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INF 5300 - 5.2.2014
Energy functions for segmentation/classification

Anne Schistad Solberg

 Bayesian spatial models for classification

 Markov random field models for spatial context

Other segmentation techniques:

 EM-clustering

 Mean shift segmentation

 Graph-based segmentation (briefly)

Curriculum
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3.7.2 in Szeliski

5.3, 5.4 and briefl 5.5 in Szeliski

Additional reading:

 Will use the notation from ”Random field models in image 
analysis” by Dubes and Jain, Journal of Applied Statistics, 
1989, pp. 131-154, except section 2.3 and 2.4. 

 For the extension to using other types of constraints, more 
details can be found in ”A Markov random field model for 
classification of multisource satellite imagery”, by Solbert, 
Taxt and Jain.  



• Bayesian modelling using prior models to constrain 
the segmentation/classification results are commonly 
used.

• They imply statistical models for data/measurements, 
and prior information about the likelihood of 
observing similar class labels for neighboring pixels. 

• Statistical models allows also modelling of the 
uncertainty associated with both estimates and 
measured class labels.
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Bayes rule
• Common notation:
• Measurements y
• Class labels x
• Posterior probability given data p(x|y)
• Prior model p(x)
• p(y) is a normalizing constant to scale to 1. 
• This can be written as the log-likelihood:

• The maximum aposteriori solution x given data y is the
minimum of this negative log-likelihood. This is called the
energy function
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• Ed(x,y) is the data term
• Ep(x) is the prior term
• x is the set of class labels for all pixels in the image 

x=[f(0,0),…..f(m-1,n-1)]
• y is the set of feature vectors for all pixels in the image 

y=[d(0,0),…,d(m-1,n-1)]
• For Markov random fields the prior term must be expressed as a 

sum of local pairwise interactions

• N is a set of pixels in a neighborhood
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Binary MRFs
• Binary MRF are e.g. used for  denoising scanned

images.
• We have two classes, background and foreground.
• Energy function, data term:

• Energy functions, regularization term:
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Seeks correspondence between the input and output image
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Seeks correspondence between neighboring pixels in the output image



Ordinal-valued MRFs
• Ordinal: labels have implicit ordering
• Used e.g. for denoising gray-level images
• Energy function, data term:

• Energy function, regularization term:

• Different forms of the penalty can be used, e.g. a 
hyper-Laplacian

• If  is a quadratic function,the MRF is called a 
Gaussian MRF.  can also depend on the data.
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Background – contextual classification
• An image normally contains areas of similar

class
– neighboring pixels tend to be similar.

• Classified images based on a non-contextual
model often contain isolated misclassified
pixels (or small regions). 

• How can we get rid of this?
– Majority filtering in a local neighborhood
– Remove small regions by region area
– Bayesian models for the joint distribution

of pixel labels in a neighborhood.

• How do we know if the small regions are
correct or not?
– Look at the data, integrate spatial models

in the classifier.
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Relation between classes
of neighboring pixels

• Consider a single pixel i. 
• Consider a local neighborhood Ni centered 

around pixel i. 
• The class label at position i depends on 

the class labels of neighboring pixels. 
• Model the probability of class k at pixel i 

given the classes of the neighboring 
pixels.

• More complex neighborhoods can also be 
used. 

4-neighborhood

8-neighborhood
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Reminder – pixelwise classification
• Prior probabilities P(r) for each class
• We have S classes. 
• Bayes classification rule: classify a feature vector yi (for pixel i)  

to the class with the highest posterior probability P(r| yi) 
P(r| yi) = max P(s| yi)

s=1,...S

• P(s| yi ) is computed using Bayes formula

• p(yi| s) is the class-conditional probability density for a given 
class (e.g. Gaussian distribution)(corresponds to p(yi| xi=s) 
here)

• This involves only one pixel i. 
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A Bayesian model for ALL pixels in the image

Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels

• Classification consists choosing the class that maximizes the posterior
probabilities for ALL pixels in the image

• Maximizing P(X|Y) with respect to x1,.....xN is equivalent to maximizing
P(Y|X)P(X) since the denominator does not depend on the classes x1,.....xN .

• Note: we are now maximizing the class labels of ALL the pixels in the image 
simultaneously. 

• This is a problem involving finding N class labels simuntaneously.
• P(X) is the prior model for the scene. It can be simple prior probabilities, or 

a model for the spatial relation between class labels in the scene.
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Two kinds of pixel dependency
• Interpixel feature 

dependency:
– Dependency between 

the feature vectors.

• Interpixel class 
dependency:
– Dependency between 

class labels of 
neighboring pixels.

These two types will now be 
explained more formally.

Model the joint 
distribution of the 

gray level of 
neighboring pixels 

p(y1,y2|x1,x2)
y1,and y2 are the 
feature vectors

x1 and x2 are the 
class labels 
Model the 

probability for 
the class labels 

p(x1|x2)
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Background: A little statistics
• Consider two events A and B.
• P(A) and P(B) is the probability of events A and B.
• P(B|A) is the conditional probability of B assuming A, and is 

defined as:

• P(A,B) is the joint probability of the two events A and B. 
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Interpixel feature dependency
• P(y1,y2,....yN | x1, x2,...., xN) is generally the joint probability of

observing feature vectors y1,....yN at pixel positions 1,...N given the
underlying true class labels of the pixels. 

• The observed feature vector for pixel i might depend on the
observed feature vector for pixel j (neighboring pixels)

• We will not consider such models (If you are interested, see Dubes
and Jain 1989).

• If the feature vector for pixel i is independent of all the other pixels, 
this can be simplified as:

)|()|()|()|()|,....( 221111 NNii

N

iN xyPxyPxyPxyPXyyP 



Spatial Context 15

Interpixel class dependency
• The class labels for pixel i depends on the class labels of 

neighboring pixels, but not on the neighbors’ observed feature 
vectors.
– Such models are normally used for classification.
– Reasonable if the features are not computed from 

overlapping windows
– Reasonable if the sensor does not make correlated 

measurement errors

• What this means is that when we estimate the class label of 
pixel i, we think that it will be valuable to know the class labels 
of the neighboring pixels (the image consists of regions with 
partly continuous class type). 
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Introduction to Markov random 
field modelling

• Two elements are central in Markov modelling:
– Gibbs random fields
– Markov random fields

• There is an analogy between Gibbs and Markov 
random fields as we soon will see.

• This will result in an energy function minimization 
problem. 
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Discrete Gibbs random fields (GRF) -
Global model

• A discrete Gibbs random field gives a global model for the pixel
labels in an image:

• X is a random variable, x is a realization of X.
• U(x) is a function called energy function
• Z is a normalizing constant

)/Z-U(e)( xxX P
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Neighborhood definitions (for MRFs)
• Pixel site j is a neighbor of site i≠j if the probability 

depends on xj, the value of Xj. 
• A clique is a set of sites in which all pairs of sites are mutual 

neighbors. The set of all cliques in a neighborhood is denoted 
Q.

• A potential function or clique function Vc(x) is associated with 
each clique c.

• The energy function U(x) can be expressed as a sum of 
potential functions

• 8-neighborhoods are commonly used, but more complex 
neighborhoods can also be defined.
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Neighborhoods and cliques

2 1 2

1 t 1

2 1 2

1st and 2nd order
neighbors of pixel t

Remark: we normally only use cliques involving two 
sites. The model is then called a pairwise interaction 
model. Then a clique is just a pair of neighboring 
pixels.

Clique types for a 2nd 
order neighborhood
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Common simple potential functions
• Derin and Elliott’s model:

• Ising’s model: 

 controls the degree of spatial smoothing

– I(ci,ck) = -1 if ci = ck and 0 otherwise
– This corresponds to counting the number of pixels in the

neighborhood assigned to the same class as pixel i.

• These two models are equivalent (except a different scale factor) 
for second order cliques
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Discrete Markov random fields –
local interaction models

• A Markov random field (MRF) is defined in terms of local 
properties.

• A random field is a discrete Markov random field with respect 
to a given neighborhood if the following properties are 
satisfied:
1. Positivity: P(X=x)>0 for all x
2. Markov property:

P(Xt=xt|XS|t=xS|t)=P(Xt=xt|Xt =xt)
S|t refers to all M pixel sites, except site t
t refers to all sites in the neighborhood of site t

3. Homogeneity: P(Xt=xt|Xt =xt) is the same for all sites t.
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Relationship between MRF and GRF
• A unique GRF exists for every MRF field and vice-

versa if the Gibbs field is defines in terms of cliques 
of a neighborhood system.

• Advantage: a global model can be specified using 
local interactions only.
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Back to the initial model…
Y = {y1,...,yN}    Image of feature vectors to classify
X = {x1,...xN}    Class labels of pixels
Task: find the optimal estimate x’ of the true labels x* for all pixels 

in the image

• Classification consists choosing the class labels x’ that maximizes 
the posterior probabilities  
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• We assume that the observed random variables are 
conditionally independent:

• We use a Markov field to model the spatial interaction between 
the classes (the term P(X=x)).
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• Rewrite P(Yi=yi|Xi=xi) as

• Then,

• Maximizing this is equivalent to minimizing  
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Udata(X|C)
• Any kind of probability-based classifier can be used, for example a 

Gaussian classifier with a k classes, d-dimensional feature vector, 
mean k and covariance matrix k:
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Finding the labels of
ALL pixels in the image

• We still have to find an algorithm to find an estimate x’ for all 
pixels. 

• Alternative optimization algorithms are:
– Simulated annealing (SA) 

• Can find a global optimum
• Is very computationally heavy 

– Iterated Conditional Modes (ICM)
• A computationally attractive alternative
• Is only an approximation to the MAP estimate

– Maximizing the Posterior Marginals (MPM)

• We will only study the ICM algorithm, which converges only to a 
local minima and is theoretically suboptimal, but 
computationally feasible. 
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ICM algorithm

1. Initilalize xt, t=1,...N as the non-contextual classification by 
finding the class which maximize P(Yt=yt|Xt=xt).

2. For all pixels t in the image, update      with the class that 
maximizes

3. Repeat 2 n times

Usually <10 iterations are sufficient 
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ICM in detail
Initilalize xt, t=1,...N as the non-contextual classification by finding the class which maximize 

P(Yt=yt|Xt=xt), assign it to classified_image(i,j)
For iteration k=1:maxit do

For i=i:N,j=1:N (all pixels) do
minimum_energy=High_number;
For class s=1:S do

Udata = -log (P(Yt=yt|Xt=xt))
Ucontxt=0; 
nof_similar_neighbors=0;
for neighb=1:nof_neighbors

if (classified_image(neighb)=s) //neighbor and s of same class
++nof_similar_neighbors;

Ucontxt = -beta*nof_similar_neighbors;
energy = Udata + Ucontxt;
if (energy < minimum_energy)

minimum_energy = energy;
bestclass = s;

new_classified_image(i,j) = bestclass;
if (new_classified_image(i,j)!=classified_image(i,j))

++nof_pixels_changed;
if nof_pixels_changed<min-limit

break;
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ICM comments
• P(Yt=yt|Xt=xt) can be computed based on various 

software packages, stored, and used in the ICM 
algorithm. 

• For an image with S classes, this can be stored in a 
S-band image.

• For each iteration, only the labels xi change. 

– Why should you use a temporal array to store the 
updated labels at iteration k, and a separate array 
for the labels at the next iteration k+1?
• Hint: try this on a checkerboard image.
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How to choose the smoothing parameter 

•  controls the degree of spatial smoothing
•  normally lies in the range 1≤  ≤2.5
• The value of  can be estimated based on formal parameter 

estimation procedures (heavy statistics, but the best way!)
• Another approach is to try different values of , and choose the 

one that produces the best classification rate on the training 
data set. 
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An energy function for preserving edges

• When  is large, the Ising model tends to smooth the image 
across edges.

• We can add another energy term to penalize smoothing edges
by introducing line processes (Geman and Geman 1984).

• Consider a model where edges can occur between neigbhboring
pixels and let l(i,j)  represent if there is an edge between pixel i 
and pixel j : 
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Line processes
• l(i,j)=0 if there is no edge between pixel i and j, and 1 of 

there is an edge 
• There is an edge if pixels i and j belong to diffent classes, 

if ci≠cj

• We can define an energy function penalizing the number 
of edges in a neihborhood

• and let 

• This will smooth the image, but preserve edges much 
better.
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Test image 1

• A Landsat TM image
• Five classes:

– Water
– Urban areas
– Forest
– Agricultural fields
– Vegetation-free 

areas
• The image is expected 

to be fairly well 
approximated by a 
Gaussian model
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Classification results, Landsat TM 
image

Method Training data,
Noncontextual

Test data,
Noncontextua
l

Test data,
contextual

Gaussian 90.1 90.5 96.3

Multilayer 
perceptron

89.7 90.0 95.5
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Data set 2

• ERS SAR image
• 5 texture features 

from a lognormal 
texture model used

• 5 classes:
– Water
– Urban areas
– Forest
– Agricultural fields
– Vegetation-free 

areas
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Classification results,  SAR 
image

Method Training data,
Noncontextual

Test data,
Noncontextua
l

Test data,
contextual

Gaussian 63.7 63.4 67.1

Multilayer 
perceptron

66.6 66.9 70.8

Tree classifier 70.3 65.0 76.1
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More on different energy functions
• MRF local energy terms can be used to model other 

types of context to (see Solberg 1996)
– Multitemporal classification
– Consistency with an existing map or previous 

classification
– Consistency with other types of GIS data
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An energy function for 
fusion with a thematic map

• Assume that a map or previous classification of the scene 
exists. 

• This map can be partly inaccurate and needs to be 
updated. 

• Let Cg={cg
1,...,cg

N) be an old map of the area. 
• Consider a set of S different classes. The probability for a 

change from class s1 to s2 can be specified as a table of 
transitions (next page) Pr(xi|cg

i).
• An additional energy term can be
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Example of allowed transitions 
Urban Forest Agricultural Bare soil Water

Urban 1.0 0.0 0.0 0.0 0.0

Forest 0.1 0.7 0.1 0.1 0.0

Agricultral 0.1 0.1 0.7 0.1 0.0

Bare soil 0.1 0.1 0.1 0.7 0.0

Water 0.0 0.0 0.0 0.0 0.1
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An energy term for crop ownership data
• På norsk: jordskiftekart eller bestandskart av grenser regioner som 

er en naturlig enhet og som ofte drives likt. Let a line process l(i,j) 
define if pixels i and j are assigned to the same class (l(i,j)=0) or 
not (l(i,j)=1) in the class label image.

• Let the crop ownership map be represented by a line process.
• An edge site in this map indicates if the two pixels (i,j) it involves 

are on the same region (lg(i,j)=0) or not (l(i,j)=1).
• An energy term seeking consistency with the crop ownership map 

is:
•

otherwise  1  and  ),(),(  if 0)),(,(  where
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Example agricultural classification
• Optical (Landsat) and SAR 

image of agricultural site. 
• Classes: wheat, sugar beet, 

potatoes, carrots, grass, 
stubble, bare soil.

• Field border map also 
available.

SAR on top, Landsat bottom
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Example agricultural classification

SAR Optical Combined –
noncontextual

Combined – MRF Combined – MRF 
with field border 
map

59.9 70.3 71.3 73.0 79.6

Result based
on only optical

Result based
on optical+SAR

No context

Result based
on optical+SAR

MRF

Result based
on optical+SAR

MRF with field borders
Field borders overlaid 

in white

Segmentation methods covered

• Watershed segmentation (INF 4300)
• Split-and-merge/region growing (INF 4300)
• K-means clustering (INF 4300)

– We extend this to mixtures of Gaussian now
• Mean shift segmentation
• Graph-cut algorithms
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K-means clustering (Repetition)
• Note: K-means algorithm normally means ISODATA, but different 

definitions are found in different books
• K is assumed to be known
1. Start with assigning K cluster centers

– k random data points, or the first K points, or K equally spaces points
– For k=1:K, Set k equal to the feature vector xk for these points.

2. Assign each object/pixel xi in the image to the closest cluster center
using Euclidean distance.
• Compute for each sample the distance r2 to each cluster center:

• Assign xi to the closest cluster (with minimum r value) 

3. Recompute the cluster centers based on the new labels.
4. Repeat from 2 until #changes<limit.

ISODATA K-means: splitting and merging of clusters are included in 
the algorithm

    22
kiki

T
ki xxxr  

Clustering by mixtures of Gaussians
• Euclidean distance can be replaced by Mahalanobis distance

from point xi to cluster center k:

• We could just modify the K-means algorithm to use this
measure after the first iteration.

• Mixtures of Gaussian considers that samples can be softly
assigned to several nearby cluster centers:

• k is the mixing coefficient for cluster with mean k and 
covariance k.
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The EM-algoritm for clustering
• The EM-algoritm iteratively estimate the mixture

parameters:
1. Expectation step (E-step): compute

2. Maximation stage (M-step): update
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Mean shift
clustering/segmentation algorithm

• K-means and mixtures of Gaussian are based on a 
parametric probability function. 

• An alternative is to use a non-parametric smooth
function that fits the data. 

• The mean shift algoritms efficiently finds peaks in a 
distribution without estimating the entire distribution.

• It can be seen as the «inverse» of the watershed
algorithm, which clims downhill. 
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The mean shift - background
• To estimate a density function for 

the scatter plots, we could use a 
Parzen window estimator, which
smooths the data by convolving it 
with a kernel k() of width h:

• When we have computed f(x), we
could find peaks by gradient 
descent.

• Drawback: does not work well
with sparse data points. 

• Solution: finding the peaks
WITHOUT estimating the entire
distribution.
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Scatter plots in L*u*v* space

Cluster results after mean shift
clustering, peaks marked in red
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Mean shift segmentation
• Multiple restart gradient descent algorithm: start at many points

yk and take a step up-hill from these point. 
• The gradient of f is (g(r)=-k’(r)):

• This can be written as

• The current estimate of yk is replaced with its locally weighted
mean:
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Illustration of mean shift

• The kernel K is convolved with the image.
• The derivative of the kernel is computed by convolving the

image with the derivative of the kernel
• The mean shift change m(x) is found from the derivative f’(x)
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• Simple but slow algorithm: start a separate mean shift estimate
y at every input point x, and iteration until only small changes.

• Faster: start at random points. 
• Including location information:

– Add the coordiates xs= (x,y)in the kernel:

– xr is the spectral feature vector and hr and hs the bandwidth
in the spectral and spatial domain.

– The effect of this is that the algoritm step will take both
spectral and spatial information and e.g. use larger steps in 
space between pixels with similar color. 
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Normalized cut segmentation
• Many segmentation algorithms are based on graphs and finding

the cut of a graph that minimizes a criteria.

• All pixels are joined by edges with weights wij that measure
their similarity.

• The cut between group A and B is the sum of all weights being
cut:

• Minimizing the cut is not an optimal because the solution then
would be to have one cluster per pixel.
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Normalized cut
• Normalized cut:

• assoc(A,A) is the sum of all weights within cluster A.
• assoc(A,V) = assoc(A,A)+cut(A,B)is the sum of all weights

associated with pixels in cluster A.
• Let W=[wij] be all weights sorted so that all nodes in A comes first 

and nodes in B second. 
• To find the cut, Shi and Malik suggested using a real-valued

assignment of nodes to groups.
• x is an indicator vector (xi=1 if xA and -1 if xB)
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• Let d=W1 be the row sums of W 
• Let D=diag(d)
• Minimizing the normalized cut is 

equivalent to minimizing:

• y=((1+x)-b(1-x))/2 is a vector
consisiting of 1s and –bs such that
yd=0.

• This is a generalized eigenvalue system

• N is calles the affinity matrix. 
• The sign of the eigenvalues gives the

cluster.
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Sample W

Corresponding second
smallest

Eigenvalue

The weight function
• Many different weight functions can be used, a 

simple one is:

• F is a feature vector that only considers pixels within
a radius abs(xi-xj)<r
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Graph cuts and energy-based methods

• If we restrict the neighborhoods to local
neighborhoodsand compute region membership by 
summing pixels, the graph-cut can be written as a 
MRF or energy-minimizing problem. 

• We will not og into detail of this. 
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Next week
• Lab on energy functions and segmentation
• Check course webpage for room
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