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ABSTRACT
With the continuing advances in wireless communications, geo-
positioning, and portable electronics, an infrastructure is emerging
that enables the delivery of on-line, location-enabled services to
very large numbers of mobile users. A typical usage situation for
mobile services is one characterized by a small screen and no key-
board, and by the service being only a secondary focus of the user.
It is therefore particularly important to deliver the “right” informa-
tion and service at the right time, with as little user interaction as
possible. This may be achieved by making services context aware.

Mobile users frequently follow the same route to a destination
as they did during previous trips to the destination, and the route
and destination are important aspects of the context for a range of
services. This paper presents key concepts underlying a software
component that discovers the routes of a user along with their us-
age patterns and that makes the accumulated routes available to ser-
vices. Experiences from using the component with real GPS logs
are reported.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data Models;
H.2.8 [Database Management]: Database Applications—Spatial
Databases and GIS

General Terms
Algorithms, Design, Experimentation, Management

Keywords
Context awareness, location-based services, road networks, desti-
nations, routes, map matching

1. INTRODUCTION
The global adoption rate of mobile phones is very large, and

while mobile phones are currently being used mostly for voice
communication, the volume of data communication is increasing
quite rapidly. With technologies such as GPRS, 2.5G (EDGE), and
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3G (CDMA, UMTS), which are packet based, the user can be al-
ways on at no extra cost; bandwidth is increasing; and regulatory
developments, such as the US E911 Mandate and similar develop-
ments in Asia and Europe, contribute to the spread of positioning
technologies. An infrastructure is thus emerging that supports a
range of location-enabled on-line mobile services [14].

However, mobile services are delivered to devices that are typi-
cally without keyboards and that have only small screens. Further,
the services may be expected to be delivered in situations where
the user’s main focus of attention is not the service, but rather that
of, e.g., navigating safely in traffic. For these reasons, it is much
more important than in a desktop computing situation that the user
receives only the relevant information and service, with as little in-
teraction as possible. One approach to obtaining these qualities is
to make the mobile services aware of the user’s context.

The user’s current location is one possible context, and the user’s
destination is another. Yet another is the route that takes the user
from the current location to the destination. This paper’s focus is
on the latter.

Routes are interesting for two reasons. First, folklore has it
that mobile users typically travel towards a destination (rather than
moving around, aimlessly) and that a user typically follows the
same route when going from one location to another. For exam-
ple, a user typically travels on the same route from home to work.
Second, routes are significant as context for a range of services.
For example, a service that knows the route of a user may alert
the user about road conditions, e.g., congestion, construction, and
accidents, on the route ahead, while not bothering the user with
conditions that do not relate to the user’s route. As another exam-
ple, routes may be used when a user requests the locations of “near”
points of interest. More specifically, a service may suggest restau-
rants to the user that are near to the user’s route, rather than merely
to the user’s current location.

This paper describes key techniques underlying a software com-
ponent that builds routes for individual users based on traces of
GPS coordinates. In the proposed system architecture, client-side
devices perform information filtering and prepare information for
sending to the server. The server side uses linear referencing for the
capture of the underlying transportation infrastructure and for the
capture of routes, which are sequences of road parts that connect
start and end destination objects. Aggregated usage information
for each route is also maintained. The component is implemented
using Java, Oracle’s PL/SQL, and Oracle Spatial.

The paper is structured as follows. The system architecture and
the route recording component is described in Section 2. Data
structures necessary for the capture of routes are given in Section 3,
and key algorithms used by the component are covered in Section 4.
An experimental validation is reported in Section 5. Finally, Sec-
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tion 6 covers related work, and Section 7 summarizes and offers
directions for future work.

2. SYSTEM ARCHITECTURE
Following an overview of the client and server sides, this section

describes how the two sides collaborate during route recording.

2.1 Client and Server Sides
We assume that a client device has a GPS receiver, a data con-

nection to the server, and the computing and storage capabilities
of a typical modern mobile phone. A current example is a Nokia
3650 with a GPRS connection and an Emtac Bluetooth GPS. GPS
receivers transmit NMEA sentences [6, 11], which include loca-
tion/time/date information, but also additional information that is
less important for our purposes.

Client devices store four data blocks, which are described in Fig-
ure 1 in XML format. The first block contains personal information
about each user. The second block records each user’s destination
objects. Each object has global/local IDs, a location given by a
circular area, and a description. The description is a name that is
meaningful to the user, e.g., “home” or “work.” The third block
captures the destination objects of routes. The fourth block of data
records the usage times of each route. The time is approximated to
week days, hours, and quarters of an hour.

USER_ID

PERSONAL_INFO

USER_INFORMATION

(a) Users

LOCATION

X_COORDINATE

*

GLOBAL_ID

OBJECTS

OBJECT

Y_COORDINATE

DESCRIPTIONLOCAL_ID

RADIUS

(b) Destination Objects

LOCAL_ID OBJECTSGLOBAL_ID

*

ROUTES

END_OBJECTSTART_OBJECT

ROUTE

(c) Routes

USAGE_INFORMATION

TIME

*
USAGE

ROUTE_ID FREQUENCY

QUARTERHOURWEEKDAY

(d) Usages

Figure 1: Client-Side Data

The user inputs personal information and names for destination
objects when this is requested by the client.

The server side uses the Oracle Application Server. The server
records and analyzes the information received from the clients. Ev-
erything about each route, i.e., its constituent road-network parts
and its usage, as well as each user’s personal information are stored
on the server. This is done to avoid information loss—users who
switch to a new device can obtain all relevant information from the
server. While not discussed further in this paper, we believe that
encryption may be employed to counter privacy concerns.

2.2 Route Recording Functionality

2.2.1 Client and Server Interaction
The user activates and deactivates the process of route record-

ing. When active, the client device filters and buffers location/time
information obtained from the GPS receiver. This information is

eventually transmitted to the server along with information about
the user and the user’s destination objects. The transmission fre-
quency depends on the route length, the technical abilities of the
client device, and the connection quality. When it has the neces-
sary information, the server performs route construction, records
the usage time, and assigns an ID to the route. The result is stored
in the database and is also sent to the client.

The data sent to the server by the client has three parts: user, ob-
ject, and standard information. The data format depends on which
data is already available.

User information. If the user is already registered, this data block
includes an ID. For new users, a user description is included. Thus,
we have[userId] or [undefined: description] in this block.

Object information. Routes start and end at destination objects.
The destination objects of a new route can have been used already
to define the start or end of other routes, in which case the server
can itself identify the objects according to their GPS coordinates. If
both objects are known, this data block is empty,[,]. If one object is
undefined, the data block contains a start description,[undefined:
description,], or an end description,[,undefined: description]. If
the start and end objects are yet to be defined, the block has de-
scriptions for both of them:[undefined: description, undefined:
description].

Standard information. Date, time, and GPS location information
are always included. This block includes three elements,[date,
time, GPS].

When the server sends data to a client, it always returns the ID
for a newly recorded route. If any of the route parameters are un-
defined, the client assumes that the data stream from the server will
include the missing information. The server generates IDs for users
and the users’ destination objects. These IDs are returned to the
client.

The server also returns a center location for a newly recorded
destination object if the center location of the object differs from
the first/last GPS coordinate pair in the GPS stream after location
approximation. The server returns a radius together with the cen-
ter location only if the server selects a radius that differs from the
default value.

Thus, the format of the data from the server is[userId, star-
tObjectId, endObjectId, routeId, (xStart, yStart; radiusStart),
(xEnd, yEnd; radiusEnd)], whererouteId is the only parameter
that is always included. The client receives the data stream from
the server, analyzes it, and records its data.

2.2.2 Client-Side Route Recording
The client takes part in the route recording by preparing the data

stream, described in the previous section, to be sent to the server.
The blocks of user and object information in the data stream are
constructed using data stored locally (see Section 2.1). The stan-
dard data block is constructed by analyzing the information from
the GPS receiver.

The order of the steps for route recording on the client device
is presented in Figure 2. When the user activates route recording,
the client starts obtaining GPS information from the GPS receiver.
Having received the first pair of coordinates, the client records the
time to be associated with the usage of the route being recorded
(1–5 in Figure 2). The client keeps extracting coordinates from
the GPS stream until recording is deactivated (6–8). Upon deacti-
vation, the end of the route is noted (9) for further analysis. The
result is the standard information block for the data stream to be
sent to the server.

If the user is already registered in the system, the user’s ID is
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Figure 2: Client-Side Route Recording

added to the stream (11 in Figure 2); otherwise, the client requests
a user description. The device records the description locally, sets
the user as undefined in the data stream, and adds the description to
the data stream (12–15).

The last task is to build the destination object block. If the start
and end objects are undefined (16,18) or the user is new, the device
obtains descriptions of the destination objects (19). The objects are
set as undefined in the stream and their descriptions are added to
the data stream (20–21). The device records descriptions, default
radiuses, and locations locally together with the local ID (22–25).
If only one object is undefined, the same steps are done for only
one object. If both objects are defined, the block is empty.

When all three data blocks have been constructed, the route is
recorded (36) locally using the local parameters and leaving the
global parameters undefined. The stream is finally sent to the server
(37).

2.2.3 Server-Side Route Recording
The server performs the main route recording—that of trans-

forming the data from a client into a route given by a sequence
of road network parts. Also, an ID is generated for a route; and any
data received from the client that describes destination objects and
the user is recorded.

The server-side route recording is presented in Figure 3. Having
obtained data from the client, the server checks if the user is new. If
so, the server obtains the user’s description from the stream, assigns
an ID to the user, stores this information, and includes the user’s ID
in the stream for the client.

Next, the server considers the destination objects. If both desti-
nation objects are undefined (which is the case if the user is new)
the server extracts destination object information from the stream
(10), generates IDs (11), records the new objects (12), and adds the
IDs to the stream for the client (13). If only one object is undefined,
the steps are done for one object. If the start is undefined (3, 9), data

about it is prepared (14, 15) and recorded (16, 17). Then the end
object is identified using knowledge about the user’s objects (18).
Similar steps are taken if only the end object is undefined. If both
objects are defined, they are identified using stored data (24).

Finally, the server analyses the third part of the stream that in-
cludes the standard data. The server detects the route from the GPS
information (25), generates an ID for the route (26), adds this ID
to the data stream for the client (27), and records the route in the
database (28). The server also adds center coordinates of desti-
nation objects (30, 34) and/or their radiuses (32, 35) if the coordi-
nates differ (29, 33) from the first/last GPS point in the GPS stream,
and/or if the radiuses are not the default values (31, 35). Then the
server records the first usage time of the route (37). The constructed
stream is sent to the client to end the route recording (38).

3. ROAD NETWORKS AND ROUTES
We proceed to define the key data structures used for the capture

of routes.
We project the real road network into 2D space and represent the

result as a set of polylines, each of which is given by a sequence
of base pointsB ⊂ R

2. Different choices of base points lead to
different road-network representations. Using many base points
generally results in a higher-fidelity representation. A polyline is
defined asPL = {(b1, ..., bN) | bi ∈ B ∧N ≥ 2}, whereb1 and
bN is the start and end base point of the polyline, respectively.

EXAMPLE 3.1. Figure 4 illustrates two intersecting polylines:
PL1 = (b1, b2, b3, b4) andPL2 = (b5, b6, b7). The start point of
PL1 is b1 and the end point isb4. ✷

In our road network model, each polyline represents a bidirec-
tional road. Without reference to the traffic directions of the roads,
polylines have “directions” going from the start base points to the
end base points.

129



(1) (3) (4)
NO YES

takeUserDescgenerateUserId

addUserIdToStream

findRouteFromGPS

takeObjectsDescgenerateObjectsIds

(25)

NO

YES

recNewObjects addObjectsIdsToStream

addObjectIdToStream

NO

generateObjectId

NO

YES

YES

(2)
getStreamFromDevice

(27)

(23)

(24)

(10)(11)

(8)

(20)

(19)

(22)

(16)

recUsage SendStreamToDevice

addRadiusToStream
YES

NO
NO

(30)

(31)

(32)

(33)

(34)

(35) (36)

(37) (38)

(21)

addObjectIdToStream

generateRouteId
(26)

addCooToStream

(28)

recRoute

YES

NO

addRadiusToStream

YES

addCooToStream

YES

NO

(29)

(5)(6)

(7)

(9)

(12) (13)

(14) (15)

(17)

(18)

takeStartDesc

recNewObject

findObjects

findEnd

findStart

takeEndDesc

recNewObject

generateObjectId

addRouteIdToStream

fixedEnd?

newUser? fixedStart? fixedEnd?

recNewUser

diffStartRadius? diffStartCoo?

diffEndCoo?

diffEndRadius?

Figure 3: Server-Side Route Recording
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Figure 4: Example of Polylines and a Subpolyline

We also reference the points on a road by their distance from the
start of the road. Although a road’s geographical extent is approx-
imated by a polyline, computing distances by simply summing up
the Euclidean distances of segments is too inaccurate [5, 8, 13].
Rather, we assume that we have accurate distances for all or some
of the base points in the polyline approximation of a road. This
decouples the polyline representation of a road from the capture
of distances along the road and is in keeping with current road-
management practice. Using real road distances makes calculations
more precise.

The measure of a base pointbi is given asli. The measure as-
sociated with the last base point of the polyline indicates the road
length of the polyline.

If a measure is absent for a base pointbk of the polyline, we iden-
tify the base pointsbi andbj that are the nearest base points with
measures before and afterbk, respectively, and we approximate the
measure ofbk as follows:

lk =

Pk−1
n=i |bnbn+1|Pj−1

m=i |bmbm+1|
· (lj − li) + li

If no bj exists, we use the Euclidean distance starting frombi and
onwards.

EXAMPLE 3.2. Figure 5 exemplifies length calculation for base
points of polylinePL1 = (b1, b2, b3, b4). The numbers above the
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Figure 5: Length Calculations

line segments indicate the Euclidean distances between base point
pairs. The numbers below base points hold the more accurate mea-
sures supplied by the road information provider.

Consider Figure 5(a). When computing the measurel3 for b3,
i = 2 andj = 4. It may be verified that application of the formula
yieldsl3 = 10.4.

Figure 5(b) lacks measures for the last two base points,b3 andb4.
The measure forb3 is calculated by adding the Euclidean distance
betweenb2 andb3, i.e.,5, to the measure ofb2, i.e.,4. For the base
point b4, we add the Euclidean distance betweenb3 andb4. ✷

DEFINITION 3.1. (Length) FunctionL : PL × B → R takes
as arguments a polylinepl = (b1, ..., bN ) and a base pointbi, 1 ≤
i ≤ N , and it returns the road distance from the start of the polyline
to the base point. ✷

Here,L(pl, b1) = 0, andL(pl, bN ) is the length of the polyline.
For1 ≤ i < j ≤ N , L(pl, bj)−L(pl, bi) is at least the Euclidean
distance betweenbi andbj . Next, asubpolyline models a part of a
road.

DEFINITION 3.2. (Subpolyline) Let SPL ⊂ PL × R
2 be a

finite set ofsubpolylines. A subpolylinespl = (pl, l�, l�), where
0 ≤ l� < l� ≤ L(pl, bN ), is the part of polylinepl that starts at
measurel� and ends at measurel�. ✷
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Figure 6: Connections Among Polylines

In Figure 4, the accentuated part of polylinePL2 is a subpoly-
line, SPL2. We proceed to capture the connectivity among the
roads.

DEFINITION 3.3. (Connection) Let C ⊂ { {(pl1, l
�
1 ), . . . ,

(plN , l�N )} | (pli, l
�
i ) ∈ PL × R ∧ N ≥ 2}. Thus,C is a set of

finite sets ofconnections. ✷

Consider Figure 6(a), where polylinesPL1 andPL2 each has a
connection point at their intersection. There is a connection point
at distancel�1 from the start ofPL1, and there is one at distancel�2
from the start ofPL2. We thus havec = {(PL1, l

�
1 ), (PL2, l

�
2 )} ∈

C. The connection points in Figures 6(b) and 6(c) are analogous,
but illustrate situations where connection points coincide with base
points. Note that when we capture the connections, we in effect
obtain a graph representation of the road network.

As mentioned previously, our service users travel from and to
destinations via the road network. These destinations, we termuser
objects.

DEFINITION 3.4. (User Object) Let UO be a finite set ofuser
objects. Each user objectuo is a 3-tuple(u, circle, spls), where

1) u belongs toU , the set of service users.

2) circle = (x0, y0, rd) ∈ R
2 × R denotes the circle defined

by (x− x0)
2 + (y − y0)

2 = rd2.

3) spls = {(pl, l�, l�) | ∃pl ∈ PL ((pl, l�, l�) ∈ getSpls(pl,
circle))}, where functiongetSpls returns the set consisting
of all maximum subpolylines ofspls that are insidecircle. ✷

We say that user objectuo belongs to useru and is located in the
circular area with center(x0, y0) and radiusrd .

Note that while it is simpler to model user objects as points than
as circular areas, this is not appropriate. For example, each day a
user may park in a different parking space in the same parking lot
or even in a different parking lot close to the building where the
user works. Thus, the same destination may have different route
end and start locations on different days. Destination objects can
be given different radiuses that depend on the usage patterns and
the number of polylines around them.

Next, we associate usage times with routes. To be able to capture
regularities in route uses, we capture the year, month, day, hour,
minute, and second of each use separately. (Recall that the usage
time of a route is the time when the use is initiated.)

DEFINITION 3.5. (Usage Time) Let ausage time T be a finite
set of 6-tuples(y,m, d, h, mn, s), wherey, m, d, h, mn, ands
denoteyear, month, day, hour, minute, andsecond, respectively.✷

With the preceding definitions in place, we can define the notion
of a routeroute.

DEFINITION 3.6. (Route) Let R be a finite set ofroutes. Each
route is a 4-tuple(RE,uos, uoe, ST ), where

1) RE = ((spl1, dir1), . . . , (splN , dirN )) is the sequence of
subpolylines that makes up the route. For(spli, diri), where
spli = (pli, l

�
i , l�i ) ∈ SPL, diri is the motion direction

alongpli used:

diri =

8<
:

1 if the motion direction on subpolylinespli
coincides with the direction of polylinepli

−1 otherwise

2) uos = (u, circles, splss) ∈ UO is the start object of the
route, and∃(pl, l�, l�) ∈ splss (pl = pl1 ∧ (l� ≤ l�1 ≤
l� ∧ dir1 = 1) ∨ (l� ≤ l�1 ≤ l� ∧ dir1 = −1)).

3) uoe = (u, circlee, splse) ∈ UO is the end object of the
route, and∃(pl, l�, l�) ∈ splse(pl = plN ∧ (l� ≤ l�N ≤
l� ∧ dirN = 1) ∨ (l� ≤ l�N ≤ l� ∧ dirN = −1)).

4) ∀spli = (pli, l
�
i , l�i ), spli+1 = (pli+1, l

�
i+1, l

�
i+1), 1 ≤ i ≤

N −1 ((pli �= pli+1∧∃c ∈ C ((pli, l1) ∈ c∧ (pli+1, l2) ∈
c)) ∨ (pli = pli+1 ∧ l1 = l2)) wherel1 = l�i if diri = 1,
and l1 = l�i if diri = −1; l2 = l�i+1 if diri+1 = 1, and
l2 = l�i+1 if diri+1 = −1.

5) ST ⊂ T denotes the times when the route was used by
useru. ✷

Thus, a route is a sequence of subpolylines with directions (item 1
in the definition), where the first/last subpolyline must intersect
with the circle of the start/end destination objects (items 2 and 3)
and where the sequence of subpolylines must form a (continuous)
polyline (item 4).
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Figure 7: Example Route

EXAMPLE 3.3. Figure 7 illustrates a road network with three
polylines—PL1 = (b11, b8, b4, b12), PL2 = (b1, b2, b3, b4, b5),
andPL3 = (b6, b2, b7, b8, b9, b10). The highlighted router =
(RE,uos, uoe, ST ) uses parts of all three polylines. Specifically,
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RE is a sequence of four route elements. The subpolyline of the
first route element is given by(PL3, l,L(PL3, b2)), wherel is a
measure along subpolyline specifying a point that is in the circular
area of user objectuos. The movement direction of the subpolyline
coincides with the direction of polylinePL3. ✷

4. ROUTE CONSTRUCTION
While Section 2.2 gives an overview of the context of the essen-

tial construction of routes that occurs on the server side, we proceed
to describe the route construction algorithm (Algorithm 4.1, below)
in some detail. Taking a sequenceG of GPS positions as input, the
algorithm constructs a route consisting of a sequenceRE of route
subpolylines. Note that this algorithm employs map matching as
part of its solution to a larger problem; other map matching tech-
niques may be used in place of the specific technique employed by
the algorithm.

Algorithm 4.1 Route Finding

Require: IN: G = (g1, ..., gn), gi ∈ R
2, n > 1 OUT: RE =

((spl1, dir1), ..., (splm, dirm)), spli = (pli, l
�
i , l�i ) ∈ SPL

1: let cState = ((pPl ,pDst , pDir), l�, RE)
2: (cState , G)← getStartValues (G)
3: while G is not emptydo
4: g ← head(G), G← tail(G)
5: (cPl , cDst)← polyId(g,pPl)
6: if cPl = ∅ then
7: (cState , G)← fillGap(cState , g ,G)
8: else
9: if possibleConnection(cPl , cDst) = false then

10: if cPl �= pPl then
11: cState ← newSubOtherPoly(cState, cPl)
12: else
13: dir ← defDirection(pDst , cDst , pDir)
14: if pDir = 0 then
15: pDir ← dir
16: else if pDir = dir then
17: pDst ← cDst
18: else
19: cState ← newSubSamePoly(cState, cDst)
20: end if
21: end if
22: end if
23: end if
24: end while
25: RE ← proceedEnd(cState, cDst)
26: return (RE)

The state of the algorithm is captured by the data structurecState
= ((pPl , pDst , pDir), l�, RE), wherepPl is the polyline the most
recent, previous GPS position was mapped to,pDst is the distance
between that GPS position and its position on the polyline it was
mapped,pDir is the direction of movement along the polyline of
the GPS sequence,l� is the distance from the start of the polyline
where the current subpolyline starts, andRE is a sequence of route
elements.

The algorithm uses a few additional structures. Thus,(cPl , cDst)
stores the polyline to which the current GPS position is mapped and
the distance from the start of the polyline to the point on the poly-
line to where it was mapped. Next,dir is the current direction on
the polyline. We use the primitive functionshead, tail, andappend
on sequences of elements of the same type.

Next, the algorithm employs a number of additional functions.

First, functiongetStartValues (see Algorithm 4.2) scans the GPS
sequence for the first position for which there is only one polyline in
the road network that is within the distance of imprecision (lines 2–
9). So, if the first position has more than one candidate polyline,
the function considers the second one; if the second position has
more than one candidate, the function considers the third one; etc.
The function uses a data structureundG = (g1, . . . , gk), where
the firstk − 1 elements are undefined GPS positions andgk is the
first GPS position that is mapped correctly. Next,Cand is a set
of pairs(cPli , cDsti ) of a polyline and a distance from the start of
the polyline. This set records candidate polylines for a particular
GPS position. Finally,cList = (Cand1 , . . . , Candk ) is a list of
candidate sets whereCandi contains the candidates for mapping
GPS positiongi.

Algorithm 4.2 FunctiongetStartValues

Require: IN: G = (g1, ..., gn), gi ∈ R
2 OUT: (cState , G) =

(((pPl ,pDst , pDir), l�, RE), G)
1: Cand ← ∅, cList ← ∅, undG ← ∅
2: while G not empty∧|Cand | �= 1 do
3: g ← head(G), G← tail(G)
4: Cand ← polyCand(g)
5: if |Cand | > 0 then
6: cList ← append(cList ,Cand)
7: undG ← append(undG, g)
8: end if
9: end while

10: if cList > 1 then
11: cState ← backTrack (cList , undG)
12: else if cList = 1 then
13: (pPl ,pDst)← head(Cand)
14: pDir ← 0, l� ← pDst , RE ← ∅
15: else
16: EXIT
17: end if
18: return (cState , G)

For each positiong from the GPS sequence, algorithmgetStart-
Values finds candidate polylinesCand using functionpolyCand
(line 4). If there are more than one candidate (line 5), the algorithm
adds the GPS position to listundG and also adds candidatesCand
to list cList . If the first position with only one candidate is not the
first GPS position in the stream (line 10), the algorithm uses func-
tion backTrack to map the previous positions correctly, if possible,
and to get the current state. If the first GPS position has only one
candidate (line 12), the current state becomes this candidate. If all
positions in the GPS stream have more than one candidate polyline
(line 16), the algorithms exits.

The next function used in Algorithm 4.1,polyId , identifies the
polyline to which a GPS positiong should be mapped, considering
the polylinepPl that the previous GPS position was mapped to.
Positiong should be mapped to polylinepPl or to a polyline that
shares a connection point with this polyline. The function returns
the polylinecP l and the distancecDst from the start of the poly-
line to the projection. If positiong is not mapped onto the previous
polyline and more than one candidate polyline exists that connects
with the previous polyline, the function returns an undefined poly-
line.

To avoid mapping errors at connections, we introduce so-called
connections areas and do not map GPS positions inside these ar-
eas. FunctionpossibleConnection determines whether an argu-
ment GPS position is in a connection area. If the projection of the
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position is within the imprecision distance from a connection, the
GPS position is in a connection area, and the function returnstrue;
otherwise, it returnsfalse.

FunctionfillGap fills the gap between two projections based on
shortest paths search in the road network representation. This func-
tion constructs missing route elements.

FunctionnewSubOtherPoly constructs a route element when
the current GPS position is mapped to polyline other than the one
the previous GPS position was mapped to. The end of the sub-
polyline for the route element being generated is modified so that
it becomes equal to the measure of the connection where the object
departed from the previous polyline to reach its new polyline.

FunctionnewSubSamePoly constructs a new route element in
the case where movement is along the same polyline, but the move-
ment direction from the previous position to the current is opposite
to the direction until the previous position. The end of the previous
route element is the start of the new one.

FunctiondefDirection determines the movement direction along
a polyline of two projections. If the previous measure is less than
the current one, the direction coincides with the polyline’s direction
and1 is returned. If the previous measure is greater than the current
one, the direction is set to−1. If the two measures are equal, the
direction is set to the previous direction,pDir .

FunctionproceedEnd constructs the last route element. All last
route elements that belong to the last polyline are approximated by
one element if they are in the area of the destination object.

With the above functions at its disposal, Algorithm 4.1 first uses
function getStartValues to obtain a correct start state. While the
GPS sequence is not empty, the next position is extracted and pro-
cessed. The polyline that corresponds to the position is identified
using functionpolyId . If this function returns an undefined poly-
line, there is a gap in the GPS sequence, which has to be filled. If
the function returns a polyline, it is checked if the projection is in a
connection area. If the position projection is not in the connection
area, the subsequent calculations can be done.

If the current polyline is not the same (line 10) as for the previ-
ous GPS position, a new subpolyline is formed. If the polyline is
the same (line 12) as for the previous GPS position, the algorithm
checks if the movement direction is the same as for the previous
position. If the previous direction was undefined, its value is set
to a value of the current direction. If the direction is the same,
no calculations are done—only temporary variablepDst becomes
equal to the distance of the current GPS position. If the direction
is not the same, we have to form a new subpolyline and function
newSubSamePoly is called.

When the GPS sequence is empty, the final route element is com-
puted by functionproceedEnd. Specifically, all the last route ele-
ments constructed so far that belong to the last polyline to which
GPS positions were mapped are approximated to one element if
these route elements are in the area of the destination point. In Fig-
ure 8, the final point of the route isE and all subpolylines belong
to the same polyline. They are inside the area of the destination
point shown by the circle. Each valuexi denotes a distance from
the start of the polyline.

FunctionproceedEnd starts with the end position (E in the fig-
ure) and searches backwards for the start position that is the “old-
est” position on the polyline. Each element inside the destination
circle is considered in turn. If an element exceeds the circle, the ap-
proximation process stops. In the figure, we start with(x1, E) and
consider(x1, x2). This yields(x2, E). We then consider(x3, x2),
obtaining(x3, E). Next, we obtain(E, x4). The final result of the
approximation is element(S,E).

A detailed description of the route construction described above
is available in the associated technical report [4].
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Figure 8: Approximation of the Route End

5. EXPERIMENTAL VALIDATION
To validate the data structures and algorithms described in the

previous two sections, these were implemented using commercial,
state-of-the-art technologies, including Java, Oracle PL/SQL, and
Oracle Spatial. We describe this implementation and lessons learned
from testing the implementation using a real road network and GPS
log data.

5.1 Database Schema
Figure 9 contains a relational schema capable of capturing the

data structures described in Section 3. Primary and foreign keys are
indicated. TableLINEAR ELEMENTS stores the main elements
representing roads of the road network—polylines. Each tuple in
this table contains the unique ID of a polyline and the length of the
polyline.

TableCONNECTIONS captures the intersections among poly-
lines. A tuple in this table records that a polyline (POLID) inter-
sects at a distance (POLFROM) from its start with one or several
polylines at a connection (CONNID).

Recall from Section 3 that a polyline is given by a sequences
of base point—tablePOLYLINE ELEMENTS records these. A
tuple records a base point of a polyline (POLID). The number of
the base point in the sequence of the base points of the polyline
(SEQUENCENR) and its distance from the start of the polyline
(POL FROM) are recorded, in addition to the geographical coordi-
nates (XCOORD and YCOORD) of the base point.

TableSDO POLYLINE ELEMENTS is created to be able to
use facilities in Oracle Spatial [10]. The attributes in this table are
similar to those in tablePOLYLINE ELEMENTS. The exception
is attribute ELEMENT, which does not capture the geo-information
about a single base point, but captures an entire line segment with
its start and end points.

A tuple in tableUSERS contains the unique ID of a mobile ser-
vice user and additional information about the user.

Next, a tuple in tableDESTINATION OBJECTS contains the
ID of a destination object, the ID of the user to whom the object be-
longs, a description of the object, and attributes that specify the cir-
cular area of the object. TableSDO DESTINATION OBJECTS
is created to be able to use Oracle Spatial. It has an attribute CIR-
CLE instead of coordinates.

Three tables and a view are used for capturing routes. First, table
ROUTES records the routes of the mobile service users. Routes

133



���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

POL_FROM

POL_ID

SEQUENCE_NR

ELEMENT

POL_TO

789

SDO

789

789

789

CONN_ID

RADIUS

USER_ID

X_COORD

789

A

789

789

789

DESCRIPTIONA

D_ID

END_OBJECT_FK

START_OBJECT_FK

USER_ID_FK

789

789

789

A
789

WEEKDAY
Y_COORD

789 POL_ID

POL_FROM

CONNECTIONS

789

789

SDO_POLYLINE_ELEMENTS POLYLINE_ELEMENTS

POL_ID_FK

SDO_DESTINATION_OBJECTSDESTINATION_OBJECTS

SDO

USER_ID

CIRCLE

RADIUS

A

789

789

DESCRIPTIONA

D_ID

HOUR

789

789

789

789

789

POL_ID_FK

X_COORD

Y_COORD

SEQUENCE_NR

POL_ID

POL_FROM POL_FROM

POL_ID

ROUTE_ID

SPEED

ROUTE_ELEMENTS

DIRECTION

SEQUENCE_NR

POL_TO

POL_ID_FK

ROUTE_ID_FK
789

QUARTER
USAGE

ROUTE_ID

D

VIEW_INFO

DATETIME

ROUTE_ID789

INFO

− primary key

ROUTE_ID_FK

LINEAR_ELEMENTS

789

789

789

789

789

789

POL_ID

POL_LENGTH

789

− dateD

A − characters

− not null value

789 − numeric values

− null values allowed

789

A

A

789

END_OBJECT

ROUTE_ID

START_OBJECT

ROUTES

USER_INFOA

USER_ID789

USERS

Figure 9: Relational Database Schema

start and end at destination objects. A tuple thus records the ID of
a route and the start and end objects.

Second, table ROUTE ELEMENTS describes routes in terms
of their elements. Each tuple thus describes a subpolyline. At-
tribute POL FROM records the start measure of the subpolyline
and attribute POL TO captures the end measure of the subpoly-
line. The number of the subpolyline in the sequence of subpoly-
lines that make up the route it is part of is recorded by attribute
SEQUENCE NR. Attribute DIRECTION indicates whether the di-
rection of the polyline coincides with the direction of the route on
that polyline. Attribute SPEED captures the average speed of the
user on the subpolyline.

Third, table INFO captures the usages of routes. A tuple in this
table corresponds to an individual usage of a route and thus cap-
tures the ID of a route and the time of the use. A view VIEW INFO
is included that contains the attributes ROUTE ID, WEEKDAY,
HOUR, QUARTER, and USAGE. This view approximates the ex-
act route usage times down to quarters of an hour. Attribute US-
AGE records the sum of uses of a route during a particular quarter
on a particular day of the week.

5.2 Implementation Overview
Based on the database schema just described, the algorithm de-

scribed in the previous section was implemented using facilities
available in Oracle Spatial [10]. Segments of polylines are spatial
data objects (SDO elements in Figure 9), and Oracle Spatial oper-
ators and geometry functions are used. Polyline segments are also
linear referencing system (LRS) elements, which enables the use
of LRS functions. To use the Oracle Spatial functions we create
an index on the spatial attribute. A spatial attribute is constructed
according to the syntax of the object MDSYS.SDO GEOMETRY.

The route finding algorithm implemented with Oracle Spatial
differs a bit from the one described in Section 4. The implementa-
tion is in Java, and JDBC is used to execute SQL queries enhanced
with Oracle Spatial functionality.

The built-in Java class LinkedList is used for storing the sequences
of subpolylines that form routes. This class comes with standard
list manipulation operations. The implementation uses a separate
class that is responsible for the execution of SQL queries. The
class that is responsible for route finding includes an instance of
this class, to be able to obtain the results of SQL queries.

To identify polylines for subsequent GPS positions, we use a
PL/SQL function polyId. This function first considers the polyline
that the previous GPS position was mapped to. If the distance to

that polyline exceeds the imprecision, the function searches for the
nearest, connected polyline. Two Oracle Spatial operator are used.
Operator SDO NN finds the nearest spatial objects (polylines), and
operator SDO NN DISTANCE returns the distances to these ob-
jects. We used 30 meters as the imprecision for GPS positions and
as the imprecision of connection areas.

5.3 Map and GPS Log Data
We repeatedly tested and improved the prototype component us-

ing the INFATI data [9]. This data includes a representation of the
road network of the municipality of Aalborg, Denmark. This data is
quite typical of road network representations. The data is captured
in a database with the schema just described.

The INFATI data also includes GPS logs from twenty-some ve-
hicles that participated in an intelligent speed adaptation project.
Briefly, the position of a vehicle was logged every second when the
vehicle was moving. Positions were logged for approximately six
weeks.

5.4 Experimental Insights
In general, the experimental validation of the component led to

a more consolidated formalization of the concepts underlying the
component and led to a more mature component that is able to
handle the complex situations that occur in real-world application.
Here, we discuss insights gained from the validation that would be
hard to gain using generated data or based on purely theoretical
studies.

The first insights relate to what a route really is. Typically, users
use some routes frequently, e.g., routes between home and work.
However, even if a user drives from home to work along the same
streets each day, the resulting routes turn out to all be different.
This happens because a vehicle is likely to be parked in a differ-
ent location at work every day, even if it is in the same parking lot.
Should it happen that the vehicle is parked in the exactly same loca-
tion at the end (or start), the problem remains because the positions
produced by the GPS receiver are imprecise.

We address this problem by first modeling destination objects as
circular regions of variable size. Routes then start from the same
destination object if they start within the same circular region. Sec-
ond, we approximate the last elements of a route if these elements
belong to the same polyline and if they are inside the destination
object’s circular region. Thus, we consolidate the number of route
elements in cases similar to that in Figure 10(a), where a vehicle
drives around at its destination to find an empty parking space.
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Figure 10: Special Cases

The representation of rotaries in the map data can also cause
problems relating to the equivalence among routes. This occurs
when a rotary happens to be represented as a regular crossroads.
Consider Figure 10(b) that shows a regular crossroads that repre-
sents a rotary and sequences of GPS points corresponding to two
traversals. When the lower sequence is mapped to the road net-
work, subpolylines are created that use only the horizontal road.
However, when the upper sequence is mapped to the road network,
the road part that extends upwards from the crossroads is also used,
corresponding to the vehicle moving from the right to the cross-
roads, then traveling upwards a short distance, then making a u-turn
and traveling down to the crossroads, and then continuing towards
the left. In general, different traversals make u-turns at different
locations.

In this case, the standard imprecision value of 30 meters is too
small due to the large radius of the rotary, and the algorithm will
produce two different routes. One solution is to increase the impre-
cision value; an alternative is to obtain and use information about
rotaries.

In the above discussion, the imprecision of map and GPS data
were central sources of problems. The next insights concern in
large part the absence of map or GPS data.

Figure 11(a) illustrates a situation where a vehicle drives where
the map data has no road. This occurs if the map data is missing a
road, e.g., the map data is outdated, or if the vehicle actually does
not drive on a road (but, e.g., in a parking area or on a bike path).

To make the component resilient towards this type of situation,
an algorithm, fillGap, is used that finds the shortest path from one
known point to another. If the path found is much longer than the
distance traveled by the vehicle according to the GPS coordinates,
the algorithm is unable to find a reasonable solution and returns an
error.
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Figure 11: Filling Gaps

Next, Figure 11(b) shows a situation with a gap in the GPS se-
quence. This may occur for a number of reasons. For example,
the GPS coverage may be incomplete due to buildings, trees, or a
tunnel. The component handles this case by using fillGap. If a gap
exceeds a certain distance threshold, the component returns error.

In the experiments, visual inspection was used to determine the
component’s ability to accurately find routes. We found that the
component works well under “normal” circumstances, but found
also that the accuracy is highly dependent on the fidelity of the
available representation of the road network and on the quality of
the GPS positions. More extensive empirical studies of accuracy
are left for future work.

The amount of the space needed to store the routes on the device
was not analyzed experimentally, as it depends only on the number
of routes and destinations. The routes, destinations, personal infor-
mation, and usage information are stored as character strings that
have a predefined schema. The space need for temporary storage
of GPS positions in the NMEA format depends on the number of
positions to be stored. The maximum NMEA sentence length is 80
characters. For each GPS position, we use 8 sentences.

6. RELATED WORK
We are not aware of any previous work on components that gen-

erate routes from GPS data. But our work is related to a few lines of
research in mobile services, and we reuse some existing techniques.

Road network modeling is a central aspect of the paper. It is
standard in industry to use linear referencing for road-network rep-
resentation [1, 5, 10, 13]. Consistent with this, our data model uses
linear referencing for capturing road network as well as routes, and
our data model can easily be integrated with any linear referenc-
ing model. Hage et al. [8] describe a data model that integrates
representations of transportation infrastructures and geo-referenced
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content. We use part of this model and extend it in order to capture
routes. We note that it is also possible to model a road network as
a directed graph (e.g., [7, 16]), in which case a route becomes a
sequence of edges.

We apply several existing techniques in our setting. Shortest path
computation is used to fill gaps when we construct routes. This
relates to works that consider shortest paths in graphs. Barrett et
al. [2] study a generalized Dijkstra’s algorithm for shortest paths in
graphs on large transportation networks to do route planning.

During route construction, we map match GPS positions onto a
road network. Bernstein and Kornhauser [3] explore map match-
ing algorithms, e.g., “point-to-curve” and “curve-to-curve,” that
can be used to reconcile inaccurate position data with an inaccu-
rate map. Yin and Wolfson [17] propose a weight-based off-line
map matching algorithm that finds a sequence of map arcs that is
similar to a trajectory given by a sequence of GPS positions. We
map match GPS positions onto polylines. In doing so, we use the
geographic locations of the roads together with the topology of the
road network, i.e., we use the connections among the polylines.
Although we apply map matching in a specific data model, exist-
ing map matching techniques, such as those just mentioned, can be
integrated into our work.

Our map matching involves searching for nearest neighbors. We
use the allowed imprecision to control the range within which can-
didate polylines are to be found. This relates to the work of Rous-
sopoulos et al. [12], in which they consider minimum and maxi-
mum distances from the query object during search. We also choose
a polyline according to how the previous GPS position was map
matched. The nearest neighbors for the previous positions of the
moving object are considered by Song and Roussopoulos [15]. Put
briefly, our use of nearest neighbor search differs from those of ex-
isting works. We search for nearest neighbors to define the move-
ment of a user in a road network. We construct a sequence of con-
nected polyline elements, not a set of nearest objects for every step.

The proposed route component makes routes available to ser-
vices and may be considered as a part of a more general context-
aware system. However, a more general coverage of “context” is
beyond the scope of this paper.

7. SUMMARY AND FUTURE WORK
Based on the observation that the route of a mobile user is an in-

teresting and important context for a range of mobile services, this
paper describes a system architecture along with a detailed design
and a tested, relational implementation of a route component that
constructs routes and accumulates usage information based on data
received from a GPS receiver that follows the user.

A route is expressed in terms of the underlying road network, as
a sequence of parts of roads, or, more precisely, as a sequence of
connected, linear elements, here termed subpolylines, each with a
travel direction. A route connects a source and a destination object.
The solution presented addresses the real problems that occur when
attempting to derive a user’s routes based on real map data and
actual GPS input.

There are several possible directions in which to extend this work.
We have assumed that the user controls the process of route record-
ing. One extension is to enable the system to detect ends of routes.
For example, if a user is at a particular position for some time with-
out moving, the system may assume that the end of a route has been
reached and may end the process of route recording.

Another possible extension is to enable the system to detect if a
route is already recorded or to divide a long route into smaller ones
when smaller parts of the route are used. Other possible extensions
include the use of additional information about road networks that

is available in some cases, such as allowed driving directions and
turn restrictions.
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