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Dense motion and flow

Anne Schistad Solberg

Motion perception

Motion visualization

Image similarity measures

Motion estimation

Optical flow algorithm

 Slide credits: Several slides adapted from R. Szeliski CSE 576. 
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 Chapter 8 in Szeliski (except 8.3)

Additional reading:

 Good description of optical flow: 
http://www.cs.utoronto.ca/~jepson/csc420/notes/flowChapter
05.pdf

 Simon Baker and Iain Matthews, Lucas-Kanade 20 Years 
On: A Unifying Framework, International Journal of 
Computer Vision 56(3), 221-255, 2004 
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd

 Optical flow (wikipedia)

 Horn-Schunck method (wikipedia)



From last lecture: Image matching

• Last weeks: 
– Extract keypoint features in an image 
– Find the matching features in a different image
– Do a robust motion (e.g. using RANSAC) to get the

geometrical model describing a COMMON transform relating
the keypoints in both images. 

• Characteristics:
– Keypoint locations are SPARSE
– A common motion model is assumed for the entire scene.

This lecture: dense motion

• Motion vectors are now estimated from every point an a image 
sequence. 

• Motion maps are created, and each pixel can have a different 
motion vector.

• Some regularization of the motion vectors is done to get smooth
estimates. 
– No restriction that all pixels move in the same average direction.

• Video normally has high frame rate:
– Small motion between one fram and the next frame
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Why estimate visual motion?

• Visual motion can be annoying
– Camera instabilities: measure it and remove it

• Visual motion indicates dynamics in the scene
– Moving objects, behaviour in surveillance cameras
– Track objects and analyse trajectories

• Visual motion reveals spatial layout
– Motion parallax
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Essential steps in motion estimation

• An error metric to compare the two images must be 
chosen.

• A search technique to compute the best match is 
needed.
– Pyramid search is often used to speed up the process.

• Accurate motion estimates might need subpixel
accuracy.

• Regularization is often applied since the motion 
vectors are not reliable in all regions. 
– For compex motion layered motion models might also be 

needed.
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Applications of motion estimation

• Video enhancements:
– Stabilization
– Denoising
– Super resolution

• 3D reconstruction: structure from motion
• Video segmentation
• Tracking/recognizing objects
• Learning dynamical models
• Advanced video editing
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Motion estimation techniques

• Direct methods
– Directly recover image motion at each pixel from spatio-

temporal image brightness variations
– Dense motion fields, but sensitive to appearance variations
– Suitable for video when image motion is small 
– Computationally expensive

• Feature-based methods
– Extract visual features (corners, textured areas) and track 

them over multiple frames
– Sparse motion fields, but more robust tracking
– Suitable when image motion is large (10s of pixels)
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Seeing motion from a static picture?

Snakes 12.3.08 INF 5300 10



Optical flow field

• Optical flow is the apparent motion of objects in a scene caused
by the relative motion between an observer (eye or camera) 
and the scene.

• Parametric motion  (e.g. using global geometric transforms) is 
limited and cannot describe the motion of arbitrary videos.

• Optical flow field: assign a flow vector (u(x,y),v(x,y)) to each
pixel (x,y). 

• Projection from 3D world to 2D
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Visualization of optical flow fields
• Vector fields can be used to visualize

sparse motion fields, but are too
mess to plot for every pixel.

• Map flow vector to color:
– Magnitude: saturation
– Orientation: hue
http://hci.iwr.uni-
heidelberg.de/Static/correspondenceVisualiza
tion/

Image example:
http://people.csail.mit.edu/celiu/OpticalFlow/
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Matching brightness patterns
• Brightness constancy assumption:

• How do we determine correspondences?

– block matching or SSD (sum squared differences)
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Matching criteria

• What is invariant between the two images?
– Brightness? Gradients? Phase? Other features?

• Distance metric: (L2,L1, truncated L1, Lorentzian)

• Correlation, normalized cross correlation
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Distance metrics
Example: data samples
0.95, 1.04, 0.91, 1.02, 1.10, 20.01
L2 norm: error = 4.172
L1 norm: error = 1.038
Truncated L1: error 1.0296
Lorentzian: error 1.0147
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Slide from Ce Liu

Alternative error measures
• Spatially varying weights

• Normalized cross-correlation

• Normalized SSD score:
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Hierarchical motion estimation
• Given the cost function, how do we

search for the best match?
• Image pyramids (Gaussian) are often

used to speed up the process:
– Search first at a coarse level
– Refine the fit by a smaller local

search at the next finer level.
• Let Ik

l(xj) be the downsampled and 
smoothed image at level l, created from 
the finer level image Ik

l-1(2xj) (see
section 3.5 on pyramids) 

• Once a suitable motion vector is found
at level l, predict the displacement at 
the next level:
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Fourier-based alignment

• When the motion is large, searching in a coarser level
at the pyramid might not be sufficient.

• Matching in the Fourier domain is an alternative:
– Correlation can be cone by multiplication by the complex

conjugate in the Fourier domain (remember the convolution
theorem?)

– Windowed correlation is often used in addition to this.
– The Fourier transform after a translation has the same 

magnitude, but different phase. 

• The SSD criterion can also be computed efficiently in 
the Fourier domain.
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• Brightness Constancy Equation/Find similar patches in two 
images:

),(),( ),(),( yxyx vyuxIyxJ 

Or, equivalently, minimize :
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Linearizing   (assuming small (u,v))
using Taylor series expansion:

The Brightness Constraint

Ix and Iy are the horisontal and vertical image gradients
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Gradient Constraint (or the Optical Flow 
Constraint)
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Minimizing:
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It is the temporal 
gradient

Least-square problem, see Appendix A.2 for details
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Minimizing

Assume a single velocity for all pixels within an image patch
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LHS: sum of the  2x2 outer product of the gradient vector

Iterative solutions needed

Patch Translation [Lucas-Kanade]

Balance spatial 
gradients by temporal 
gradients and the shift
in u
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Local Patch Analysis

• How certain are the motion estimates?
• This is similar to finding good keypoints in SIFT.



The Aperture Problem

    TIIMLet

• Algorithm:  At each pixel compute      by solving

• M is singular if all gradient vectors point in the same direction
• e.g., along an edge
• of course, trivially singular if the summation is over a single pixel
or there is no texture
• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK

and
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SSD Surface – Textured area

Have you seen this before?
Remember lecture
on keypoint detection



SSD Surface -- Edge

SSD – homogeneous area



Refining the search to sub-pixel accuracy

• Estimate velocity at each pixel using one iteration of Lucas and 
Kanade estimation.

• Many applications, like image stabilization and stitching, require
sub-pixel accuracy in matching. 

• Refine this estimate by repeating the process
• Remember that the Taylor series expansion ignored the higher

order terms
– The accuracy of the estimate is bounded by the magnitude of the

displacement and the second derivative of I.

• If we undo the motion, and reapply the estimator to the warped
signal to find the residual motion left
– Do this iteratively until the residual motion is small
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Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

estimate 
update

(using d for displacement here instead of u)



Optical Flow: Iterative Estimation
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Optical Flow: Iterative Estimation

xx0
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Optical Flow: Iterative Estimation
• Some Implementation Issues:

– Warping is not easy (ensure that errors in warping are 
smaller than the estimate refinement)

– Warp one image, take derivatives of the other so you don’t 
need to re-compute the gradient after each iteration.

– Often useful to low-pass filter the images before motion 
estimation (for better derivative estimation, and linear 
approximations to image intensity)

Szeliski



Optical Flow: Aliasing
Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct? 

nearest match is correct 
(no aliasing) nearest match is incorrect 

(aliasing)

To overcome aliasing: coarse-to-fine estimation.
At a coarse scale, the image is blurred and the motion velocity small.

The coarse-scale estimate is used to stabilize the finer scale motion. 

actual shift

estimated shift

Limits of the gradient method

Fails when intensity structure in window is poor
Fails when the displacement is large (typical operating 

range is motion of 1 pixel)
Linearization of brightness is suitable only for small displacements

• Also, brightness is not strictly constant in images
actually less problematic than it appears, since we can pre-filter 

images to make them look similar

Szelis
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Parametric motion models (8.2)

• 2D Models:
• Affine
• Quadratic
• Planar projective transform (Homography)

• 3D Models (see the book):
• Instantaneous camera motion models 
• Homography+epipole
• Plane+Parallax

Szeliski

Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns

Szelisk
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• Substituting into the B.C. 
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yaxaayxu

654

321

),(

),(




Each pixel provides 1 linear constraint in 6 global
unknowns
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Least Square Minimization  (over all pixels):

Example:  Affine Motion

Szeliski

Relation to last lecture: “Alignment”: Assuming we know 
the correspondences, how do we get the transformation?
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• Expressed in terms of 
absolute coordinates of 
corresponding points…

• Generally presumed 
features separately detected 
in each frame

e.g., affine model in abs. coords…



Flow: Two views presumed in temporal sequence…
track or analyze spatio-temporal gradient

),( ii yx
),( ii yx 

• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change

Parametric motion: Two views presumed in temporal 
sequence…track or analyze spatio-temporal gradient
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• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change
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• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change

(ui,vi)

• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change

(ui,vi)



• Sparse or dense in first 
frame
• Search in second frame
• Motion models expressed 
in terms of position change
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Previous Alignment model:

Now, Displacement model:

Quadratic – instantaneous 
approximation to planar 
motion 
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Projective – exact planar 
motion

Other 2D Motion Models
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• Consider image I translated by

• The discrete search method simply searches for the best 
estimate.

• The gradient method linearizes the intensity function and 
solves for the estimate
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Discrete Search vs. Gradient Based

Szeliski

Correlation and SSD

• For larger displacements, do template matching
– Define a small area around a pixel as the template
– Match the template against each pixel within a search area 

in next image.
– Use a match measure such as correlation, normalized 

correlation, or sum-of-squares difference
– Choose the maximum (or minimum) as the match
– Sub-pixel estimate (Lucas-Kanade)

Szelisk



Shi-Tomasi feature tracker

1. Find good features (min eigenvalue of 22 Hessian)
2. Use Lucas-Kanade to track with pure translation
3. Use affine registration with first feature patch
4. Terminate tracks whose dissimilarity gets too large
5. Start new tracks when needed

Szelis

Learning goals – motion estimation

• Understand representation and visualization of
motion vectors.

• Understand the brightness similarity criterion.
• Know different patch similarity measures.
• Understand the gradient constraint.
• Know the basic steps in the optical flow algorithm
• Know strenghts and limitations of optical flow
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