Enabling Routes as Context in Mobile Services

Agne Brilingaite Christian S. Jensen Nora Zokaite
Department of Computer Science, Aalborg University, Denmark

{agne,csj,noray@cs.aau.dk

ABSTRACT 3G (CDMA, UMTS), which are packet based, the user can be al-
ways on at no extra cost; bandwidth is increasing; and regulatory
developments, such as the US E911 Mandate and similar develop-
ments in Asia and Europe, contribute to the spread of positioning
technologies. An infrastructure is thus emerging that supports a

With the continuing advances in wireless communications, geo-
positioning, and portable electronics, an infrastructure is emerging
that enables the delivery of on-line, location-enabled services to
very large numbers of mobile users. A typical usage situation for . . . A
mobile services is one characterized by a small screen and no key_range of location-enabled on-line mobile services [14].

board, and by the service being only a secondary focus of the user. How_ever, mobile services are delivered to devices that are typi-
Itis therefore particularly important to deliver the “right” informa- cally without keyboards and that have only small screens. Further,

tion and service at the right time, with as little user interaction as (N€ Services may be expected to be delivered in situations where
possible. This may be achieved by making services context aware the user’s main focus of attention is not the service, but rather that
Mobile users frequently follow the same route to a destination of, €.9., navigating sz_afely in traffic. For these_reas_,ons, it is much
as they did during previous trips to the destination, and the route Mr€ important than in a desktop computing situation that the user
and destination are important aspects of the context for a range of ECEIVES only the _relevant information and SEervice, with as Ilttl_e_ In-.
services. This paper presents key concepts underlying a softwarderaction as poss_,lble. Qne approach to obtaining these qualities is
component that discovers the routes of a user along with their us-t© _:_nhake the' mobile slerwc_es aware of the_blfser S contexta h ,
age patterns and that makes the accumulated routes available to ser- ' € US€r'S current focation Is one possible context, and the user's

vices. Experiences from using the component with real GPS logs destination is another. Yet another is the route that takes the user
are reported. from the current location to the destination. This paper’s focus is

on the latter.
Routes are interesting for two reasons. First, folklore has it

Categor iesand SUbJ ect D@crlptors that mobile users typically travel towards a destination (rather than
H.2.1 [Database Management]: Logical Design—Data Models; moving around, aimlessly) and that a user typically follows the
H.2.8 [Database M anagement]: Database Applications-Spatial same route when going from one location to another. For exam-
Databases and GIS ple, a user typically travels on the same route from home to work.
Second, routes are significant as context for a range of services.
General Terms For example, a service tljgt knows the route of a user may alert
the user about road conditions, e.g., congestion, construction, and
Algorithms, Design, Experimentation, Management accidents, on the route ahead, while not bothering the user with
conditions that do not relate to the user’s route. As another exam-
Keywords ple, routes may be used when a user requests the locations of “near”

| ion-based . d ks d points of interest. More specifically, a service may suggest restau-
Context awareness, location-based services, road networks, destizyns 1 the user that are near to the user's route, rather than merely

nations, routes, map matching to the user’s current location.

This paper describes key techniques underlying a software com-
1. INTRODUCTION ponent that builds routes for individual users based on traces of

The global adoption rate of mobile phones is very large, and GPS coordinates. In the proposed system architecture, client-side
while mobile phones are currently being used mostly for voice devices perform information filtering and prepare information for
communication, the volume of data communication is increasing Sending to the server. The server side uses linear referencing for the
quite rapidly. With technologies such as GPRS, 2.5G (EDGE), and capture of the underlying transportation infrastructure and for the

capture of routes, which are sequences of road parts that connect

start and end destination objects. Aggregated usage information

for each route is also maintained. The component is implemented
Permission to make digital or hard copies of all or part of this work for using Java, Oracle’s PL/SQL, and Oracle Spatial.
personal or classroom use is granted without fee provided that copies are The paper is structured as follows. The system architecture and
not made or distributed for profit or commercial advantage and that copiesthe route recording component is described in Section 2. Data
Eeeaurlilri“sshn?otlCﬁs{irg]rlmt?:r\fg:scg?ttgrr]e%ri]s?r}&jltr:ttgﬁgtes. rTg Z‘i’%’sotrri‘grr‘g"s:éhfi% structures necessary for the capture of routes are given in Section 3,
pe’?missio'n arﬁ)dlor afee. 1eq P P and key algorithms used by the component are covered in Section 4.
GIS 04, November 12—13, 2004, Washington, DC, USA. An experimental validation is reported in Section 5. Finally, Sec-
Copyright 2004 ACM 1-58113-979-9/04/0011$5.00.

127

tion 6 covers related work, and Section 7 summarizes and offerseventually transmitted to the server along with information about

directions for future work.

2. SYSTEM ARCHITECTURE

Following an overview of the client and server sides, this section
describes how the two sides collaborate during route recording.

2.1 Client and Server Sides

the user and the user’s destination objects. The transmission fre-
quency depends on the route length, the technical abilities of the
client device, and the connection quality. When it has the neces-
sary information, the server performs route construction, records
the usage time, and assigns an ID to the route. The result is stored
in the database and is also sent to the client.

The data sent to the server by the client has three parts: user, ob-

We assume that a client device has a GPS receiver. a data Coniect, and standard information. The data format depends on which

nection to the server, and the computing and storage capabilities

of a typical modern mobile phone. A current example is a Nokia

data is already available.
User information. If the user is already registered, this data block

3650 with a GPRS connection and an Emtac Bluetooth GPS. GPSincludes an ID. For new users, a user description is included. Thus,

receivers transmit NMEA sentences [6, 11], which include loca-
tion/time/date information, but also additional information that is
less important for our purposes.

Client devices store four data blocks, which are described in Fig-

ure 1in XML format. The first block contains personal information

about each user. The second block records each user’s destinatioBoth objects are known, this data block is empiy.
objects. Each object has global/local IDs, a location given by a ' :

we haveluserld] or [undefined: description] in this block.

Object information. Routes start and end at destination objects.
The destination objects of a new route can have been used already
to define the start or end of other routes, in which case the server
can itself identify the objects according to their GPS coordinates. If

If one objectis
undefined, the data block contains a start descripfiamdefined:

circular area, and a description. The description is a name that 'sdeﬂ:ription] or an end descriptiof,undefined: description]. If

meaningful to the user, e.g., “home” or “work.” The third block

captures the destination objects of routes. The fourth block of data

the start and end objects are yet to be defined, the block has de-
scriptions for both of themfundefined: description, undefined:

records the usage times of each route. The time is approximated todeﬂ:ription].

week days, hours, and quarters of an hour.

I T T]
[croeaL b | [LocaL ip] ‘LOCAT‘\ON‘ [bEscriPTION]

[1
‘RADIUS‘ ‘XﬁCOORDINATE‘ ‘YJ:OORDINATE ‘

luser_p] [usER_INFORMATION]

(a) Users (b) Destination Objects
[I 1
GLOBAL ID| [LOCAL_ID | [oBIECTY [RouTE_ID]
I
[sTART oBJECT| [END_OBJIECT] |weEkDAY] |QuaRTER]
(c) Routes (d) Usages

Figure 1: Client-Side Data

The user inputs personal information and names for destination

objects when this is requested by the client.

Standard information. Date, time, and GPS location information
are always included. This block includes three elememiate,
time, GPS].

When the server sends data to a client, it always returns the ID
for a newly recorded route. If any of the route parameters are un-
defined, the client assumes that the data stream from the server will
include the missing information. The server generates IDs for users
and the users’ destination objects. These IDs are returned to the
client.

The server also returns a center location for a newly recorded
destination object if the center location of the object differs from
the first/last GPS coordinate pair in the GPS stream after location
approximation. The server returns a radius together with the cen-
ter location only if the server selects a radius that differs from the
default value.

Thus, the format of the data from the servefuserld, star-
tObjectld, endObjectld, routeld, (xStart, yStart; radiusStart),
(XEnd, yEnd; radiusend)], whererouteld is the only parameter
that is always included. The client receives the data stream from
the server, analyzes it, and records its data.

2.2.2 Client-Sde Route Recording

The client takes part in the route recording by preparing the data
stream, described in the previous section, to be sent to the server.

The server side uses the Oracle Application Server. The serverThe blocks of user and object information in the data stream are

records and analyzes the information received from the clients. Ev- constructed using data stored locally (see Section 2.1). The stan-
erything about each route, i.e., its constituent road-network partsdard data block is constructed by analyzing the information from
and its usage, as well as each user’s personal information are storethe GPS receiver.
on the server. This is done to avoid information loss—users who The order of the steps for route recording on the client device
switch to a new device can obtain all relevant information from the is presented in Figure 2. When the user activates route recording,
server. While not discussed further in this paper, we believe that the client starts obtaining GPS information from the GPS receiver.
encryption may be employed to counter privacy concerns. Having received the first pair of coordinates, the client records the
. . . time to be associated with the usage of the route being recorded
2.2 Route Recording Functionality (1-5 in Figure 2). The client keeps extracting coordinates from
. . the GPS stream until recording is deactivated (6—8). Upon deacti-
2.2.1 Client and Server Interaction vation, the end of the route is noted (9) for further analysis. The
The user activates and deactivates the process of route recordresult is the standard information block for the data stream to be
ing. When active, the client device filters and buffers location/time sent to the server.
information obtained from the GPS receiver. This information is If the user is already registered in the system, the user’s ID is

128

(1) ((3)

2) (4) (5)
getGPSCo¢—>| addGPSToStreari1—>| noteStartdeﬁH getTime |—>| addTimeToStream|

9 s @ 7) (6)

@ | addGPSToStrearhe—| getGPSCod

(12) (13)
askUserDesd—>|rchserDesc|—
(15) 14) VY
| addUserDescToStrea setUserUndefineh
19 * (20)
| askobjectsDes¢] addObjectsDescToStre
27 (22) (21)
29 setStartUndefinep | recObjectsLocaIl[}<—| setObjectsUndefindd
askEndDesp 55y 23 ¥ (24)
(30) * | addStartDescToStreaIm [recObjectsDefRadids—>| recObjectsCoﬁ
| setEndUndefineJﬂ (32)* 35) 25
(31) * | recObjectLocallp recObjectDes| recObjectsDes
| addEndDescToStreafn (33) * (34) +
[recObjectDefRadifis#{ recObjectCop recRoute|€——
(37)

| sendStreamToServe#r

Figure2: Client-Side Route Recording

added to the stream (11 in Figure 2); otherwise, the client requestsabout it is prepared (14, 15) and recorded (16, 17). Then the end
a user description. The device records the description locally, setsobject is identified using knowledge about the user’s objects (18).
the user as undefined in the data stream, and adds the description t8imilar steps are taken if only the end object is undefined. If both

the data stream (12-15). objects are defined, they are identified using stored data (24).

The last task is to build the destination object block. If the start Finally, the server analyses the third part of the stream that in-
and end objects are undefined (16,18) or the user is new, the deviceludes the standard data. The server detects the route from the GPS
obtains descriptions of the destination objects (19). The objects areinformation (25), generates an ID for the route (26), adds this ID
set as undefined in the stream and their descriptions are added tto the data stream for the client (27), and records the route in the
the data stream (20-21). The device records descriptions, defaulidatabase (28). The server also adds center coordinates of desti-
radiuses, and locations locally together with the local ID (22—25). nation objects (30, 34) and/or their radiuses (32, 35) if the coordi-
If only one object is undefined, the same steps are done for only nates differ (29, 33) from the first/last GPS point in the GPS stream,
one object. If both objects are defined, the block is empty. and/or if the radiuses are not the default values (31, 35). Then the

When all three data blocks have been constructed, the route isserver records the first usage time of the route (37). The constructed
recorded (36) locally using the local parameters and leaving the stream is sent to the client to end the route recording (38).
global parameters undefined. The stream is finally sent to the server

(37). 3. ROAD NETWORKSAND ROUTES
223 Server-Side Route Recording o Ygitpégceed to define the key data structures used for the capture

The server performs the main route recording—that of trans- We project the real road network into 2D space and represent the
forming the data from a client into a route given by a sequence result as a set of polylines, each of which is given by a sequence
of road network parts. Also, an ID is generated for a route; and any of base points B C R?. Different choices of base points lead to
data received from the client that describes destination objects anddifferent road-network representations. Using many base points
the user is recorded. generally results in a higher-fidelity representation. A polyline is

The server-side route recording is presented in Figure 3. Having defined as?L = {(b1,...,bn) | b € B A N > 2}, whereb; and
obtained data from the client, the server checks if the user is new. If b is the start and end base point of the polyline, respectively.

S0, the server obtains the user’s description from the stream, assigns
an ID to the user, stores this information, and includes the user's ID ExampLE 3.1. Figure 4 illustrates two intersecting polylines:
in the stream for the client. PLy = (b1,b2,b3,bs) and PLy = (bs, bs, b7). The start point of

Next, the server considers the destination objects. If both desti- p1,, is b, and the end point i&;. O
nation objects are undefined (which is the case if the user is new)
the server extracts destination object information from the stream In our road network model, each polyline represents a bidirec-
(10), generates IDs (11), records the new objects (12), and adds theional road. Without reference to the traffic directions of the roads,
IDs to the stream for the client (13). If only one object is undefined, polylines have “directions” going from the start base points to the
the steps are done for one object. If the start is undefined (3, 9), dataend base points.

129

€]
[getStreamFromDevick—»

(6) (5)

J’ generateUserld<—| takeUserDes|c
()

/

(8)
[recNewuser | —p[adduseridTostrearh (14) (15) -
10) |takeStartDes4>>| generateObjectlb 22
(11) recNewObjec
generateObjects|q#—{takeObjectsDesc {17 (16) - @3)
addObjectIdToStreal{‘ﬂ—' recNeWObJecli
(12) (13) [addObjectidToStrear

| recNewObjectS|—>| addObjectsIdsToStreaIn

(18)

(25) A 4

| findEnd |—>| findRouteFromGP

32
addRadiusToStrea

©1

(26)
generateRouteld

(27)
| addRouteldToStrea

‘(37) (38)

adius>
NO
(35 ANO

difEndRadinSRES

36

VI .
> rchsag¢—>| SendStreamToDewcl&

taddRadiusToStrea|

Figure 3: Server-Side Route Recording

Figure 4: Example of Polylinesand a Subpoalyline

We also reference the points on a road by their distance from the
start of the road. Although a road’s geographical extent is approx-
imated by a polyline, computing distances by simply summing up
the Euclidean distances of segments is too inaccurate [5, 8, 13].

@ (b)

Figure5: Length Calculations

line segments indicate the Euclidean distances between base point
pairs. The numbers below base points hold the more accurate mea-
sures supplied by the road information provider.

Rather, we assume that we have accurate distances for all or some Consider Figure 5(a). When computing the meagurer bs,

of the base points in the polyline approximation of a road. This

decouples the polyline representation of a road from the capture
of distances along the road and is in keeping with current road-
management practice. Using real road distances makes calculation
more precise.

The measure of a base potntis given asl;. The measure as-
sociated with the last base point of the polyline indicates the road
length of the polyline.

If a measure is absent for a base paéjnof the polyline, we iden-
tify the base point$; andb; that are the nearest base points with
measures before and after, respectively, and we approximate the
measure ob, as follows:

S bnbng]

,Jm_zlz |bmbm+1 |

Iy = '(lj*li)+li

If no b; exists, we use the Euclidean distance starting fopand
onwards.

ExampPLE 3.2. Figure 5 exemplifies length calculation for base
points of polylinePLi = (b1, b2, bs, ba). The numbers above the

130

i = 2andj = 4. It may be verified that application of the formula
yieldsis = 10.4.

Figure 5(b) lacks measures for the last two base pdintndb..
$he measure fobs is calculated by adding the Euclidean distance
between, andbs, i.e.,5, to the measure dk, i.e.,4. For the base
pointbs, we add the Euclidean distance betwégandb,. m|

DEFINITION 3.1. (Length) Functionf : PL x B — R takes
as arguments a polyling = (b1, ..., bx) and a base poirit;, 1 <
i < N, and it returns the road distance from the start of the polyline
to the base point.]

Here, L(pl,b1) = 0, andL(pl, bn) is the length of the polyline.
Forl <i<j<N,L(pl,bj) — L(pl,b;) is at least the Euclidean
distance betweeb, andb;. Next, asubpolyline models a part of a
road.

DEFINITION 3.2. (Subpolyline) Let SPL C PL x R? be a
finite set ofsubpolylines. A subpolylinespl = (pl,i",1™), where
0 < 1" <1< L(pl,by), is the part of polyling! that starts at
measuré” and ends at measute. O

PL1

@

(b)

Figure 6: Connections Among Polylines

In Figure 4, the accentuated part of polylifld., is a subpoly-
line, SPL>. We proceed to capture the connectivity among the
roads.

DEFINITION 3.3. (Connection) LetC € { {(pl1,1}),.. .,
(pIn, 1)} | (pli,15) € PL x RAN > 2}. Thus,C is a set of
finite sets ofconnections. O

Consider Figure 6(a), where polylinés.; and P L, each has a
connection point at their intersection. There is a connection point
at distancé! from the start ofP L1, and there is one at distante
from the start of? L. We thus have = {(PL1, 1)), (PLz,15)} €
C. The connection points in Figures 6(b) and 6(c) are analogous,
but illustrate situations where connection points coincide with base
points. Note that when we capture the connections, we in effect
obtain a graph representation of the road network.

As mentioned previously, our service users travel from and to
destinations via the road network. These destinations, weussm
objects.

DEFINITION 3.4. (User Object) Let UO be a finite set ofiser
objects. Each user objeaio is a 3-tuple(u, circle, spls), where

1) u belongs tdJ, the set of service users.

2) circle = (zo,y0,7d) € R? x R denotes the circle defined
by (z — x0)* + (y — y0)* = rd*.

3) spls = {(pl,1",17) | 3pl € PL ((pl,1",1™) € getSpls(pl,
circle))}, where functiongetSpls returns the set consisting
of allmaximum subpolylines ofpls that are insideircle. O

We say that user objeeio belongs to uset and is located in the
circular area with centgfro, yo) and radiusd.
Note that while it is simpler to model user objects as points than

as circular areas, this is not appropriate. For example, each day a

user may park in a different parking space in the same parking lot
or even in a different parking lot close to the building where the

DEFINITION 3.6. (Route) Let R be a finite set ofoutes. Each
route is a 4-tuplé RE, uos, uoe, ST), where

1) RE = ((spl1,dir1),..., (spln,dirn)) is the sequence of
subpolylines that makes up the route. E@sl;, dir;), where
spli = (pli,15,17') € SPL, dir; is the motion direction
alongpl; used:

1 if the motion direction on subpolylingpl;
coincides with the direction of polyling!;

—1 otherwise

di?”i

2) wos = (u,circles, spls;) € UO is the start object of the
route, and3(pl, 1" ,17) € spls, (pl = pli A (I" <1} <
I"Adirr =1) v (17 <17 <1 A dir = —1)).

uo. = (u, circlee, spls,) € UO is the end object of the
route, and3(pl,1",17) € spls (pl = pin A (17 < 1§ <
PAdiry =1) v (17 <y <17 Adiry = =1)).

4) vsplz = (plhlikal:)aspli‘l’l = (pli+17l7lk+17l?+1)a 1 S 1 S
N-—-1 ((pll #pliviNdce C ((pli,ll) € cN (pli+1,lg) €
e))V (pli = pliy1 Al = 12)) wherely, = I} if dir; = 1,
andly = I} if dir; = —1; 1> = 15, if diriq = 1, and
lo = Uil if diriyr = —1.

3)

5) ST C T denotes the times when the route was used by

useru.]

Thus, a route is a sequence of subpolylines with directions (item 1
in the definition), where the first/last subpolyline must intersect
with the circle of the start/end destination objects (items 2 and 3)
and where the sequence of subpolylines must form a (continuous)
polyline (item 4).

user works. Thus, the same destination may have different route
end and start locations on different days. Destination objects can
be given different radiuses that depend on the usage patterns and
the number of polylines around them.

Next, we associate usage times with routes. To be able to capture
regularities in route uses, we capture the year, month, day, hour,
minute, and second of each use separately. (Recall that the usage
time of a route is the time when the use is initiated.)

Figure7: Example Route

DEFINITION 3.5. (Usage Time) Let ausage time 7" be a finite
set of 6-tuplegy, m,d, h,mn, s), wherey, m, d, h, mn, ands

denoteyear, month, day, hour, minute, andsecond, respectively. O ExampLE 3.3. Figure 7 illustrates a road network with three

polylines—PL; = (bi1,bs,ba, b12), PLa = (b1, b2, bs, ba, bs),
With the preceding definitions in place, we can define the notion and PLs = (bs, b2, b7, bs, bo, b1o). The highlighted route:
of a routeroute. (RE,uos,uo0, ST) uses parts of all three polylines. Specifically,

131

RE is a sequence of four route elements. The subpolyline of the First, functiongetSartValues (see Algorithm 4.2) scans the GPS

first route element is given byPLs, 1, L(PLs, b)), wherel is a
measure along subpolyline specifying a point that is in the circular
area of user objeato;. The movement direction of the subpolyline
coincides with the direction of polylin® Ls. |

4. ROUTE CONSTRUCTION

While Section 2.2 gives an overview of the context of the essen-

tial construction of routes that occurs on the server side, we proceed

to describe the route construction algorithm (Algorithm 4.1, below)
in some detail. Taking a sequenGeof GPS positions as input, the
algorithm constructs a route consisting of a sequeRétof route
subpolylines. Note that this algorithm employs map matching as
part of its solution to a larger problem; other map matching tech-

nigues may be used in place of the specific technique employed by

the algorithm.

Algorithm 4.1 Route Finding

Reguire: IN: G = (g1,...,9n),9: € R>,n >1 OUT: RE =
((Splh d’i?”1), () (Splm7 dl’f'm)), Spli = (plh lev l:) € SPL

1: let cState = ((pPl, pDst, pDir),1”, RE)

2: (cState, G) « getStartValues(G)

3: while G is not emptydo

4: g« head(G), G — tail(GQ)

5. (c¢Pl, cDst) « polyld(g, pPl)

6: if cPl =0then

7: (cState, G) « fillGap(cState, g, G)

8. dse

9: if possibleConnection(cPl, cDst) = false then
10: if cPl # pPl then

11: cState «— newSubOtherPoly(cState, cPl)
12: else

13: dir «— defDirection(pDst, cDst, pDir)
14: if pDir = 0 then

15: pDir «— dir

16: dseif pDir = dir then

17: pDst < cDst

18: else

19: cState «— newSubSamePoly(cState, cDst)
20: end if
21: end if
22: end if
23: endif
24: end while

25: RE « proceedEnd(cState, cDst)
26: return (RE)

The state of the algorithm is captured by the data structbitete
= ((pPl, pDst, pDir),1", RE), wherepPl is the polyline the most
recent, previous GPS position was mappegst is the distance
between that GPS position and its position on the polyline it was
mapped,pDir is the direction of movement along the polyline of
the GPS sequencé, is the distance from the start of the polyline
where the current subpolyline starts, aRél is a sequence of route
elements.

The algorithm uses a few additional structures. THuB], cDst)

sequence for the first position for which there is only one polyline in
the road network that is within the distance of imprecision (lines 2—
9). So, if the first position has more than one candidate polyline,
the function considers the second one; if the second position has
more than one candidate, the function considers the third one; etc.
The function uses a data structwedG = (g1, ...,9x), where

the firstk — 1 elements are undefined GPS positions gind the

first GPS position that is mapped correctly. Ne&ynd is a set

of pairs(cPl;, cDst;) of a polyline and a distance from the start of
the polyline. This set records candidate polylines for a particular
GPS position. FinallycList = (Candy, ..., Candy) is a list of
candidate sets whex@and; contains the candidates for mapping
GPS positiory;.

Algorithm 4.2 FunctiongetStart Values

Require: IN: G = (g1,...,9n),9i € R*> OUT: (cState,G) =
(((pPL,pDst, pDir),1", RE), G)
Cand «— 0, cList — (), undG «—
: while G not emptyA|Cand| # 1 do
g — head(G), G — tail(G)
Cand «— polyCand(g)
if | Cand| > 0 then
cList «— append(cList, Cand)
undG «— append(undG, g)
end if
: end while
»if cList > 1then
cState «— backTrack(cList, undG)
. elseif cList = 1 then
(pPl, pDst) «— head(Cand)
pDir < 0,1 «— pDst, RE «— (
. else
EXIT
s endif
. return (cState, G)

oNouRrONRE

For each positiory from the GPS sequence, algoritlyetStart-
Values finds candidate polyline§'and using functionpolyCand
(line 4). If there are more than one candidate (line 5), the algorithm
adds the GPS position to liskzd G and also adds candidat€snd
to list cList. If the first position with only one candidate is not the
first GPS position in the stream (line 10), the algorithm uses func-
tion back Track to map the previous positions correctly, if possible,
and to get the current state. If the first GPS position has only one
candidate (line 12), the current state becomes this candidate. If all
positions in the GPS stream have more than one candidate polyline
(line 16), the algorithms exits.

The next function used in Algorithm 4.bplyld, identifies the
polyline to which a GPS positiogn should be mapped, considering
the polyline pPI that the previous GPS position was mapped to.
Positiong should be mapped to polylineP! or to a polyline that
shares a connection point with this polyline. The function returns
the polylinecP! and the distanceDst from the start of the poly-
line to the projection. If positiog is not mapped onto the previous
polyline and more than one candidate polyline exists that connects

stores the polyline to which the current GPS position is mapped andwith the previous polyline, the function returns an undefined poly-

the distance from the start of the polyline to the point on the poly-
line to where it was mapped. Nextjr is the current direction on
the polyline. We use the primitive functiohgad, tail, andappend
on sequences of elements of the same type.

Next, the algorithm employs a number of additional functions.

132

line.

To avoid mapping errors at connections, we introduce so-called
connections areas and do not map GPS positions inside these ar-
eas. FunctiorpossibleConnection determines whether an argu-
ment GPS position is in a connection area. If the projection of the

position is within the imprecision distance from a connection, the
GPS position is in a connection area, and the function retunes
otherwise, it returnéalse.

FunctionfillGap fills the gap between two projections based on

shortest paths search in the road network representation. This func-

tion constructs missing route elements.

Function newSubOtherPoly constructs a route element when
the current GPS position is mapped to polyline other than the one
the previous GPS position was mapped to. The end of the sub-
polyline for the route element being generated is modified so that

it becomes equal to the measure of the connection where the object

departed from the previous polyline to reach its new polyline.
FunctionnewSubSamePoly constructs a new route element in

the case where movement is along the same polyline, but the move-

ment direction from the previous position to the current is opposite
to the direction until the previous position. The end of the previous
route element is the start of the new one.

FunctiondefDirection determines the movement direction along
a polyline of two projections. If the previous measure is less than
the current one, the direction coincides with the polyline’s direction

and1 is returned. If the previous measure is greater than the current

one, the direction is set te 1. If the two measures are equal, the
direction is set to the previous directign)ir.

Functionproceed End constructs the last route element. All last
route elements that belong to the last polyline are approximated by
one element if they are in the area of the destination object.

With the above functions at its disposal, Algorithm 4.1 first uses
function getStart Values to obtain a correct start state. While the

GPS sequence is not empty, the next position is extracted and pro-

cessed. The polyline that corresponds to the position is identified
using functionpolyld. If this function returns an undefined poly-
line, there is a gap in the GPS sequence, which has to be filled. If
the function returns a polyline, it is checked if the projection is in a
connection area. If the position projection is not in the connection
area, the subsequent calculations can be done.

If the current polyline is not the same (line 10) as for the previ-
ous GPS position, a new subpolyline is formed. If the polyline is
the same (line 12) as for the previous GPS position, the algorithm
checks if the movement direction is the same as for the previous
position. If the previous direction was undefined, its value is set
to a value of the current direction. If the direction is the same,
no calculations are done—only temporary variahlest becomes
equal to the distance of the current GPS position. If the direction
is not the same, we have to form a new subpolyline and function
newSubSamePoly is called.

When the GPS sequence is empty, the final route element is com
puted by functiorproceedEnd. Specifically, all the last route ele-
ments constructed so far that belong to the last polyline to which

GPS positions were mapped are approximated to one element if
these route elements are in the area of the destination point. In Fig-

ure 8, the final point of the route & and all subpolylines belong
to the same polyline. They are inside the area of the destination
point shown by the circle. Each valug denotes a distance from
the start of the polyline.

FunctionproceedEnd starts with the end positior{ in the fig-
ure) and searches backwards for the start position that is the “old-
est” position on the polyline. Each element inside the destination
circle is considered in turn. If an element exceeds the circle, the ap-
proximation process stops. In the figure, we start With F) and
consider(z1, xz2). This yields(z2, F). We then considefzs, z2),
obtaining(zs,). Next, we obtain E, z4). The final result of the
approximation is elemer(iS, E).

133

A detailed description of the route construction described above
is available in the associated technical report [4].

/ E \
/ \\
—1 '
E— 1

x4 |
x5 I
X6/

'

_ distance

om
N _ the start
.l _-~ of poly

Figure 8: Approximation of the Route End

5. EXPERIMENTAL VALIDATION

To validate the data structures and algorithms described in the
previous two sections, these were implemented using commercial,

state-of-the-art technologies, including Java, Oracle PL/SQL, and

Oracle Spatial. We describe this implementation and lessons learned

from testing the implementation using a real road network and GPS

log data.
5.1 Database Schema

Figure 9 contains a relational schema capable of capturing the
data structures described in Section 3. Primary and foreign keys are
indicated. Tabld INEAR_ELEMENTS stores the main elements
representing roads of the road network—polylines. Each tuple in
this table contains the unique ID of a polyline and the length of the
polyline.

Table CONNECTIONS captures the intersections among poly-
lines. A tuple in this table records that a polyline (P@) inter-
sects at a distance (PGEROM) from its start with one or several
polylines at a connection (CONND).

Recall from Section 3 that a polyline is given by a sequences
of base point—tabl®OLYLINE_ELEMENTS records these. A
tuple records a base point of a polyline (P@). The humber of
the base point in the sequence of the base points of the polyline
(SEQUENCENR) and its distance from the start of the polyline

(POL.FROM) are recorded, in addition to the geographical coordi-
nates (XCOORD and YCOORD) of the base point.

Table SDO_POLYLINE_ELEMENTS s created to be able to
use facilities in Oracle Spatial [10]. The attributes in this table are
similar to those in tabl®OLYLINE_ELEMENTS. The exception
is attribute ELEMENT, which does not capture the geo-information
about a single base point, but captures an entire line segment with
its start and end points.

A tuple in tableUSERS contains the unique ID of a mobile ser-

vice user and additional information about the user.

Next, a tuple in tabl®©ESTINATION_OBJECTS contains the
ID of a destination object, the ID of the user to whom the object be-
longs, a description of the object, and attributes that specify the cir-
cular area of the object. Tab8O_DESTINATION_OBJECTS
is created to be able to use Oracle Spatial. It has an attribute CIR-
CLE instead of coordinates.

Three tables and a view are used for capturing routes. First, table
ROUTES records the routes of the mobile service users. Routes

SDO_POLYLINE ELEMENTS POLYLINE ELEMENTS

ROUTE_ELEMENTS

— primary key

POL_ID_FK -
* 789| POL_ID % 780 POL_ID IO Ay 780| POL_ID K - ot nuil value
% 789 POL_FROM %789 POL_FROM % 780| POL_FROM O = null values allowed
% 789| SEQUENCE _NR %789 SEQUENCE_NR O 89| POL_TO 789 - numeric values
% 789| POL_TO %789 X_COORD pk 789| SEQUENCE_NR
D DIRECTION A - characters
tkspo| ELEMENT %789 Y_COORD ROUTE 1D FK ke 789
1Py 780| ROUTE ID D -dae
CONNECTIONS LINEAR_ELEMENTS po_ip, £k (©7e| SPEED
POL_ID_FK
% 789 POL_ID =k 789| POL_ID ROUTES
% 789
% 789 Z%ILJ_:RI(I;M il R ile N START_OBJECT_FK DESTINATION DBJELTS| SDO DESTINATION OBJECTS
| % A | START_OBJECT = E % A |DID %A |DID
b A | END_OBJECT A A
VIEW_INFO INFO — END_OBJECT_FK * DESCRIPTION * DESCRIPTION
FpRE - ROUTE ID_FK - - % 789) X_COORD %500 CIRCLE
1[780] ROUTE_ID 789| ROUTE_ID
Ny ! USERS % 789| Y_COORD % 789| RADIUS
! e0| poon i |%D|DATETIME R 10 ¥ 79| RADIUS * 789| USER ID
i 1D
1| 789 QUARTER ! * 789 USER_ID P 789| USER_ID
L USAGE I O A| USER_INFO

Figure 9: Relational Database Schema

start and end at destination objects. A tuple thus records the ID of
aroute and the start and end objects.

Second, table ROUTE_ELEMENTS describes routes in terms
of their elements. Each tuple thus describes a subpolyline. At-
tribute POL_FROM records the start measure of the subpolyline
and attribute POL_TO captures the end measure of the subpoly-
line. The number of the subpolyline in the sequence of subpoly-
lines that make up the route it is part of is recorded by attribute
SEQUENCE_NR. Attribute DIRECTION indicates whether the di-
rection of the polyline coincides with the direction of the route on
that polyline. Attribute SPEED captures the average speed of the
user on the subpolyline.

Third, table INFO captures the usages of routes. A tuplein this
table corresponds to an individual usage of a route and thus cap-
turesthe ID of aroute and thetime of theuse. A view VIEW_INFO
is included that contains the attributes ROUTE_ID, WEEKDAY,
HOUR, QUARTER, and USAGE. This view approximates the ex-
act route usage times down to quarters of an hour. Attribute US-
AGE records the sum of uses of a route during a particular quarter
on a particular day of the week.

5.2 Implementation Overview

Based on the database schema just described, the algorithm de-
scribed in the previous section was implemented using facilities
available in Oracle Spatial [10]. Segments of polylines are spatial
data objects (SDO elements in Figure 9), and Oracle Spatial oper-
ators and geometry functions are used. Polyline segments are also
linear referencing system (LRS) elements, which enables the use
of LRS functions. To use the Oracle Spatial functions we create
an index on the spatia attribute. A spatial attribute is constructed
according to the syntax of the object MDSY S.SDO_GEOMETRY.

The route finding algorithm implemented with Oracle Spatial
differs a bit from the one described in Section 4. The implementa-
tionisin Java, and JDBC is used to execute SQL queries enhanced
with Oracle Spatial functionality.

Thebuilt-in Javaclass LinkedList isused for storing the sequences
of subpolylines that form routes. This class comes with standard
list manipulation operations. The implementation uses a separate
class that is responsible for the execution of SQL queries. The
class that is responsible for route finding includes an instance of
this class, to be able to obtain the results of SQL queries.

To identify polylines for subsequent GPS positions, we use a
PL/SQL function polyld. This function first considers the polyline
that the previous GPS position was mapped to. If the distance to

134

that polyline exceeds the imprecision, the function searches for the
nearest, connected polyline. Two Oracle Spatial operator are used.
Operator SDO_NN finds the nearest spatial objects (polylines), and
operator SDO_NN_DISTANCE returns the distances to these ob-
jects. We used 30 meters as the imprecision for GPS positions and
as the imprecision of connection areas.

5.3 Map and GPSLog Data

We repeatedly tested and improved the prototype component us-
ing the INFATI data [9]. This dataincludes a representation of the
road network of the municipality of Aalborg, Denmark. Thisdatais
quite typical of road network representations. The datais captured
in a database with the schema just described.

The INFATI data also includes GPS logs from twenty-some ve-
hicles that participated in an intelligent speed adaptation project.
Briefly, the position of avehicle waslogged every second when the
vehicle was moving. Positions were logged for approximately six
weeks.

5.4 Experimental Insights

In general, the experimental validation of the component led to
a more consolidated formalization of the concepts underlying the
component and led to a more mature component that is able to
handle the complex situations that occur in real-world application.
Here, we discuss insights gained from the validation that would be
hard to gain using generated data or based on purely theoretical
studies.

Thefirst insights relate to what aroute really is. Typically, users
use some routes frequently, e.g., routes between home and work.
However, even if a user drives from home to work along the same
streets each day, the resulting routes turn out to al be different.
This happens because a vehicle is likely to be parked in a differ-
ent location at work every day, even if it isin the same parking lot.
Should it happen that the vehicleis parked in the exactly sameloca
tion at the end (or start), the problem remains because the positions
produced by the GPS receiver are imprecise.

We address this problem by first modeling destination objects as
circular regions of variable size. Routes then start from the same
destination object if they start within the same circular region. Sec-
ond, we approximate the last elements of aroute if these elements
belong to the same polyline and if they are inside the destination
object’s circular region. Thus, we consolidate the number of route
elements in cases similar to that in Figure 10(a), where a vehicle
drives around at its destination to find an empty parking space.

2140 T T

GPS coordinates 0
2130 -
2120 -

2 210

&

2 2100 ° ° o o ©

2090

2080

2070

370 380 390 400
x coordinate

360 410

(a) End of aRoute

RoutewithoutAddiionalElements ~---
RouteWithAdditionalElements -

y coordinate

180

140 160
x coordinate

120

(b) Mapping at a Rotary

Figure 10: Special Cases

The representation of rotaries in the map data can also cause
problems relating to the equivalence among routes. This occurs
when a rotary happens to be represented as a regular crossroads.
Consider Figure 10(b) that shows a regular crossroads that repre-
sents a rotary and sequences of GPS points corresponding to two
traversals. When the lower sequence is mapped to the road net-
work, subpolylines are created that use only the horizontal road.
However, when the upper sequence is mapped to the road network,
theroad part that extends upwards from the crossroads is also used,
corresponding to the vehicle moving from the right to the cross-
roads, then traveling upwards a short distance, then making au-turn
and traveling down to the crossroads, and then continuing towards
the left. In general, different traversals make u-turns at different
locations.

In this case, the standard imprecision value of 30 metersis too
small due to the large radius of the rotary, and the agorithm will
produce two different routes. One solution isto increase the impre-
cision value; an dternative is to obtain and use information about
rotaries.

In the above discussion, the imprecision of map and GPS data
were central sources of problems. The next insights concern in
large part the absence of map or GPS data.

Figure 11(a) illustrates a situation where a vehicle drives where
the map data has no road. This occurs if the map datais missing a
road, e.g., the map data is outdated, or if the vehicle actually does
not drive on aroad (but, e.g., in a parking area or on a bike path).

To make the component resilient towards this type of situation,
an agorithm, fillGap, is used that finds the shortest path from one
known point to ancther. If the path found is much longer than the
distance traveled by the vehicle according to the GPS coordinates,
the algorithm is unable to find a reasonable solution and returns an
error.

135

1900

1800

1700 -

S 1600 -

1500

1400

onooOOooooooooooooo

2
8

3L
8

400
x coordinate

300

8
«
8

(a) Gap inthe Map Data

1200 |
1150
© 1100 -

1050

1000 -

350 400
x coordinate

(b) Gap in the GPS Data
Figure 11: Filling Gaps

Next, Figure 11(b) shows a situation with a gap in the GPS se-
quence. This may occur for a number of reasons. For example,
the GPS coverage may be incomplete due to buildings, trees, or a
tunnel. The component handles this case by using fillGap. If agap
exceeds a certain distance threshold, the component returns error.

In the experiments, visual inspection was used to determine the
component’s ability to accurately find routes. We found that the
component works well under “normal” circumstances, but found
also that the accuracy is highly dependent on the fidelity of the
available representation of the road network and on the quality of
the GPS positions. More extensive empirical studies of accuracy
are left for future work.

The amount of the space needed to store the routes on the device
was not analyzed experimentally, as it depends only on the number
of routes and destinations. The routes, destinations, personal infor-
mation, and usage information are stored as character strings that
have a predefined schema. The space need for temporary storage
of GPS positions in the NMEA format depends on the number of
positions to be stored. The maximum NMEA sentence length is 80
characters. For each GPS position, we use 8 sentences.

6. RELATED WORK

We are not aware of any previous work on components that gen-
erate routesfrom GPS data. But our work isrelated to afew lines of
research in mobile services, and we reuse some existing techniques.

Road network modeling is a central aspect of the paper. It is
standard in industry to use linear referencing for road-network rep-
resentation [1, 5, 10, 13]. Consistent with this, our data model uses
linear referencing for capturing road network aswell as routes, and
our data model can easily be integrated with any linear referenc-
ing model. Hage et al. [8] describe a data model that integrates
representations of transportation infrastructures and geo-referenced

content. We use part of this model and extend it in order to capture
routes. We note that it is also possible to model aroad network as
a directed graph (e.g., [7, 16]), in which case a route becomes a
sequence of edges.

We apply several existing techniquesin our setting. Shortest path
computation is used to fill gaps when we construct routes. This
relates to works that consider shortest paths in graphs. Barrett et
al. [2] study ageneralized Dijkstra's algorithm for shortest pathsin
graphs on large transportation networks to do route planning.

During route construction, we map match GPS positions onto a
road network. Bernstein and Kornhauser [3] explore map match-
ing algorithms, e.g., “point-to-curve” and “curve-to-curve,” that
can be used to reconcile inaccurate position data with an inaccu-
rate map. Yin and Wolfson [17] propose a weight-based off-line
map matching algorithm that finds a sequence of map arcs that is
similar to a trajectory given by a sequence of GPS positions. We
map match GPS positions onto polylines. In doing so, we use the
geographic locations of the roads together with the topology of the
road network, i.e., we use the connections among the polylines.
Although we apply map matching in a specific data model, exist-
ing map matching techniques, such as those just mentioned, can be
integrated into our work.

Our map matching involves searching for nearest neighbors. We
use the allowed imprecision to control the range within which can-
didate polylines are to be found. This relates to the work of Rous-
sopoulos et a. [12], in which they consider minimum and maxi-
mum distances from the query object during search. Weal so choose
a polyline according to how the previous GPS position was map
matched. The nearest neighbors for the previous positions of the
moving object are considered by Song and Roussopoulos [15]. Put
briefly, our use of nearest neighbor search differs from those of ex-
isting works. We search for nearest neighbors to define the move-
ment of auser in aroad network. We construct a sequence of con-
nected polyline elements, not a set of nearest objectsfor every step.

The proposed route component makes routes available to ser-
vices and may be considered as a part of a more general context-
aware system. However, a more genera coverage of “context” is
beyond the scope of this paper.

7. SUMMARY AND FUTURE WORK

Based on the observation that the route of amobile user isan in-
teresting and important context for a range of mobile services, this
paper describes a system architecture along with a detailed design
and a tested, relational implementation of a route component that
constructs routes and accumul ates usage information based on data
received from a GPS receiver that follows the user.

A routeis expressed in terms of the underlying road network, as
a sequence of parts of roads, or, more precisely, as a sequence of
connected, linear elements, here termed subpolylines, each with a
travel direction. A route connects a source and a destination object.
The solution presented addresses thereal problems that occur when
attempting to derive a user’s routes based on real map data and
actual GPS input.

Thereare several possible directionsin which to extend thiswork.
We have assumed that the user controls the process of route record-
ing. One extension is to enable the system to detect ends of routes.
For example, if auser isat a particular position for some time with-
out moving, the system may assume that the end of aroute has been
reached and may end the process of route recording.

Another possible extension is to enable the system to detect if a
route is already recorded or to divide along route into smaller ones
when smaller parts of the route are used. Other possible extensions
include the use of additional information about road networks that

136

is available in some cases, such as allowed driving directions and
turn restrictions.

8. ACKNOWLEDGMENTS

Wewould liketo thank the company Euman A/Sfor sharing their
insights into road data management with us, and for constructive
comments. Thiswork was supported in part by grants 216 and 333
from the Danish National Center for IT Research. In addition to
his primary affiliation, the second author is an adjunct professor at
Agder University College, Norway.

9. REFERENCES

[1] American National Standards Institute. Geographic

Information Framework—Data Content Standards For

Transportation: Roads, 2003.

C. Barrett, K. Bisset, R. Jacob, G. Konjevod, and

M. Marathe. Classical and Contemporary Shortest Path

Problems in Road Networks: Implementation and

Experimental Analysis of the TRANSIMS Router. In Proc.

of European Symposium on Algorithms, pp. 126-138, 2002.

D. Bernstein and A. Kornhauser. An Introduction to Map

Matching for Personal Navigation Assistants. New Jersey

TIDE Center, 1996.

[4] A.Brilingaitg, C. S. Jensen, and N. Zokaité. Enabling Routes

as Context in Mobile Services. DB Tech Report TR-9.

Department of Computer Science, Aalborg University.

J. A. Butler and K. J. Dueker. Implementing the Enterprise

GISin Transportation Database Design. Journal of the

Urban and Regional Information Systems Association,

13(1):17-28, 2001.

CommLinx Solutions Pty Ltd. Common NMEA Sentence

Types, 2002. http://www.commlinx.com.au/.

Z.Dingand R. H. Guting. Modeling Temporally Variable

Transportation Networks. In Proc. of DASFAA, pp. 154-168,

2004.

C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, and

I. Timko. Integrated Data Management for Mobile Services

in the Real World. In Proc. of VLDB, pp.1019-1030, 2003.

C. S. Jensen, H. Lahrmann, S. Pakalnis, and J. Runge. The

INFATI Data. TimeCenter TR-79, 2004.

http://www.cs.auc.dk/TimeCenter.

C. Murray. Oracle Spatial User Guide and Reference,

Release 9.2. Oracle Corporation, 2002.

NMEA. NMEA 0183 Standard, 2002.

http://www.nmea.org/pub/0183/.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest

Neighbor Queries. In Proc. of ACM SGMOD, pp. 71-79,

1995.

P. Scarponcini. Generalized Model for Linear Referencing.

In Proc. of ACM-GIS, pp. 53-59, 1999.

[14] J. Schiller and A. Voisard. Location-Based Services. Morgan
Kaufmann Publishers, 2004.

[15] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search
for Moving Query Point. In Proc. of SSTD, pp. 79-96, 2001.

[16] M. Vazirgiannis and O. Wolfson. A Spatiotemporal Model
and Language for Moving Objects on Road Networks. In
Proc. of SSTD, pp. 20-35, 2001.

[17] H.Yinand O. Wolfson. A Weight-based Map Matching
Algorithm in Moving Objects Databases. Proc. of SSDBM,
pp. 437438, 2004.

(2]

(3]

(5]

(6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]

