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INF 5300 - 26.2.2014
Detecting good features for tracking

Anne Schistad Solberg

 Finding the correspondence between two images
 What are good features to match?

 Points?

 Edges?

 Lines?

Curriculum
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Chapter 4 in Szeliski, with a focus on 4.1 Point-based features

Recommended additional reading on SIFT features:

 Distinctive Image Features from Scale-Invariant Keypoints
by D. Lowe, International Journal of Computer Vision, 
20,2,pp.91-110, 2004.

Goal of this lecture

• Consider two images containing partly the the same 
objects but at different times or from different views.

• What type of features are best for recognizing similar 
object parts in different images?

• These features will  later  be used to find the match 
between the images.

• This chapter is also linked to chapter 6 which we will 
cover in a later lecture (April). 

• This is useful for e.g.
– Tracking an object in time
– Mosaicking or stitching images
– Constructing 3D models
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Image matching

• How do we compute the correspondence between 
these images?
– Extract good features for matching (this lecture)
– Estimation geometrical operation for match (later lecture)

•by Diva Sian •by swashford



What type of features are good?
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•Point-like features? •Region-based features?

•Edge-based features? •Line-based features?

Point-based features

• Point-based features should represent a set of special 
locations in an image, e.g. landmarks or keypoints.

• Two main categories of methods:
– Find points in an image that can be easily tracked, e.g. using 

correlation or least-squares matching.
• Given one feature, track this feature in a local area in the next 

frame 
• Most useful when the motion is small

– Find features in all images and match them based on local 
appearance. 

• Most useful for larger motion or stitching.
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Four steps in feature matching

1. Feature extraction
– Search for characteristic locations

2. Feature description
– Select a suitable descriptor that is easy to match

3. Feature matching
– Efficient search for matching candidates in other images

4. Feature tracking
– Search a small neighborhood around the given location

• An alternative to step 3. 
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Point-based features
• Point-based features should 

highlight landmarks or points of 
special characteristics in the 
image.

• They are normally used for 
establishing correspondence 
between image pairs.

• What kind of locations in these 
images do you think are useful?
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Feature detection
• Goal: search the image for locations that are likely to be easy to 

match in a different image. 

• What characterizes the regions? How unique is a location?
– Texture?
– Homogeneity?
– Contrast?
– Variance?
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Feature detection
• A simple matching criterion: 

summed squared difference:

• I0 and I1 are the two images, 
u=(u,v) the displacement vector, 
and w(x) a spatially varying weight 
function.

• Check how stable a given location 
is (with a position change u) in 
the first image by computing the 
auto-correlation function:

INF 5300 10

 201 )()()()(  
i

iiiWSSD xIuxIxwuE

 200 )()()()(  
i

iiiAC xIuxIxwuE

1

2
3

1 2 3

• Consider shifting the window W by (u,v)
• how do the pixels in W change?
• Do a Taylor series expansion of the 

autocorrelation to allow fast computation:

• The autocorrelation matrix A is:

Feature detection:  the math
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•Compute the gradients 
robustly using a Derivative of 
Gaussian filter

Feature detection: the math
• The matrix A carries information 

about the uncertainty of the location 
of a patch.

• A is called a tensor matrix and is 
formed by outer products of the 
gradients, convolved with a 
weighting function w to get a pixel-
based uncertainty estimate.

• Eigenvector decomposition of A gives 
two eigenvalues, 0 and 1.

• The smallest eigenvalue carries 
information about the uncertainty.
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•High gradient in the direction of 
maximal change
• If there is one dominant direction, 
we are quite certain about the 
direction estimate, and min will be 
much smaller than max.
•A high value of min means that the 
gradient changes much in both 
directions, so this can be a good 
keypoint. 



Feature detection: Harris corner detector

• Harris and Stephens (1988) proposed an alternative criterion 
computed from A (=0.06 is often used):

• Other alternatives are e.g. the harmonic mean:

• The difference between these criteria is how the eigenvalues 
are blended together. 
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Feature detection algorithm 
1. Compute the gradients Ix and Iy , and Ixy using a robust 

Derivative-of-Gaussian kernel (hint: convolve a Sobel x and y 
with a Gaussian).

2. Convolve these gradient images with a larger Gaussian to 
further robustify.

3. Create the matrix A from the robustified  gradients from 2.
4. Compute either the smallest eigenvalue or the Harris corner 

detector measure from A.
5. Find local maxima above a certain threshold and report them 

as detected feature point locations. 
6. Adaptive non-maximal suppression (ANMS) is often used to 

improve the distribution of feature points across the image.
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Examples

Original  
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Largest eigenvalue  
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Harris operator  
Smallest eigenvalue  



• We note that the first eigenvalue gives information 
about major edges.

• The second eigenvalue gives information about other 
features, like corners or other areas with conflicting 
directions.

• The Harris operator combines the eigenvalues.
• It is apparent that we need to threshold the images 

and find local maxima in a robust way.
– How did we supress local minima in the Canny edge 

detector??
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Comparing points detected 
with or without ANMS
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How do we get rotation invariance?

• Option 1: use rotation-invariant feature descriptors.
• Option 2: estimate the locally dominant orientation 

and create a rotated patch to compute features from.
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How do we estimate the local orientation?

• The gradient direction is often noisy.
– Many ways to robustify it:

• Direction from eigenvector of
gradient tensor matrix

– Filter the the gradients gx, gy and gxy and 
form the gradient tensor matrix T. 
Compute the direction as the direction of
the dominant eigenvector of T. 

• Angle histogram
– Group the gradient directions weighted

by magnitude together into 36 bins.
– Find all peaks with 80% of maximum

(allowing more than one dominant 
direction at some locations).
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How do we get scale invariance?

• These operators look at a fine scale, but we might
need to match features at a broader scale. 

• Solution 1:
– Create a image pyramid and compute features at each level

in the pyramid.
- At which level in the pyramid should we do the matching on? 

Different scales might have different characteristic features. 

- Solution 2:
- Extract features that are stable both in location AND scale.
- SIFT features (Lowe 2004) is the most popular approach of

such features.
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Scale-invariant features (SIFT)
• See Distinctive Image Features from Scale-Invariant Keypoints

by D. Lowe, International Journal of Computer Vision, 
20,2,pp.91-110, 2004.

• Invariant to scale and rotation, and robust to many affine
transforms.

• Main components:
1. Scale-space extrema detection – search over all scales and 

locations.
2. Keypoint localization – including determining the best 

scale.
3. Orientation assignment – find dominant directions.
4. Keypoint descriptor - local image gradients at the selected

scale, transformed relative to local orientation. 
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SIFT: 1. Scale-space extrema
• A Gaussian filter is applied at 

different scales L(x,y,) = G(x,y,)*
I(x,y,).

• Compute keypoints in scale space by 
difference-of-Gaussian, where the
difference is between two nearby
scales separated by a constant k:

• This is an efficient approximation of
a Laplacian of Gaussian, normalized
to scale  (see Lowe 2004).

• Detecting extrama in scale is based
on sampling different scales.

• Extrema in space are also detected.

INF 5300 23

),()),,(),,((),,( yxIyxGkyxGyxD  

SIFT 1: extrema detection
• Consider a Taylor series expansion of the scale-space function

D(x,y,) around sample point x

• The location of the extreme is found by take the derivative of
D(x) and setting it to zero:

• It is computed by differences of neighboring sample points, 
yielding a 3x3 linear system.

• The value of D at the extreme point is useful for suppressing
extrema with low contrast, |D|<0.03 are suppressed.
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SIFT 1: eliminating edge response

• Since points on an edge are not very stable, so such points
need to be eliminated.

• This is done using the curvature, computed from the Hessian
matrix of D.

• The eigenvalues of H are proportation to principal curvatures of
D. As with Harris, consider the ratio between the eigenvalues 
and . They found a good criteria to be to only keep the points
where

• r=10 is often used.
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SIFT 2: computing orientation
• To normalize for the orientation of the keypoints, we need to 

estimate the orientation.
• They used simple pixel differences to do this (L is a Gaussian

smoothed image):

• Then, they computed orientation histograms with 36 bins
covering the 360 degrees of possible orientations. 

• In this histogram, the highest peak, and other peaks with hight
80% of max are found. If a localization has multiple peaks, it 
can have more than 1 orientation. 
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Feature descriptors
• Which features should we extract from the key points?
• These features will later be used for matching to establish the 

motion between two images.
• How is a good match computed (more in chapter 8)?

– Sum of squared differences in a region?
– Correlation?

• The local appearance of a feature will often change in 
orientation and scale (this should be utilized e.g. by extracting 
the local scale and orientation and then use this scale (or a 
coarser one) in the matching).

INF 5300 28



Normalizing bias and gain 
• For simple motion, matching 

intensity patches can be useful.
• One technique is called Multi-Scale 

Oriented Patches (MOPS)
– Detect a proper scale in a 

Gaussian pyramid, match at a 
coarser scale to avoid aliasing. 

– Estimate rotation and 
normalize it.

– Extract a patch of 5x5 pixels 
relative to scale.

– Rescale patch to zero mean 
and variance of 1.

INF 5300 29

Detection at different scales
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SIFT: feature extraction stage

• Select the level of the Gaussian pyramid where the keypoints 
were identified.

• Compute the gradient at each point in a 16x16 window around 
each keypoint.  Weight the gradient values by a Gaussian 
function.

• Threshold gradient magnitude to throw out weak edges.
• Form a gradient orientation histogram for each 4x4 quadrant 

using 8 directional bins (using trilinear interpolation of the 
gradient magnitude to 2x2x2 bins).

• This results in 128 (16*8) non-negative values which are the 
raw SIFT-features.

• Further normalize the vector. 
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SIFT: feature extraction
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This example shows a 8x8 grid decomposed to 2x2
Original SIFT uses 16x16 decomposed to 4x4



Variations of SIFT

• PCA-SIFT: compute x- and y-gradients in a 39x39 
patch, resulting in 3042 features. Use PCA to reduce
this to 36 features.

• Gradient location-orientation histogram (GLOH): use
a log-polar binning of gradient histograms, then PCA.

• Steerable filters: combinations of DoG-filters of edge-
and corner-like filters. 
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Feature matching

• Matching is divided into:
– Define a matching strategy to compute the correspondence 

between two images.
– Using efficient algorithms and data structures for fast 

matching (we will not go into details on this).

• Matching can be used in different settings:
– Compute the correspondende between two partly 

overlapping images (= stitching).
• Most key points are likely to find a match in the two images.

– Match an object from a training data set with an unknown 
scene (e.g. for object detection).

• Finding a match might be unlikely
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Computing the match
• Assume that the features are normalize so we can measure

distances using Euclidean distance.
• We have a list of keypoints features from the two images.

Given a keypoint in image A, compute the similarity (=distance) 
between this point and all keypoints in image B.

• Set a threshold to the maximum allowed distance and compute
matches according to this. 

• Quantify the accuracy of matching in terms of:
– TP: true positive: number of correct matches
– FN: false negative: matches that were not correctly detected.
– FP: false positive: proposed matches that are incorrect.
– TN: true negative: non-matches that were correctly rejected.
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Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance



Performance ratios

• True positive rate (TPR) 
– TPR = TP/(TP+FN)

• False positive rate (FPR)
– FPR = FP/(FP+TN)

• Positive predictive value (PPV)
– PPV = TP/(TP+FP)

• Accuracy (ACC)
– ACC = (TP+TN)/(TP+FN+FP+TN)

• Challenge: accuracy depends on the threshold for a 
correct match!
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Evaluating the results
How can we measure the performance of a feature matcher?
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Evaluating the results
How can we measure the performance of a feature matcher?
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ROC curve  (“Receiver Operator Characteristic”)

ROC Curves
• Generated by counting # current/incorrect matches, for different threholds
• Want to maximize area under the curve (AUC)
• Useful for comparing different feature matching methods

SIFT: feature matching

• Compute the distance from each keypoint in image A 
to the closest neighbor in image B. 

• We need to discard matches if they are not good as 
not all keypoints will be found in both images. 

• A good criteria is to compare the distance between
the closest neighbor to the distance to the second-
closest neighbor. 

• A good match will have the closest neighbor should
be much closer than the second-closest neighbor.

• Reject a point if closest-neighbor/second-closest-
neighbor >0.8.
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Feature tracking - introduction

• Feature tracking is a alternative to feature matching.
• Idea: detect features in image 1, then track each of

these features in image 2.
• This is often used in video applications where the

motion is assumed to be small. 
• Is the motion assumed small:

– Can the grey levels change? Use e.g. cross-correlation as a 
similarity measure. 

• Large motion:
– Can appearance changes happen?

• More on this in a later lecture.
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Edge-based features
• Edge-based features can be more useful than point-based 

features in 3D or e.g. when we have occlusion.
• Edge-points often need to be grouped into curves or countours. 
• An edge is considered an area with rapid intensity variation.
• Consider a gray-level image as a 3D landscape where the gray 

level is the height. 
Areas with high gradient are areas with steep slopes, computed 
by the gradient

• J will point in the direction of the steepest ascent. 
• Taking the derivative is prone to noise, so we normally apply 

smoothing first/or in combination by combining the edge 
detector with a Gaussian.
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Edge detection using Gaussian filters

• Gradient of a smoothed image:

• Derivative of Gaussian filter:

• Remember that the second derivative (Laplacian) carries
information about the exact location of the edge: 

• The edge locations are locations where the Laplacian changes
sign (called zero crossing).

• Edge pixels can then be linked together based on both
magnitude and direction. 
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Scale selection in edge detection
•  is the scale parameter. 
• It should be determined based on noise 

characteristics of the image, but also knowledge 
about the average object size in the image. 

• A multi-scale approach is often used. 

• After edge detection, we can apply all methods for 
robust boundary representation from INF 4300 to 
describe the contour. They can be normalized to 
handle different types of invariance. 
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Line detection

• Lines are normally detected using the Hough-
transform (INF 4300).

• We will look at an alterative, RANSAC-based line 
detection, in chapter 6. 
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Vanishing points

• The structure in the image can often be found based 
on analyzing the vanishing points of lines. 

• Lines that are parallell in 3D have the same vanishing 
point.

• Vanishing points can be found from the Hough 
transform (one of many different algorithms).
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