
INF5181 / Lecture 03 / © Dietmar Pfahl 2012

INF5181: Process Improvement
and Agile Methods in Systems
Development
Lecture 03:
Agile Principles and
Processes

Dr. Dietmar Pfahl

email: dietmarp@ifi.uio.no

Fall 2012

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Structure of Lecture 03

•  Hour 1:
–  Light-weight (agile) processes / Evolutionary development
–  Extreme Programming (XP)

•  Hour 2:
–  Question/answer session about homework 1
–  Info on mandatory short presentation (à Lecture 5)
–  Question/answer session about project

•  Hour 3:
–  Scrum
–  Choosing the right process (model)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Requirements and Customers

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

The Agile Manifesto

Kent Beck et al. (2001):

Individuals and interactions over processes and tools

Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

There exists more than one Agile Method!

Crystal
Clear

AUP

DSDM

FDD

Scrum

XP

AUP = Agile Unified Process
DSDM = Dynamic Systems Development Method
FDD = Feature-Driven Development
XP = Extreme Programming

…

KANBAN

LEAN

…

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Structure of Lecture 03

•  Hour 1:
–  Light-weight (agile) processes / Evolutionary development
–  Extreme Programming (XP)

•  Hour 2:
–  Question/answer session about homework 1
–  Info on mandatory short presentation (à Lecture 5)
–  Question/answer session about project

•  Hour 3:
–  Scrum
–  Choosing the right process (model)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Extreme Programming

•  Origin: Kent Beck, Ward Cunningham, Ron Jeffries (end of 1990s)
•  Idea: “light weight” process model, agile process
•  Characteristic:

–  “Minimum” of accompanying measures (docs, modeling , …)
–  Team orientation (e.g., joint responsibility for all dev. artifacts)
–  Small teams (12-14 persons)
–  Involvement of user/client at an early stage
–  Social orientation

•  Scope:
–  Pilot or small projects with low criticality of the results

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

•  User stories (something like use
cases) are written by the customer.

•  Complex stories are broken down
into simpler ones (like a WBS).

•  Stories are used to estimate the
required amount of work.

•  Stories are used to create
acceptance tests.

•  A release plan is devised that
determines which stories will be
available in which release.

•  Don’t hesitate to
change what doesn’t work.

Extreme Programming – Overview

Planning

Iterative Phase

http://www.extremeprogramming.org/rules.html

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

13 XP Practices
 Project Cycle
•  Planning Game (Poker)
•  Small Releases
•  Whole Team
•  Customer Tests
Development Cycle
•  Simple Design
•  Pair Programming
•  TDD (Unit Test)
•  Refactoring
Supporting Practices
•  Coding Standard
•  Sustainable Pace (40-hour week)
•  Metaphor (Common Understanding)
•  Continuous Integration
•  Collective Ownership

(Short Increments)

(On-site Customer)

(Acceptance
Tests)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

XP – Rules and Practices (Combined)

Planning
 User stories are written (by the customer!).
Release planning creates the schedule.
Make frequent small releases.
The Project Velocity is measured.
The project is divided into iterations.
Iteration planning starts each iteration.
Move people around.
A stand-up meeting starts each day.
Fix XP when it breaks.

Designing

 Simplicity.
Choose a system metaphor.
Use CRC* cards for design sessions.
Create spike solutions to reduce risk.
No functionality is added early.
Refactor whenever and wherever possible.

Coding
 The customer is always available.
Code must be written to agreed standards.
Code the unit test first.
All production code is pair programmed.
Only one pair integrates code at a time.
Integrate often.
Use collective code ownership.
Leave optimization till last.
No overtime.

Testing

 All code must have unit tests.
All code must pass all unit tests before it
can be released.
When a bug is found (acceptance) tests are
created.
Acceptance tests are run often and the score
is published.

http://www.extremeprogramming.org/rules.html

* CRC = Class Responsibility Collaborator

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Requirements vs. User Stories

Traditional requirement – “shall”
statements:

§  “The system shall provide a user
configurable interface for all user
and system manager functions”

§  “The user interface shall be
configurable in the areas of:
§  Screen layout
§  Font
§  Background and text color

Corresponding “User Story”:
§  “As a system user or system

manager, …
§  … I want be able to configure the

user interface for screen layout,
font, background color, and text
color, …

§  … So that I can use the system in
the most efficient manner”

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

From Requirement to User Story – Functional
Requirements

Requirement:
§  The system shall provide the

capability for making hotel
reservations.

User Story 1:
§  As a premiere member, I want to

search for available discounted
rooms.

User Story 2:
§  As a vacationer, I want to search for

available rooms.

User Story 3:
§  As a vacationer, I want to save my

selections.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

From Requirement to User Story – Non-Functional
Requirements

Requirement:
§  The system shall …

User Story 4:
§  As a vacationer and user of the hotel website,

I want the system to be available 99.99% of
the time.

User Story 5:
§  As a vacationer, I want web-pages to

download in <4 seconds.

User Story 6:
§  As the hotel website owner, I want 10,000

concurrent users to be able to access the site
at the same time with no impact to
performance.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Planning Poker /1

•  Participants in planning poker include all of the
developers on the team

•  Step 1: Give each estimator a deck of cards
•  Step 2: Moderator reads description of User

Story to be estimated.
•  Step 3: Product owner answers any question the

estimators may have about the User Story.
•  Step 4: Each estimator privately selects a card

representing his or her estimate. Cards are not
shown until each estimator has made a
selection.

•  …

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Planning Poker /2

•  Step 5: When everyone has made an estimate,
the cards are simultaneously turned over.

•  Step 6: If estimates differ, the highest and lowest
estimates are explained by the estimators -
otherwise the estimation is completed for this
User Story.

•  Step 7: The group can discuss the story and
their estimates for a few more minutes. The
moderator can take any notes he/she thinks will
be helpful when this story is being programmed
and tested. After the discussion, each estimator
re-estimates by selecting a card.
 à Go to Step 5. Note: In many cases, the estimates will already converge by the second round. But if they

have not, continue to repeat the process. The goal is for the estimators to converge on a
single estimate that can be used for the story. It rarely takes more than three rounds, but
continue the process as long as estimates are moving closer together.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Test-Driven Development

•  Unit Test
•  Functionality-

oriented

•  Regression-
testing can be
automated

(Source: Wikipedia)

namespace UnitTestingExamples.Tests
{
 using System;
 using NUnit.Framework;

 [TestFixture]
 public class BankAccountTests
 {
 [Test]
 public void TestDeposit()
 {
 BankAccount account = new BankAccount();
 account.Deposit(125.0);
 account.Deposit(25.0);
 Assertion.AssertEquals(150.0, account.Balance);
 }
 }
}

namespace UnitTestingExamples.Library
{
 using System;

 public class BankAccount
 {
 private double _balance = 0.0;

 public void Deposit(double amount)
 {
 _balance += amount;
 }

 public double Balance
 {
 get { return _balance; }
 }
 }
}

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Simple Design
 Characterisation:
•  Four characteristics of simple design,

listed in priority order:
–  The system runs all the tests.
–  It contains no duplicate code.
–  The code states the

programmers' intent very
clearly.

–  It contains the fewest possible
number of classes and
methods.

•  The practice of TDD describes how
the system is created in many small
steps, driven by tests that
programmers write. Each of these
tests is a probe into the design of the
system, allowing the developers to
explore the system as it is being
created. Thus, in XP, design
interleaves with coding, i.e., design
quite literally happens all the time.

Guidelines to help in arriving at a simple design:
•  Look for a simple – but not stupid – way to solve a

problem. Pay attention to good design principles when
forming a system incrementally. (à design patterns)

•  Don’t add infrastructure or other features that might be
needed later. Chances are they won't be (YAGNI: You
Aren't Going to Need It). Let the user stories force you
to change the design.

•  Don't generalize a solution until it is needed in at least
two places. Follow the first rule above and keep
implementation simple. Let the second user pay for the
generality.

•  Seek out and destroy duplication and other ‘code
smells’ (or: ‘design smells’). The practice of refactoring
is the most powerful tool in the arsenal. It is through
removing duplication that new classes, methods, and
larger scale systems are born.

•  Remember that it is just code. If it is getting overly
complex and painful, delete it. It can always be
recreated again in less time and better than the first
time by leveraging what was learned the first time.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Refactoring

•  Refactoring is a disciplined technique for restructuring
an existing body of code, altering its internal structure
without changing its external behavior. (Invented by
Martin Fowler)

•  Many refactorings can be automated
•  Catalogue of refactorings:

 http://www.refactoring.com/catalog/index.html

•  Note: It is not always clear (a) how to detect refactoring
opportunities and (b) what refactoring(s) are most
appropriate (à ‘code smells’:
http://en.wikipedia.org/wiki/Code_smell)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Pair Programming

Characterisation:
•  Two programmers work

together at one
computer.

•  One, the driver, writes
code …

•  … while the other, the
observer (or navigator
[1]), reviews each line of
code as it is typed in.

•  The two programmers
switch roles frequently.

Challenges:
•  Total amount of effort (person-hours) increases.
•  Management needs to balance faster completion

of the work and reduced testing and debugging
time against the higher cost of coding.

•  The benefit of pairing is greatest on tasks that the
programmers do not fully understand before they
begin: that is, challenging tasks that call for
creativity and sophistication. On simple tasks,
which the pair already fully understands, pairing
results in a net drop in productivity.

•  Productivity can also drop when novice-novice
pairing is used without coaching.

Benefits:
•  Studies found that programmers

working in pairs produce
–  shorter programs,
–  with better designs
–  and fewer bugs

 faster

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Structure of Lecture 03

•  Hour 1:
–  Light-weight (agile) processes / Evolutionary development
–  Extreme Programming (XP)

•  Hour 2:
–  Question/answer session about homework 1
–  Info on mandatory short presentation (à Lecture 5)
–  Question/answer session about project

•  Hour 3:
–  Scrum
–  Choosing the right process (model)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Course Evaluation, Marking, and Grades

Part 1: Project / 80% of grade [32 marks]

Homework 1: Process Modeling [6 marks]
Homework 2: Measurement [6 marks]
Short Presentation [0 marks]
Project Report [20 marks]

Evaluation criteria for Project Report:
•  Content [14 marks]
•  Clarity/Conciseness [4 marks]
•  Formality (cover page, captions, referencing,

etc.) [2 marks]

Note:
•  A mandatory short presentation is required
•  Failing to do the oral presentation will result in

a penalty of 2 marks!

Part 2: Oral Exam / 20% of grade [8 marks]

Duration: approximately 15-20 minutes

Subject:

 Questions about the course (lecture, materials)

Evaluation criteria:
•  Correctness and completeness [6 marks]
•  Clarity and conciseness [1 mark]
•  Relevance (à is the answer to the point?) [1 mark]

Total Marks in Course: 40 (100%)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Project & Exam Schedule

•  10-Sep-2012: Homework 1 – Process Modeling
•  Deliver PDF by email to dietmarp@ifi.uio.no at 15:30

•  20-Sep-2012: Student Presentation (5 min)
–  Send slides at the latest 24 hours before presentation by

email to dietmarp@ifi.uio.no
•  15-Oct-2012: Homework 2 – Measurement

•  Deliver PDF by email to dietmarp@ifi.uio.no at 15:30
•  15-Nov-2012: Project Report

–  Deliver PDF by email to dietmarp@ifi.uio.no before 20:00
–  Evaluation results ready one week before oral exam

•  13/14-Dec-2012: Oral Exam (15-20 min)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Homework 1: Process Modeling

•  Maximum number of marks: 6
•  Submission deadline: Monday, September 10, 2012, no

later than 15:30 via email to dietmarp@ifi.uio.no
•  Format: PDF
•  Note: Before submitting, please make sure that the cover

page of your homework report carries
–  your name,
–  the course id (INF5181),
–  the submission date, and
–  a reference to the type of submission (e.g., ‘Homework 1: Process

Modeling’).

Handout

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Structure of Lecture 03

•  Hour 1:
–  Light-weight (agile) processes / Evolutionary development
–  Extreme Programming (XP)

•  Hour 2:
–  Question/answer session about homework 1
–  Info on mandatory short presentation (à Lecture 5)
–  Question/answer session about project

•  Hour 3:
–  Scrum
–  Choosing the right process (model)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Short Presentation

•  Duration: max. 4 min (incl. 1 min for question/answer)

•  Send slides (max. 3 slides + cover) at the very latest until 15.30 of
Tuesday, Sept 18, by email to dietmarp@ifi.uio.no (preferred
format: .ppt or .pdf)

•  Content:
–  Improvement context (Type of company/project, product,

process)
–  Improvement Goal(s) (What? How much? When?)
–  optional: Suggested changes of SW development process (What

will be changed how? / Scope of change, Old process à New
process)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Short Presentation – Schedule

Lecture 5 (September 20):

Hour 1 Hour 2 Hour 3
- NN01 - NN12 - NN23
- NN02 - NN13 - NN24
- NN03 - NN14 - NN25
- NN04 - NN15 - NN26
- NN05 - NN16 - NN27
- NN06 - NN17 - NN28
- NN07 - NN18 - NN29
- NN08 - NN19 - NN30
- NN09 - NN20 - NN31
- NN10 - NN21 - NN32
- NN11 - NN22 - NN33

The exact schedule will be
posted on the course web
shortly after the submission
deadline of homework 1.

You only need to attend
the session (hour) in which
you are presenting.

But you are welcome
to attend longer, of course.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Structure of Lecture 03

•  Hour 1:
–  Light-weight (agile) processes / Evolutionary development
–  Extreme Programming (XP)

•  Hour 2:
–  Question/answer session about homework 1
–  Info on mandatory short presentation (à Lecture 5)
–  Question/answer session about project

•  Hour 3:
–  Scrum
–  Choosing the right process (model)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Project Report

Task:
•  Prepare a (realistic) software process improvement

plan for a software/systems development
organization

•  A suggested report structure is available
•  The scope of the SPI plan could be (examples):

–  complete process
–  a sub-process of the complete process
–  an activity of a sub-process
–  a method/technique used in an activity
–  …

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Project Report – Structure

•  Cover page (Title, Author, Date, Email, Course ID, ...)
•  Table of content
•  Content:

–  Improvement context (Type of company, product, process)
–  Improvement Goal(s) (What? How much? When?)
–  Suggested changes of SW development process (What? / Scope,

Old process à New process)
–  Implementation of process changes (When? Who is responsible?)
–  Monitoring/Control (How to measure success? By whom?)
–  Discussion (Why? à Improvement methods applied, rationale for

changes, risks)
•  References

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Structure of Lecture 03

•  Hour 1:
–  Light-weight (agile) processes / Evolutionary development
–  Extreme Programming (XP)

•  Hour 2:
–  Question/answer session about homework 1
–  Info on mandatory short presentation (à Lecture 5)
–  Question/answer session about project

•  Hour 3:
–  Scrum
–  Choosing the right process (model)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

The Term “Scrum”

•  Originates from Rugby
•  Meaning “crowded”
•  Complex move that

requires team work

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

What is Scrum? (1/2)

•  Agile Management Framework for SW development projects

•  With a few clear rules:
–  Roles: Product Owner, Team, Scrum Master
–  Product Backlog, Sprint Backlog, few compact reports
–  Short work cycles (à ”Sprints”) for incremental development

•  Based on the Agile Manifest of Kent Beck at al.
–  Human-centred
–  Technology and tools have secondary role
–  Close cooperation with customer

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

What is Scrum? (2/2)

•  Empirical learning process

•  Learning in each iteration (Sprint): „inspect and adapt“
–  Development speed/productivity
–  Obtained results
–  Team work
–  Usage of Scrum process

Scrum does not define a development
methodology, QA strategy, or risk
management approach, but asks the
team to take care of these issues
appropriately.

Scrum may be difficult to
use in environments
strongly influenced by
external factors.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum Elements – Overview

http://www.scrumforteamsystem.com/processguidance/v1/Scrum/Scrum.html

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum Process – Simplified Overview

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Backlogs

•  Product Backlog
–  Collection of requirements (user stories) for the product – at project

start: a few, little detailed user stories; collection evolves over time
and requirements will be refined over time

–  Managed by the Product Owner

•  Sprint Backlog
–  Collection of requirements (user stories) that are selected for

implementation during next sprint
–  Manged by the Team

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Sprint

•  Sprint
–  Period (max. 30 calendar days) in which a shippable product

increment (executable, tested, and documented) is created by the
Team

–  Time-boxed, i.e., ends exactly at the scheduled time
–  At the end of the Sprint, the Product Owner has to accept the final

results (i.e., the software)
–  Partially completed or incorrect results will not be shipped (no

compromise on quality) and go back to the Product Backlog for
inclusion in the next Sprint (Backlog)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: The Three Roles

•  Product Owner
–  Decides which requirements are implemented for a product version
–  Decides about when product increments will be shipped

•  Team
–  Implements requirements
–  Decides how many requirements are implemented in a Sprint
–  Organizes its activities (à tasks) independently

•  Scrum Master
–  Takes care of the proper implementation of Scrum
–  Supports the team in process-related issues

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Pigs and Chickens

•  Pigs are “committed”, i.e. they are responsible for results
–  Product Owner, Team, Scrum Master

•  Chickens are “involved”, i.e. they are influenced by the results,
but not directly responsible

–  All other stakeholders (management, sales, marketing, customer, ...)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum Roles: ”Pigs” and ”Chickens”

"Pig" roles
•  Pigs are the ones committed to the

project in the Scrum process; they
are the ones with "their bacon on
the line".

–  Product Owner
–  Scrum Master (or Facilitator)
–  Team

"Chicken" roles
•  Chicken roles are not part of the

actual Scrum process, but must be
taken into account.

–  Users
–  Stakeholders (customers,

vendors, senior managers)

•  Note: An important aspect of an Agile
approach is the practice of involving
users, business and stakeholders into
part of the process. It is important for
these people to be engaged and provide
feedback into the outputs for review and
planning of each sprint.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Product Owner (1/2)

•  Elicits and collects customer needs
•  Describes requirements
•  Decides on release dates and

contents
•  Is responsible for project success

and the profitability of the product
•  Prioritizes requirements according

to market value
•  Adjusts requirements and priority,

as needed
•  Accepts or rejects work results

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Product Owner (2/2)
•  Works closely with the team

–  Helps to understand customer needs and
requirements

–  Details requirements
–  Checks resulting work products and approves them

•  Integrates all stakeholders in the development and
regularly elicits their needs

–  Besides customer also marketing and sales
–  Product owner combines and filters stakeholder

requirements
•  Has a sound technical understanding

–  Makes general overall design decisions
–  Combines classical product manager, project

manager, and chief architect

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Team (1/2) •  Small team size:
–  Typically 5 to 9 team members

•  Cross-functional:
–  Design, coding, testing, etc.
–  Members must have a broad range of

competencies
–  Every team member is an expert in his/her

field but can also take over responsibilities of
other team members

•  Teams are independent/empowered
–  Decides which requirements to include in

next Sprint (i.e., team has power to reject too
many requirements)

–  Decides independently which tasks to
perform to implement the requirements

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Team (2/2)

•  Teams are self-organizing
–  Joint, consensual decisions on tasks to

perform for obtaining the goal of the
Sprint, and on work distribution

–  Work is coordinated via Sprint Backlog,
Burn-down Chart, and Daily Scrum

•  Members should work in close
distance (ideally in the same room)

•  Members should be full-time
•  Membership should change only

between sprints

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum Master

•  Represents management to
the project

•  Responsible for enacting
Scrum values and practices

•  Removes impediments
•  Ensures that the team is fully

functional and productive
•  Enables close cooperation

across all roles and functions
•  Shields the team from external

interferences

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum Roles – Summary

"Pig" roles:
•  Product Owner

–  The Product Owner represents the voice of the customer
ensuring that the Team works on the right things from a
business perspective.

–  The Product Owner writes user stories, prioritizes them,
then places them in the product backlog.

•  Scrum Master (or Facilitator)
–  Scrum is facilitated by a ScrumMaster, whose primary job is

to remove impediments to the ability of the team to deliver
the sprint goal.

–  The ScrumMaster is not the leader of the team (as they are
self-organizing) but acts as a buffer between the team and
any distracting influences.

–  The ScrumMaster ensures that the Scrum process is used
as intended. The ScrumMaster is the enforcer of rules.

•  Team
–  The team has the responsibility to deliver the product.
–  A team is typically made up of 5–9 people with cross-

functional skills to do the actual work (designer, developer,
tester, etc.).

"Chicken" roles:
•  Users

–  The software is being
built for someone.

•  Stakeholders (customers,
vendors)

–  The people that will
enable the project, and
for whom the project will
produce the agreed-
upon benefit(s) which
justify it. They are only
directly involved in the
process at sprint
reviews.

•  Managers
–  People that will set up

the environment for the
product development
organizations.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Typical
Scrum
Project

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Excerpt of a Typical Scrum Project

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Initial Product Backlog

•  Product Owner
–  fills the initial product backlog with the product properties from the product

concept and other requirements from focus groups, interviews, user
observation, etc.

–  Coarse-grained!
–  Goal: All known functional and non-functional requirements should briefly

be described
•  Product Owner

–  groups similar requirements into themes
–  prioritizes themes and individual requirements (if necessary) according to

usefulness, risk, and cost
•  Further refinement of high-priority requirements via requirements workshops
•  Initial requirements are recorded for 2-3 Sprints

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Requirements Workshop

•  Joint workshop with product owner, team, end users, and all other relevant
stakeholders (e.g., marketing, sales)

•  Goal: Common understanding of requirements

•  Fills and refines the Product Backlog
•  New themes / requirements are first described only at the level of coarse-

grained stories
•  Existing high-priority themes / requirements are detailed and acceptance criteria

are defined
•  Often with the help of index cards on Meta Planning Boards
•  Team estimates the cost of requirements

–  E.g. using points on a Fibonacci series (0, 1, 2, 3, 5, 8, 13, ...)
–  Done as part of an estimation workshop or using “planning poker”

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Estimation Workshop

•  Product Owner explains requirements to the team
•  Team estimates effort (no other persons outside the team)

–  Starting with small requirements and incrementally adding larger ones (relative to
the smaller ones)

–  The estimates are only stable within a team; it is not possible to transfer these
estimates to other teams without further considerations!

–  All activities are taken into account (development, test, integration,
documentation, ...)

–  Single estimates are done using, e.g., planning poker
•  If requirements are too vague to estimate, they have to be clarified first (e.g.,

making use of a so-called exploration Sprint)
•  If a requirement is estimated as being “huge” (e.g., much larger than all others),

there may be a lack of understanding
•  The Scrum Master moderates the estimation workshop

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Product Backlog

•  The requirements
•  A list of all desired work on the

project
•  Ideally expressed such that each

item has value to the users or
customers of the product

•  Prioritized by the product owner
•  Reprioritized at the start of each

sprint

This is the
product backlog	

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Product Backlog (1/2)

•  Includes product requirements, possibly grouped by themes, and
acceptance criteria as well as estimated effort

–  Functional and non-functional
–  Estimates cover all required work results, e.g. test environment

•  Provides counter-measures for identified risks (e.g., creation of
prototypes)

•  Content is usually very coarse-grained at the beginning of the project
•  Only at the end of the project all implemented requirements are

described in detail!

à Product Backlog changes during entire project period

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Product Backlog (2/2)

•  Requirements (User Stories) are usually represented on index
cards or in a table, e.g.:

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Risk Management

•  Each time the release plan is updated (i.e., at least once per Sprint),
risks should be identified and addressed accordingly

•  Together with Product Owner and Team
•  Identified risks are analyzed and appropriate counter-measures are

added as entries in the Product Backlog
•  If a requirement has a difficult to assess risk, it gets a high prioritiy and

is implemented in the next Sprint
–  Early clarification of actual risk
–  Fail-early approach: risks occur as early as possible

à Contrast to many classical approaches (often ignoring risks early on)
à Requires appropriate culture

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

 Daily Scrum Sp
rin

t R
ev

ie
w

 M
ee

tin
g

Sp
rin

t R
et

ro
sp

ec
tiv

e
Sp

rin
t P

la
nn

in
g

M
ee

tin
g

Sp
rin

t P
la

nn
in

g
M

ee
tin

g
15 min daily

 ~1 hour

1 day for a
4 week Sprint

Scrum – Sprint

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint – Meetings

•  Daily Scrum
–  Each day during the sprint, a project status meeting

occurs. This is called a "scrum", or "the daily
standup". Daily scrum guidelines:

•  The meeting starts precisely on time. Often there
are team-decided punishments for tardiness (e.g.
money, push-ups, hanging a rubber chicken
around your neck)

•  All are welcome, but only "pigs" may speak
•  The meeting is time-boxed (15 minutes)

regardless of the team's size
•  All attendees should stand (it helps to keep

meeting short)
•  The meeting should happen at the same location

and same time every day
–  During the meeting, each team member answers

three questions:
•  What have you done since yesterday?
•  What are you planning to do by today?
•  Do you have any problems preventing you from

accomplishing your goal?
•  It is the task of the ScrumMaster to remind the

team of these questions.

•  Sprint Planning Meeting
–  Select what work is to be done
–  Prepare the Sprint Backlog that

details the time it will take to do that
work

–  8 hour limit
•  Sprint Review Meeting

–  Review the work that was completed
and not completed

–  Present the completed work to the
stakeholders (a.k.a. "the demo")

–  Incomplete work cannot be
demonstrated

–  4 hour time limit
•  Sprint Retrospective

–  All team members reflect on the past
sprint.

–  Make continuous process
improvement.

–  Two main questions are asked in the
sprint retrospective: What went well
during the sprint? What could be
improved in the next sprint?

–  3 hour time limit

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint – Overview
•  Fixed period during which all activities specified in the Sprint Backlog are

carried out
•  Max Sprint length: 30 days, but can also be shorter
•  No extension possible (time-boxing approach) – if not all activities can be

completed by the end of the Sprint, they fall back into the Product Backlog
•  Sprint is preceded by Sprint Planning and succeeded by Sprint Review and

Sprint Retrospective meetings
•  Sprints follow each other seamlessly

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Planning

•  Planning of all activities to be carried out in the next Sprint
•  Product Owner defines goal for the Sprint and selects requirements to

be implemented
•  Team identifies necessary activities for their implementation and

estimates costs
•  Team decides which and how many requirements are implemented in

the Sprint, based on
–  the priorities defined by the Product Owner
–  the estimated effort
–  the team’s speed of development (à productivity)

•  Typically, planning is done with about 70% of the available capacity
•  Results are documentation in the Sprint Backlog

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Planning Meeting

•  Team selects items from the product backlog they can commit to
complete

•  Sprint backlog is created
–  Activities/Tasks are identified and each is estimated (1-16 hours)
–  Collaboratively, not done alone by the Scrum Master

•  High-level design is considered

As a vacation
planner, I want to
see photos of the
hotels.

Code the middle tier (8 hours)	

Code the user interface (4)	

Write test fixtures (4)	

Code the foo class (6)	

Update performance tests (4)	

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint planning meeting	

Sprint prioritization	

•  Analyze and evaluate product
backlog	

•  Select sprint goal	

Sprint planning	

•  Decide how to achieve sprint goal
(design)	

•  Create sprint backlog (tasks) from
product backlog items (user stories /
features)	

•  Estimate sprint backlog in hours	

Sprint	

goal	

Sprint	

backlog	

Business
conditions	

Team capacity	

Product
backlog	

Technology	

Current
product	

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Goal – Examples

•  A short statement of what the
work will be focused on during
the sprint

Database Application	

Financial services	

Life Sciences	

Support features necessary for
population genetics studies.	

Support more technical indicators than
company ABC with real-time,
streaming data.	

Make the application run on SQL
Server in addition to Oracle.	

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Backlog

•  Created during the Sprint Planning
•  Updated at least at the end of every day
•  Includes all activities that have to be carried out in the Sprint
•  Allows the team to organize all activities
•  Usually documented as index cards on a Meta Planning Board

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Managing the Sprint Backlog

•  Individuals sign up for work items (activities/tasks) of their own choosing
–  Work is never assigned!

•  Estimated work remaining is updated daily
•  Team can add, delete or change work items in the sprint backlog
•  Work for the sprint emerges
•  If work is unclear, define a sprint backlog item with a larger amount of

time and break it down later
•  Update work remaining as more becomes known

•  Visualisation à Burn-down chart

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Daily Scrum

•  Daily meetings of all team members
•  Up to 15 minutes, usually in the mornings
•  Always same time, same place
•  Daily planning of activities
•  Every team member reports

–  Activities completed since the last Daily Scrum
–  Planned activities until the next Daily Scrum
–  Perceived obstacles to the implementation of the activities

•  Problems in the Daily Scrum are only presented - not solved
•  Right to speak for Team and Scrum Master
•  Other stakeholders (including Product Owner) may attend but should

only listen

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Daily Scrum

•  Parameters
–  Daily
–  15-minutes
–  Stand-up

•  Not for problem solving
–  Whole world is invited
–  Only team members and

Scrum Master can talk
–  Other roles may attend and

listen
–  Helps avoid other

unnecessary meetings

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Daily Scrum – 3 Questions

NB:
•  These questions

are not status
reports for the
Scrum Master

•  They are
commitments in
front of peers

What did you do yesterday?
1

What will you do today?
2

Is anything in your way?
3

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Development Sprint

•  Normal Sprint in a Scrum project
•  Implementation of all activities that are described in the Sprint

Backlog
–  Design
–  Coding
–  Integration
–  Test
–  Documentation
–  ...

•  Documented in the Sprint Backlog (activity started / completed)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Exploration Sprint

•  For developing knowledge required
•  For addressing risks, for example by creating a prototype
•  For determining customer needs, e.g., by creating GUI mockups

•  Important: Clear separation between exploration result and production
code

–  The exploration result is discarded, no shippable product increment
is created!

•  Exploration Sprints are usually shorter than normal development Sprints
•  Rule of thumb: If teams spend more than 1/3 of its effort on exploration

activities, an exploration Sprint should be inserted

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Release Sprint

•  Sprint at the end of a release cycle or the overall project

•  Can combine tasks that would lead to large portions of non-
productive effort in a normal Development Sprint

–  e.g., complex customer-specific configurations of the
product

•  Create no added value from a customer perspective (since no
functionality is added)
à use seldom, keep short

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Review

•  Typical duration: 1-2 hours
•  Team presents all implemented

requirements
–  At last the official build
–  On a test environment that is as

similar as possible to the final
target environment

•  Only fully and accurately
implemented requirements are
approved (à shippable product
increment!)

–  That means, 99% implemented
counts as non implemented

•  Goal: Assessment of the
resulting work results and
approval by the Product Owner

•  Participants:
–  Team,
–  Product Owner,
–  Scrum Master,
–  and possibly other stakeholders

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Review

•  Team presents what it
accomplished during the sprint

•  Duration: max. 2 hours
•  Typically takes the form of a

demo of new features or
underlying architecture

•  Informal
–  2-hour prep time rule
–  No slides

•  Participants: Team, Product
Owner, Scrum Master

•  Invite the world

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Retrospective

•  Directly after the Sprint Review
•  Concludes the Sprint
•  Typically slightly longer than the

Sprint Review

•  Reflection
–  What went well?
–  What has gone wrong?
–  What could be improved and

how?

•  Goal: Improve team collaboration
and the application of Scrum

•  Participants:
–  Team,
–  Product Owner,
–  Scrum Master,
–  possibly other stakeholders or

managers (for the removal of
obstacles in the future)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Sprint Retrospective

•  Periodically take a look at what is and is not working
•  Typically 15–30 minutes
•  Done after every sprint
•  Whole team participates

–  Scrum Master
–  Product Owner
–  Team
–  Possibly customers and others

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Other Plans and Reports

•  Release plan
–  Documents the functionality (to be) shipped in product releases

•  Speed of development report
–  Documents development speed over Sprints

•  Sprint burn-down charts
–  Documents Sprint progress on a daily basis

•  Obstacle Report
–  Documents obstacles encountered

•  Theme Park
–  Provides thematic overview on completion status

•  Final Sprint report
–  Documents Sprint results

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Backlog item Estimate
Allow a guest to make a reservation 3
As a guest, I want to cancel a
reservation. 5

As a guest, I want to change the dates of
a reservation. 3

As a hotel employee, I can run RevPAR
reports (revenue-per-available-room) 8

Improve exception handling 8
... 30
... 50

Scrum – Main
Artifacts

•  Product backlog
•  Sprint backlog
•  Burn down chart

Tasks	

Code the user interface	

Code the middle tier	

Test the middle tier	

Write online help	

Write the foo class	

Mon	

8	

16	

8	

12	

8	

Tues	

4	

12	

16	

8	

Wed	

 Thur	

4	

11	

8	

4	

Fri	

8	

8	

Add error logging	

8	

10	

16	

8	

8	

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum – Artifacts
Product backlog
•  The product backlog is a high-level document for the entire project. It contains backlog

items: broad descriptions of all required features, wish-list items, etc. It is the "What" that will
be built. It is open and editable by anyone and contains rough estimates of both business
value and development effort. Those estimates help the Product Owner to gauge the
timeline and, to a limited extent, priority.

–  For example, if the "add spellcheck" and "add table support" features have the same
business value, the one with the smallest development effort will probably have higher
priority, because the return-on-investment is higher.

•  The product backlog is property of the Product Owner. Business value is set by the Product
Owner. Development effort is set by the Team.

Sprint backlog
•  The sprint backlog is a greatly detailed document containing information about how the

team is going to implement the requirements for the upcoming sprint. Tasks are broken
down into hours, with no task being more than 16 hours. If a task is greater than 16 hours, it
should be broken down further. Tasks on the sprint backlog are never assigned; rather,
tasks are signed up for by the team members as they like.

•  The sprint backlog is property of the Team. Estimations are set by the Team.
Burn down chart
•  The burn down chart is a publicly displayed chart showing remaining work in the sprint

backlog. Updated every day, it gives a simple view of the sprint progress.

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

H
ou

rs
	

40	

30	

20	

10	

0	

 Mon	

 Tue	

 Wed	

 Thu	

 Fri	

Tasks	

Code the user interface	

Code the middle tier	

Test the middle tier	

Write online help	

Mon	

8	

16	

8	

12	

Tues	

 Wed	

 Thur	

 Fri	

4	

12	

16	

7	

11	

8	

10	

16	

 8	

50	

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Prerequisites and Risks/Challenges

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Prerequisites and Risks (1/2)

•  Scrum has a different perspective on employees, management,
distribution of power as compared to traditional project management
approaches

–  In particular, higher and top-level management must understand and
actively support Scrum - not a passive “Commitment”

•  Organizational culture
–  Scrum requires openness, honesty, respect for each other
–  In organizations with many in-fighting this is typically missing

•  Customer also must re-think their role
–  Close involvement through many iterations is often unfamiliar
–  Creates additional work on the client side
–  Not every customer wants to see the creation of the product

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Prerequisites and Risks (2/2)

•  Partitioning of the product
–  Product must be partition-able so that it can actually be developed

incrementally
–  For example, this is not possible in certain regulated industries that

have certify full requirements specifications very early
–  Not all requirements can be partitioned equally well
–  In particular, non-functional requirements, such as performance,

safety, security can hardly be partitioned – and must therefore be
re-examined in each iteration and ensured

•  But: Safe + Safe ≠ Safe!
•  There exists no modeling technique that can guarantee non-

functional requirements iteratively (in contrast to conventional
waterfall development techniques)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scrum: Experience from Industrial Practice

•  Nowerdays, predominant approach in small and medium-sized companies
•  Examples of large companies: Microsoft and SAP

•  SAP (since 2005)
–  6 local and 11 distributed pilot projects from October 2005 to March 2006
–  Observed value

•  Great transparency regarding project status
•  Improved communication
•  Improved: Team feeling, team creativity, team motivation
•  Improved productivity
•  Early clarification of many issues and problems

–  Nowadays more widely used within SAP
–  But, adjusted to the specific needs of SAP!

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Scalability of Scrum
•  Typical individual team is 7 ±

2 people
–  Scalability comes from

teams of teams
•  Factors in scaling

–  Type of application
–  Team size
–  Team dispersion
–  Project duration

•  Scrum has been used on
multiple 500+ person projects
(e.g., SAP)

Scrum of Scrums of …

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Structure of Lecture 03

•  Hour 1:
–  Light-weight (agile) processes / Evolutionary development
–  Extreme Programming (XP)

•  Hour 2:
–  Question/answer session about homework 1
–  Info on mandatory short presentation (à Lecture 5)
–  Question/answer session about project

•  Hour 3:
–  Scrum
–  Choosing the right process (model)

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Choosing a Process Model is Difficult !

•  What you should first decide is whether you actually need a
prescriptive process model.

•  To make the choice it is important to know your organization/
project.

–  What characteristics does the project have?
–  What characteristics affect the choice of the process model?
–  Can we use the same model everywhere, or do we need

variants (a repertoire of different models)?

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

How Much Structure is needed?
Size (organization)

Big Small

Size (product)

Big Small

Age (team)

Low High
Problem complexity

Big Little
Demand for precision

Big Little

Project length

Long Short

M
U

C
H

 S
T

R
U

C
T

U
R

E

LI
T

T
LE

 S
T

R
U

C
T

U
R

E

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

How Much Structure is adequate?

Formality of product (specification/validation)

Process discipline (support/enforcement)

Low High

Strict Low

Communication

Formal Informal

Number of check points

Many Few

M
U

C
H

 S
T

R
U

C
T

U
R

E

LI
T

T
LE

 S
T

R
U

C
T

U
R

E

Experience
Much Little

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

How much Agility is Recommended?

•  Source: Boehm, B.; Turner, R.; Observations on balancing discipline and agility,
Proceedings of the Agile Development Conference, 2003. ADC 2003. Page(s):32-39

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Alistair Cockburn – Project Categorizing

 “Any one
methodology is
likely to be
appropriate for only
one of the boxes on
one of the planes.
Thus, at least 150
or so methodologies
are needed!”
 [Alistair Cockburn: Selecting a
Project 's Methodology. IEEE
Software 17(4): (2000)]

INF5181 / Lecture 03 / © Dietmar Pfahl 2012

Next Lectures

•  Topic: Lean Principles and Processes
•  Date: 13 Sep 2011

•  Topic: Student Presentations
•  Date: 20 Sep 2011
•  Important: Check course web for presenter list

•  Topic: Flow-based Agile Development (KANBAN)
•  Date: 27 Sep 2011

Bente Anda

Dag Sjøberg

