implementation'' and

consists of levels 1±3. The second dimension, denoted D2, is ``Quan-

titative Process Management'' and consists of levels 4 and 5. The D2

measure used the same coding scheme as for the D1 measure, except

that it consists of only four attributes. For the second dimension it is

assumed that processes that were not rated would receive a rating of N

(Not Achieved) if they would have been rated. This was done to ensure

that the sample size for both dimensions was the same. Note that it is

common practice not to rate the higher levels if there is strong a priori

belief that the ratings will be N. A description of box and whisker plots

and how to interpret them is provided in Appendix B.

Fig. 13. Business sector of all OUs that assessed the Implement

Software Design process.

Fig. 14. Box and whisker plot showing the variation in the number of

projects that assessed their Implement Software Design process in each

OU. A description of box and whisker plots and how to interpret them

is provided in Appendix B.

Fig. 17. Box and whisker plot showing the variation in the ``Process

Implementation'' capability dimension of the Implement Software

Design process for the di�erent OU sizes that were considered in our

study (in terms of IT sta�). A description of box and whisker plots and

how to interpret them is provided in Appendix B.

Fig. 15. Box and whisker plot showing the variation in the peak sta�

load for projects that assessed the Implement Software Design process.

A description of box and whisker plots and how to interpret them is

provided in Appendix B.
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Spain (3), Turkey (1), South Africa (4), Germany (1),
Japan (2). Of these 12 were not ISO 9001 registered, and
13 were ISO 9001 registered.

Fig. 19 shows the variation in the number of projects
that were assessed in each OU. The median value is one
project per OU, although in one case an OU assessed the
Integrate and Test Software process in four di�erent
projects.

The distribution of peak sta� load for the projects that
assessed the Integrate and Test Software process is shown
in Fig. 20. The median value is 14, with the smallest being
a one person project and a non-outlier maximum of 30
sta�. Although, one project had a peak load of 80 sta�. It
will be noted that the projects that assessed this process
tend to be slightly smaller than the projects that assessed
the other two development processes.

In Fig. 21 we can see the variation in the two mea-
sures of process capability. For D2 (Quantitative Pro-
cess Management) there is little variation. The median
of D2 is 4, which is the minimal value, indicating that at

least 50% of projects do not implement any quantitative
process management practices for their Integrate and
Test Software process. On D1 there is substantially
more variation with a median value of 13.

Fig. 22 shows the variation along the D1 dimension
for the two OU sizes that were considered during our
study. Larger OUs tend to have slightly less imple-
mentation of Integrate and Test Software processes,
although the di�erence is not marked.

5.1.4. Summary
To summarize the description of projects and

assessments, we note the following:
· Fewer organizations in the ``Software Development''

business sector assessed the Implement Software

Fig. 18. Business sector of all OUs that assessed the Integrate and Test

Software process.

Fig. 20. Box and whisker plot showing the variation in the peak sta�

load for projects that assessed the Integrate and Test Software process.

A description of box and whisker plots and how to interpret them is

provided in Appendix B.

Fig. 21. Box and whisker plot showing the variation in the measures of

the two dimensions of Integrate and Test Software process capability.

The ®rst dimension, denoted D1, is ``Process Implementation'' and

consists of levels 1 to 3. The second dimension, denoted D2, is

``Quantitative Process Management'' and consists of levels 4 and 5.

The D2 measure used the same coding scheme as for the D1 measure,

except that it consists of only four attributes. For the second dimension

it is assumed that processes that were not rated would receive a rating

of N (Not Achieved) if they would have been rated. This was done to

ensure that the sample size for both dimensions was the same. Note

that it is common practice not to rate the higher levels if there is strong

a priori belief that the ratings will be N. A description of box and

whisker plots and how to interpret them is provided in Appendix B.

Fig. 19. Box and whisker plot showing the variation in the number of

projects that assessed their Integrate and Test Software process in each

OU. A description of box and whisker plots and how to interpret them

is provided in Appendix B.
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Design process when compared with all trial partici-
pants.

· For the Develop Software Design and Integrate and
Test Software processes, the most frequently occur-
ring types of organizations compared to the trials
overall were the same.

· Organizations in the ``Health and Pharmaceutical''
business sector never assessed any of the development
processes, even though some participated in the trials.

· For all three development processes, the median
number of projects assessed per organization is one.

· In general, the larger projects tended to assess the Im-
plement Software Design process more often.

· There was consistently little variation in the second
dimension of process capability (Quantitative Process
Management) for the three processes that were as-
sessed, and at least 50% of assessed projects had no
capability on that dimension.

· The capability on the Process Implementation dimen-
sion of process capability tended to be highest for the
Implement Software Design process, and lowest for
the Integrate and Test Software process.

· The di�erences in the Process Implementation dimen-
sion between large and small organizations tended
not to be marked for the Develop Software Design
and the Integrate and Test Software processes, but
larger organizations tended to have higher capability
on the Implement Software Design process.

· Variation in the Process Implementation dimension
tended to be markedly smaller for larger organiza-
tions on the Implement Software Design and the In-
tegrate and Test Software processes.

5.2. Reliability of the software development process
capability measures

The Cronbach alpha reliability coe�cients for the
``Process Implementation'' variable are as shown in

Table 7. For the purposes of our study, these values can
be considered su�ciently large (see the interpretation
guidelines in Section 4.5.5).

5.3. A�ects of software development process capability

Below we provide the results for small organizations
and large organizations for each of the three develop-
ment processes. The results tables show the a1 coe�cient
and its standard error for each imputed complete data
set. The combined results include the average correla-
tion coe�cient across the complete data sets (�r), and the
average a1 coe�cient ( �Q) and its multiply imputed
standard error

����
T
p

. Values of �r that are made bold in-
dicate that it is larger than our 0.3 threshold. Values of
�Q that are made bold indicates that they are statistically
signi®cant at the Bonferonni adjusted alpha level.

5.3.1. Develop software design
Table 8 shows the results for small organizations.

Here we see that the correlation between the Develop
Software Design process and SCHEDULE variable is
larger than our threshold, and the regression parameter
is statistically signi®cant. This indicates that higher ca-
pability increases the predictability of the project
schedule and hence the ability of the project to meet
their schedule commitments. However, no relationship
was found with the BUDGET variable (�r � 0:0625), nor
any of the remaining performance measures. This can be
interpreted as an indicant that small organizations may
be putting extra resources (budget) to meet their
schedule commitments. The lack of other relationships
may be due to a weak relationship between the Process
Implementation dimension of process capability and the
other performance measures in small organizations,
perhaps due to a lack of applicability of the capability
measure to small organizations.

Table 9 shows the results for larger organizations.
Here we ®nd strong relationships for all performance
measures, and all except PRODUCTIVITY are statis-
tically signi®cant. The exception can be interpreted as a
re¯ection of the fact that process capability does not
necessarily imply a ``good'' design, only that the design
process is implemented and managed. A design that has
¯aws may lead to rework and hence to reduced pro-
ductivity. Another explanation is that the design process
does not commonly consume a large proportion of a
projectÕs e�ort. Hence, even if e�ciencies were realized

Table 7

Results of reliability evaluation for the process capability measure for

the three development processes

Process Cronbach alpha

Develop Software Design 0.86

Implement Software Design 0.88

Integrate and Test Software 0.87

Fig. 22. Box and whisker plot showing the variation in the ``Process

Implementation'' capability dimension of the Integrate and Test

Software process for the di�erent OU sizes that were considered in our

study (in terms of IT sta�). A description of box and whisker plots and

how to interpret them is provided in Appendix B.
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during the process, they may not have a substantial
impact on overall project productivity.

5.3.2. Implement software design
Table 10 shows the results for small organizations.

All correlations were below our threshold of 0.3, and
hence no relationships with project performance were
identi®ed.

Table 11 shows the results for large organizations.
Here, all correlations except with PRODUCTIVITY are
large according to our criterion. However, only the re-
lationship with BUDGET is statistically signi®cant. The
lack of statistical signi®cance may also be in¯uenced by
the small sample size in this particular sub-group (with
only 14 projects).

5.3.3. Integrate and test software
Table 12 shows the results for small organizations.

No relationships were found between process capability
and any of the performance measures.

Table 13 shows the results for large organizations.
Only the relationship with the PRODUCTIVITY vari-
able was large and statistically signi®cant, indicating
that improvements in the capability of the Integrate and
Test Software process can increase productivity. Intu-
itively this makes sense as integration and testing can
commonly consume large proportions of a projectÕs
overall resources. Therefore any improvements in its
e�ciency can lead to substantial improvements in
productivity.

5.3.4. Summary and discussion
An overall summary of the results from this study is

provided in Table 14. This table shows in a succinct
manner which processes were found to be associated
with each of the performance measures for small and
large organizations. Due to the conservatism that is
noted below, we also include in that summary processes
that had an association with performance measures
whose magnitude was greater than 0.3, but that was not
statistically signi®cant.

A number of conclusions can be drawn:
· We found weak evidence supporting the verisimili-

tude of the predictive validity premise for small orga-
nizations. This may be an indication that the process
capability measure is not appropriate for small orga-
nizations, or that the capabilities stipulated in ISO/
IEC 15504 do not necessarily improve project perfor-
mance in small organizations.

· The productivity of projects in large organizations is
associated with the capability of the integration and
testing process. Such a relationship makes intuitive
sense since this process commonly consumes large
proportions of project e�ort.

· The association of the Develop and Implement Soft-
ware Design processes and the remaining perfor- T
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mance measures in large organizations has relatively
large magnitudes, although statistical signi®cance is
only attained for the Develop Software Design pro-
cess. For the Implement Software Design process,
the sample size within that subset may have been
too small (hence, low statistical power).

· Given these results, we can con®dently remark that
the Develop Software Design process is a key one
for large organizations, and its assessment and
improvement can provide substantial payo�.

5.4. Limitations

Two potential limitations of our results concern their
conservatism and generalizability.

Our results can be considered conservative due to the
Bonferroni procedure that we employ for statistical
signi®cance testing. Another factor leading to conser-
vatism is that our performance measures used single-
item scales. Single-item scales are typically less reliable
than multiple-item scales. Nunnally (1978) notes that a
correction for attenuation in the correlation coe�cient
that considers the observed reliability of the perfor-
mance variables will estimate the ``real validity'' of the
predictor. In our study, we could not estimate the reli-
ability of our criterion. Therefore our predictive validity
coe�cients are likely smaller than they would be with
multi-item performance measures with a correction for
attenuation. This conservatism means that when we
identify a meaningfully large (``clinically signi®cant'')
and statistically signi®cant result then the evidence is
quite substantial since a signi®cant result is found de-
spite the conservatism. However, it also means that
subsequent studies (say with larger sample sizes and
more reliable criterion measures) may ®nd more of the
processes related to performance.

There may also be limitations on the generaliz-
ability of our results, speci®cally, the extent to which
our ®ndings can be generalized to assessments that are
not based on the emerging ISO/IEC 15504 Interna-
tional Standard. The emerging ISO/IEC 15504 Inter-
national Standard de®nes requirements on
assessments. Assessments that satisfy the requirements
are claimed to be compliant. Based on public state-
ments that have been made thus far, it is expected
that some of the more popular assessment models and
methods will be consistent with the emerging ISO/IEC
15504 International Standard. For example, Bootstrap
version 3.0 claims compliance with ISO/IEC 15504
(Bicego et al., 1998) and the future CMMI product
suite is expected to be consistent and compatible
(Software Engineering Institute, 1998b). The assess-
ments from which we obtained our data are also
considered to be compliant. The extent to which our
results, obtained from a subset of compliant assess-
ments, can be generalized to all compliant assessmentsT

a
b

le
1

3

R
ep

ea
te

d
im

p
u

ta
ti

o
n

re
su

lt
s

a
n

d
co

m
b

in
ed

re
su

lt
s

fo
r

la
rg

e
o

rg
a
n

iz
a
ti

o
n

s:
In

te
g
ra

te
a
n
d

T
es

t
S

o
ft

w
a
re

p
ro

ce
ss

a

R
es

u
lt

s
fr

o
m

re
p

ea
te

d
im

p
u

ta
ti

o
n

s
C

o
m

b
in

ed
re

su
lt

s

Im
p

u
ta

ti
o

n
1

Im
p

u
ta

ti
o

n
2

Im
p

u
ta

ti
o

n
3

Im
p

u
ta

ti
o

n
4

Im
p

u
ta

ti
o

n
5

Q̂
1

������ U
1

p
Q̂

2

������ U
2

p
Q̂

3

������ U
3

p
Q̂

4

������ U
4

p
Q̂

5

������ U
5

p
� r

� Q
���� Tp

B
U

D
G

E
T

)
0

.0
2

2
8

0
.0

5
0
3

0
.0

7
4
3

0
.0

5
2
0

0
.0

5
6
9

0
.0

5
7
3

0
.0

4
5
7

0
.0

5
7
2

0
.0

8
4
7

0
.0

5
5
1

0
.2

0
3
9

0
.0

4
7
7

0
.0

7
1
5

S
C

H
E

D
U

L
E

)
0

.0
5

3
8

0
.0

4
5
3

)
0
.0

3
9
1

0
.0

5
1
1

)
0
.0

5
9
2

0
.0

4
0
4

)
0
.0

0
5
8

0
.0

4
6
6

0
.0

0
8
5

0
.0

5
1
6

)
0
.1

6
1
2

)
0
.0

2
9
9

0
.0

5
7
4

C
U

S
T

O
M

E
R

)
0

.0
3

7
9

0
.0

4
9
4

)
0
.0

6
1
1

0
.0

5
2
6

0
.0

2
5
5

0
.0

6
2
3

0
.0

0
1
2

0
.0

5
5
2

0
.0

2
3
2

0
.0

5
8
7

)
0
.0

5
2
4

)
0
.0

0
9
8

0
.0

6
9
9

R
E

Q
U

IR
E

M
E

N
T

S
0

.0
4

0
2

0
.0

5
8
7

0
.0

1
2
8

0
.0

5
6
1

)
0
.0

4
1
0

0
.0

5
9
9

0
.0

3
4
8

0
.0

5
1
4

0
.0

7
8
2

0
.0

5
9
1

0
.1

0
7
6

0
.0

2
5

0
.0

7
4
6

P
R

O
D

U
C

T
IV

IT
Y

0
.1

3
7

4
0

.0
4

8
6

0
.1

4
0
1

0
.0

5
2
8

0
.0

5
5
7

0
.0

4
5
7

0
.1

5
4
8

0
.0

4
9
8

0
.1

0
6
0

0
.0

4
9
0

0
.5

0
2
0

0
.1

1
8
8

0
.0

6
5
5

M
O

R
A

L
E

)
0

.0
0

6
2

0
.0

3
8
8

)
0
.0

4
9
1

0
.0

3
7
4

)
0
.0

3
7
5

0
.0

4
3
1

)
0
.0

6
3
8

0
.0

3
9
9

)
0
.0

1
5
1

0
.0

4
7
7

)
0
.2

0
3
0

)
0
.0

3
4
4

0
.0

4
9
0

a
T

h
e

Q̂
i

v
a
lu

es
a
re

th
e

es
ti

m
a
te

d
sl

o
p

e
p

a
ra

m
et

er
s

o
f

th
e

re
g
re

ss
io

n
m

o
d

el
fo

r
th

e
it

h
im

p
u

te
d

d
a
ta

se
t.

T
h

e
����� U

i
p

v
a
lu

es
a
re

th
e

st
a
n

d
a
rd

er
ro

rs
o

f
th

e
es

ti
m

a
te

d
sl

o
p

e
p

a
ra

m
et

er
fo

r
th

e
it

h
im

p
u

te
d

d
a
ta

se
t.

T
h

e
co

m
b

in
ed

re
su

lt
s

co
n

si
st

o
f

th
e

� r
v
a
lu

e,
w

h
ic

h
is

th
e

m
ea

n
co

rr
el

a
ti

o
n

co
e�

ci
en

t
a
cr

o
ss

th
e

®
v
e

im
p

u
te

d
d

a
ta

se
ts

,
th

e
� Q

v
a
lu

e,
w

h
ic

h
is

th
e

co
m

b
in

ed
sl

o
p

e
p

a
ra

m
et

er
a
cr

o
ss

th
e

®
v
e

im
p

u
te

d
d

a
ta

se
ts

,
a

n
d

th
e
���� Tp

v
a

lu
e,

w
h

ic
h

is
th

e
co

m
b

in
ed

st
a
n

d
a
rd

er
ro

r
o

f
� Q

.
A

p
p

en
d

ix
A

.8
d

es
cr

ib
es

h
o

w
v
a
lu

es
ca

n
b

e
co

m
b

in
ed

a
cr

o
ss

im
p

u
te

d
d

a
ta

se
ts

.
A

b
o

ld
� r

v
a
lu

e
in

d
ic

a
te

s
th

a
t

it
is

la
rg

er
th

a
n

o
u

r
th

re
sh

o
ld

o
f

0
.3

.
A

b
o

ld
� Q

v
a

lu
e

in
d

ic
a

te
s

th
a
t

th
e

sl
o

p
e

d
i�

er
en

ce
fr

o
m

ze
ro

is
st

a
ti

st
ic

a
ll

y
si

g
n

i®
ca

n
t.

T
h

e
re

su
lt

s
in

d
ic

a
te

th
a
t

th
er

e
is

a
re

la
ti

o
n

sh
ip

b
et

w
ee

n
th

e
``

P
ro

ce
ss

Im
-

p
le

m
en

ta
ti

o
n

''
ca

p
a
b

il
it

y
o

f
th

e
In

te
g
ra

te
a
n

d
T

es
t

p
ro

ce
ss

a
n

d
p

ro
d

u
ct

iv
it

y
.

142 K. El Emam, A. Birk / The Journal of Systems and Software 51 (2000) 119±149



is an empirical question and can be investigated
through replications of our study. The logic of repli-
cations leading to generalizable results is presented in
Lindsay and Ehrenberg (1993).

6. Conclusions

In this paper, we have presented an empirical study
that evaluated the predictive validity of the ISO/IEC
15504 measures of software development process capa-
bility (i.e., Develop Software Design, Implement Soft-
ware Design, and Integrate and Test Software).
Predictive validity is a basic premise of all software
process assessments that produce quantitative results.
We ®rst demonstrated that no previous studies have
evaluated the predictive validity of these processes using
the ISO/IEC 15504 measure, and then described our
study in detail. Our results indicate that higher devel-
opment process capability is related with increased
project performance for large organizations. In partic-
ular, we found the ``Develop Software Design'' process
capability to be associated with ®ve di�erent project
performance measures, indicating its importance as a
target for process improvement. The ``Integrate and Test
Software'' process capability was also found to be
associated with productivity. However, the evidence of
predictive validity for small organizations was rather
weak.

The results suggest that improving the design and
integration and testing processes may potentially lead to
improvements in the performance of software projects in
large organizations. It is by no means claimed that de-
velopment process capability is the only factor that is
associated with performance. Only that some relatively
strong associations have been found during our study,
suggesting that these processes ought to be considered as
potential targets for assessment and improvement.

It is important to emphasize that studies such as this
ought to be replicated to provide further con®rmatory
evidence as to the predictive validity of ISO/IEC 15504
development process capability. It is known in scienti®c
pursuits that there exists a ``®le drawer problem''
(Rosenthal, 1991). This problem occurs when there is a
reluctance by journal editors to publish, and hence a
reluctance by researchers to submit, research results that
do not show statistically signi®cant relationships. One
can even claim that with the large vested interests in the
software process assessment community, reports that do
not demonstrate the e�cacy of a particular approach or
model may be buried and not submitted for publication.
Therefore, published works are considered to be a bi-
ased sample of the predictive validity studies that are
actually conducted. However, by combining the results
from a large number of replications that show signi®-
cant relationships, one can assess the number of studies
showing no signi®cant relationships that would have to
be published before our overall conclusion of there

Table 14

Summary of the ®ndings from our predictive validity study a

Performance measure Process(es)

Small organizations

Ability to meet budget commitments

Ability to meet schedule commitments Develop Software Design

Ability to achieve customer satisfaction

Ability to satisfy speci®ed requirements

Sta� productivity

Sta� morale/job satisfaction

Large organizations

Ability to meet budget commitments Develop Software Design

Implement Software Design

Ability to meet schedule commitments Develop Software Design

Implement Software Design

Ability to achieve customer satisfaction Develop Software Design

Implement Software Design

Ability to satisfy speci®ed requirements Develop Software Design

Implement Software Design

Sta� productivity Integrate and Test Software

Develop Software Design

Sta� morale/job satisfaction Develop Software Design

Implement Software Design
a In the ®rst column are the performance measures that were collected for each project. In the second column are the development processes whose

capability was evaluated. The results are presented separately for small (equal to or less than 50 IT sta�) and large organizations (more than 50 IT

sta�). For each performance measure we show the software development processes that were found to be related to it. A process was considered to be

associated with a performance measure if it had a correlation coe�cient that was greater than or equal to 0.3 (i.e., ``clinically signi®cant''), and that

was statistically signi®cant at a one-tailed (Bonferonni adjusted) alpha level of 0.1. These processes are shown in bold. The processes that are not bold

are only ``clinically signi®cant'' but not statistically signi®cant. The lack of statistical signi®cance may be a consequence of small sample size.
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being a signi®cant relationship is put into doubt (Ro-
senthal, 1991). This assessment would allow the com-
munity to place realistic con®dence (or otherwise) in the
results of published predictive validity studies.
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Appendix A. Multiple imputation method

In this appendix we describe the approach that we
used for imputing missing values on the performance
variable, and also how we operationalize it in our spe-
ci®c study. It should be noted that, to our knowledge,
multiple imputation techniques have not been employed
thus far in software engineering empirical research,
where the common practice has been to ignore obser-
vations with missing values.

A.1. Notation

We ®rst present some notation to facilitate explaining
the imputation method. Let the raw data matrix have i
rows (indexing the cases) and j columns (indexing the
variables), where i � 1; . . . ; n and j � 1; . . . ; q. Some of
the cells in this matrix may be unobserved (i.e., missing
values). We assume that there is only one outcome
variable of interest for imputation (this is also the con-
text of our study since we deal with each dependent
variable separately), and let yi denote its value for the ith
case. Let Y � �Ymis; Yobs�, where Ymis denotes the missing
values and Yobs denotes the observed values on that
variable. Furthermore, let X be a scaler or vector of
covariates that are fully observed for every i. These may
be background variables, which in our case were the size
of an organization in IT sta� and whether the organi-
zation was ISO 9001 registered, and other covariates
that are related to the outcome variable, which in our
case was the process capability measure (i.e., ``process
implementation'' as de®ned in the main body of the
text).

Let the parameter of interest in the study be denoted
by Q. We assume that Q is scaler since this is congruent
with our context. For example, let Q be a regression

coe�cient. We wish to estimate
_Q with associated vari-

ance U from our sample.

A.2. Ignorable models

Models underlying the method of imputation can be
classi®ed as assuming that the reasons for the missing
data are either ignorable or non-ignorable. Rubin (1987)
de®nes this formally. However, here it will su�ce to
convey the concepts, following (Rubin, 1988).

Ignorable reasons for the missing data imply that a
non-respondent is only randomly di�erent from a re-
spondent with the same value of X. Non-ignorable
reasons for missing data imply that, even though re-
spondents and non-respondents have the same value of
X, there will be a systematic di�erence in their values of
Y. An example of a non-ignorable response mechanism
in the context of process assessments that use a model
such as that of ISO/IEC 15504 is when organizations
assess a particular process because it is perceived to be
weak and important for their business. In such a case,
processes for which there are capability ratings are likely
to have lower capability than other processes that are
not assessed.

In general, most imputation methods assume ignor-
able non-response (Schaefer, 1997) (although, it is pos-
sible to perform, for example, multiple imputation, with
a non-ignorable non-response mechanism). In the
analysis presented in this paper there is no a priori
reason to suspect that respondents and non-respondents
will di�er systematically in the values of the outcome
variable, and therefore we assume ignorable non-re-
sponse.

A.3. Overall multiple imputation process

The overall multiple imputation process is shown in
Fig. 23. Each of these tasks is described below. It should
be noted that the description of these tasks is done from
a Bayesian perspective.

A.4. Modeling task

The objective of the modeling task is to specify a
model fY Xj Yi Xi; hY Xj

��ÿ �
using the observed data only

where hY Xj are the model parameters. For example,
consider the situation where we de®ne an ordinary least
squares regression model that is constructed using the
observed values of Y and the predictor variables are
the covariates X, then hY Xj � �b; r2� are the vector of
the regression parameters and the variance of the error
term respectively. This model is used to impute the
missing values. In our case we used an implicit model
that is based on the hot-deck method. This is described
further below.
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A.5. Estimation task

We de®ne the posterior distribution of h as
Pr h X ; Yobsj� �. 20 However, the only function of h that is
needed for the imputation task is hY Xj . Therefore, during
the estimation task, we draw repeated values of hY Xj
from its posterior distribution Pr hY Xj X ; Yobsjÿ �

. Let us
call a drawn value h�Y Xj .

A.6. Imputation task

The posterior predictive distribution of the missing
data given the observed data is de®ned by the following
result:

Pr Ymis X ; Yobsj� � �
Z

Pr Ymis X ; Yobs; hj� � Pr h X ; Yobsj� � dh:

�A:1�
We therefore draw a value of Ymis from its conditional

posterior distribution given h�Y jX . For example, we can
draw h�Y jX � �b�; r�2� and compute the missing yi from

f �yijxi; h
�
Y jX �. This is the value that is imputed. This

process is repeated M times.

A.7. Analysis task

For each of the M complete data sets, we can calcu-
late the value of Q. This provides us with the complete-
data posterior distribution of Q: Pr Q X ; Yobs; Ymisj� �.

A.8. Combination task

The basic result provided by Rubin (1987) is:

Pr Q X ; Yobsj� � �
Z

Pr Q X ; Yobs; Ymisj� �
� Pr Ymis X ; Yobsj� �dYmis: �A:2�

This result states that the actual posterior distribution
of Q is equal to the average over the repeated imputa-
tions. Based on this result, a number of inferential
procedures are de®ned.

The repeated imputation estimate of Q is:

�Q �
X _Qm

M
; �A:3�

which is the mean value across the M analyses that are
performed.

The variability associated with this estimate has two
components. First there is the within-imputation vari-
ance:

�U �
XUm

M
�A:4�

and second the between-imputation variance:

B �
P

Q
_

m ÿ �Q
� �2

M ÿ 1
: �A:5�

The total variability associated with �Q is therefore:

T � �U � 1
ÿ �Mÿ1

�
B: �A:6�

In the case where Q is scaler, the following approxi-
mation can be made:

Qÿ �Q
� �

����
T
p � tv; �A:7�

where tv is a t distribution with v degrees of freedom
where:

v � M� ÿ 1� 1
ÿ � rÿ1

�2 �A:8�
and

r � 1�Mÿ1� �B
�U

: �A:9�
If one wants to test the null hypothesis that

H0 : Q � 0 then the following value can be referred to a t
distribution with v degrees of freedom:

�Q����
T
p : �A:10�

Fig. 23. Schematic showing the tasks involved in multiple imputation.

20 We use the notation Pr��� to denote a probability density.
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A.9. Hot-deck imputation: overview

We will ®rst start by presenting the hot-deck impu-
tation procedure in general, then show the particular
form of the procedure that we use in our analysis, and
how this is incorporated into the multiple imputation
process presented above.

Hot-deck procedures are used to impute missing
values. They are a duplication approach whereby a re-
cipient with a missing value receives a value from a donor
with an observed value (Ford, 1983). Therefore the
donorÕs value is duplicated for each recipient. As can be
imagined, this procedure can be operationalized in a
number of di�erent ways.

A basic approach for operationalizing this is to
sample from the nobs observed values and use these to
impute the nmis missing values (Little and Rubin, 1987),
where n � nmis � nobs. A simple sampling scheme could
follow a multinomial model with sample size nmis and
probabilities 1=nobs; . . . ; 1=nobs� �. It is more common,
however, to use the X covariates to perform a poststr-
ati®cation. In such a case, the covariates are used to
construct C disjoint classes of observations such that the
observations within each class are as homogeneous as
possible. This also has the advantage of further reducing
non-response bias.

For example, if X consists of two binary vectors,
then we have four possible disjoint classes. Within each
class there will be some observations with Y observed
and some with Y missing. For each of the missing
values, we can randomly select an observed Y value
and use it for imputation. This may result in the same
observation serving as a donor more than once (Sande,
1983). Here it is assumed that within each class the
respondents follow the same distribution as the non-
respondents.

A.10. Metric-matching hot-deck

It is not necessary that the X covariates are categor-
ical. They can be continuous or a mixture of continuous
and categorical variables. In such a case a distance
function is de®ned, and the l nearest observations with
the Y value observed serve as the donor pool (Sande,
1983).

An allied area where such metric-matching has
received attention is the construction of matched
samples in observational studies (Rosenbaum and
Rubin, 1985). This is particularly relevant to our case
because we cannot ensure in general that all the co-
variates that will be used in all analyses will be cat-
egorical. For the sake of brevity, we will only focus
on the particular metric-matching technique that we
employ.

A.11. Response propensity matching

In many observational studies 21 (see Cochran, 1983)
a relatively small group of subjects is exposed to a
treatment, and there exists a larger group of unexposed
subjects. Matching is then performed to identify unex-
posed subjects who serve as a control group. This is
done to ensure that the treatment and control groups are
both similar on background variables measured on all
subjects.

Let the variable Ri denote whether a subject i was
exposed (Ri � 1) or unexposed (Ri � 0) to the treatment.
De®ne the propensity score, e X� � as the conditional
probability of exposure given the covariates (i.e.,
e X� � � Pr R � 1 Xj� �). Rosenbaum and Rubin (1983)
prove some properties of the propensity score that are
relevant for us.

First, they show that the distribution of X is the same
for all exposed and unexposed subjects within strata
with constant values of e X� �. Exact matching will
therefore tend to balance the X distributions for both
groups. Furthermore, they also show that the distribu-
tion of the outcome variable Y is the same for exposed
and unexposed subjects with the same value of e X� � (or
within strata of constant e X� �).

David et al. (1983) adopt these results to the context
of dealing with non-response in surveys. We can ex-
trapolate and let Ri � 1 indicate that there was a re-
sponse on Y for observation i, and that Ri � 0 indicates
non-response. Hence we are dealing with response pro-
pensity as opposed to exposure propensity. We shall
denote response propensity with p X� �. It then follows
that under ignorable non-response if we can de®ne
strata with constant p X� � then the distributions of X and
Y are the same for both respondents and non-respon-
dents within each stratum.

To operationalize this, we need to address two issues.
First, we need to estimate p X� �. Second, it is unlikely
that we would be able to de®ne su�ciently large strata
where p X� � is constant, and therefore we need to
approximate this.

If we take the response indicator R to be a Bernoulli
random variable independently distributed across ob-
servations, then we can de®ne a logistic regression model
(Hosmer and Lemeshow, 1989):

p�X � � e�a0�a1X1�����aqÿ1Xqÿ1�

1� e�a0�a1X1�����aqÿ1Xqÿ1� :

This will provide us with an estimate of response
propensity for respondents and non-respondents.

21 These are studies where there is not a random assignment of

subjects to treatments. For example, in the case of studying the

relationship between exposure to cigarette smoke and cancer, it is not

possible to deliberately expose some subjects to smoke.
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We can then group the estimated response propensity
into C intervals, with bounding values 0; p1; p2; . . . ;
pCÿ1; 1. Strata can then be formed with observation i in
stratum c if pcÿ1 < pi < pc with c � 1; . . . ;C. Therefore,
we have constructed strata with approximately constant
values of response propensity. In our application we set
C � 5, dividing the estimated response propensity score
using quintiles.

A.12. An improper hot-deck imputation method

Now that we have constructed homogeneous strata,
we can operationalize the metric-matching hot-deck
imputation procedure by sampling with equal proba-
bility from the respondents within each stratum, and use
the drawn values to impute the non-respondent values in
the same stratum. However, doing so we do not draw h
from its posterior distribution, and then draw Ymis from
its posterior conditional distribution given the drawn
value of h. Such a procedure would be improper because
it does not take into account the uncertainty introduced
by the imputation itself. Therefore some alternatives
are considered, namely the approximate Bayesian
bootstrap.

A.13. The approximate Bayesian bootstrap

A proper imputation approach that has been pro-
posed is the Approximate Bayesian Bootstrap ± ABB ±
(Rubin and Schenker, 1986, 1991). This is an approxi-
mation of the Bayesian Bootstrap (Rubin, 1981) that is
easier to implement. The procedure for the ABB is, for
each stratum, to draw with replacement zobs Y values,
where zobs is the number of observed Y values in the
stratum. Then, draw from that zmis Y values with re-
placement, where zmis is the number of observations with
missing values in the stratum. The latter draws are then
used to impute the missing values within the stratum.
The drawing of zmis missing values from a possible
sample of zobs values rather than from the actual ob-
served values generates the appropriate between-impu-
tation variability. This is repeated M times to generate
multiple imputations.

A.14. Summary

The procedure that we have described implements
multiple-imputation through the hot-deck method. It
consists of constructing a response propensity model
followed by an Approximate Bayesian Bootstrap.

This procedure is general and can be applied to im-
pute missing values that are continuous or categorical.
We have described it here in the context of univariate Y,
but it is generally applicable to multivariate Y (see Ru-
bin (1987) for a detailed discussion of multiple-imputa-
tion for multivariate Y).

Appendix B. Understanding box and whisker plots

In this paper, box and whisker plots are used quite
frequently. This brief appendix is intended to explain
how to interpret such a diagram.

Box and whisker plots are used to show the variation
in a particular variable. Fig. 24 shows how such a plot is
constructed. The box represents the inter-quartile range
(IQR). The IQR bounds the 25th and 75th percentiles.
The 25th percentile is the value of the variable where
25% or less of the observations have equal or smaller
values. The same is for the 75th percentile. The whiskers
are the largest values within 1.5 times the size of the box.
This value of 1.5 is conventional. Outliers are within 1.5
times the size of the box beyond the whiskers, and ex-
tremes are beyond the outliers. Finally, usually there is a
dot in the box. This dot would be the median, or the
50th percentile.

The box and whisker plot provides a rather versatile
way for visualizing the obtained values on a variable.
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