INF 5300-02.04.2014
 Feature-based alignment
 Anne Schistad Solberg

- Finding the alignment between features from different images
-Geometrical transforms - short repetition
-RANSAC algorithm for robust transform computation

Curriculum

-Background in geometrical transforms: Read e.g. 2.1.1 and
2.1.2 in Szeliski
-Section 6.1 i Szeliski
-Recommended additional reading:

- Ransac is not described in detail in the book, you can find more detailes in:
- Ransac for Dummies: vision.ece. ucsb.edu/~zuliani/.../RANSAC/docs/RANSAC4Dummies.pdf
- Ransac Toolbox for Matlab: git://github.com/RANSAC/RANSAC-Toolbox.git

From last lecture: Image matching

- How do we compute the correspondence between these images?
- Extract good features for matching (last lecture)
- Estimation geometrical operation for match (this lecture)

-by

-by

From last lecture: Scale-invariant features (SIFT)

- See Distinctive Image Features from Scale-Invariant Keypoints by D. Lowe, International Journal of Computer Vision, 20,2,pp.91-110, 2004.
- Invariant to scale and rotation, and robust to many affine transforms.
- Main components:

1. Scale-space extrema detection - search over all scales and locations.
2. Keypoint localization - including determining the best scale.
3. Orientation assignment - find dominant directions.
4. Keypoint descriptor - local image gradients at the selected scale, transformed relative to local orientation.

From last lecture:

SIFT: feature matching

- Compute the distance from each keypoint in image A to the closest neighbor in image B .
- We need to discard matches if they are not good as not all keypoints will be found in both images.
- A good criteria is to compare the distance between the closest neighbor to the distance to the secondclosest neighbor.
- A good match will have the closest neighbor should be much closer than the second-closest neighbor.
- Reject a point if closest-neighbor/second-closestneighbor >0.8.

Results from last lecture - feature detecting and matching

A set of keypoints are detected and matched in two images

feature distance

Starting point for this lecture

- A set of corresponding feature points in two images.
- Goal: estimate the geometrical transform that we need to align the two images.
- Problem: movements are noisy and establishing ONE geometric transform for the image is difficult.

Goal of this lecture

- Consider two images containing partly the the same objects but at different times, from different sensors, or from different views.
- Assume that a set of features has been detected and the matching between corresponding features determined.
- Now we need to:
- Verify that the mathing is geometrically consistent
- This is the case if we can compute the motion between the features using a simple 2D or 3D geometric transform
- How do we do this robustly?

2D and 3D feature-based alignment

- We restrict us to parametric transforms such as the ones illustrated above.
Simple operations:
- Translation
- Euclidean = translation + rotation
- Affine transforms
- Similarity = scaled rotation
- Projection

INF 2310-Geometrical operations

- Transform the pixel coordinates (x, y) to (x^{\prime}, y^{\prime}):

$$
\begin{aligned}
& x^{\prime}=T_{x}(x, y) \\
& y^{\prime}=T_{y}(x, y)
\end{aligned}
$$

- The transforms $T_{x} \circ g T_{y}$ are often given as transforms.

2D coordinate transformations

- translation:
$x^{\prime}=x+t$
$x=$ (x, y)
- rotation:

$$
x^{\prime}=R x+t
$$

- similarity:
$x^{\prime}=s \boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$
- affine:
$x^{\prime}=\boldsymbol{A x}+\boldsymbol{t}$
- perspective: $\underline{\boldsymbol{x}}^{\prime} \cong \boldsymbol{H} \underline{\boldsymbol{x}}$ $\underline{\boldsymbol{x}}=(x, y, 1)$
($\underline{\boldsymbol{x}}$ is a homogeneous coordinate (expanded for convenient notation)

INF 2310: Affine transforms

- Affine transforms are described by:

$$
\begin{aligned}
& x^{\prime}=a_{0} x+a_{1} y+a_{2} \\
& y^{\prime}=b_{0} x+b_{1} y+b_{2}
\end{aligned}
$$

- Matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \text { eller }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{0} & a_{1} \\
b_{0} & b_{1}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
a_{2} \\
b_{2}
\end{array}\right]
$$

INF 2310 - Examples of simple transforms

Transform	a_{0}	a_{1}	a_{2}	b_{0}	b_{1}	b_{2}	Expression
Identity	1	0	0	1	0	0	$x^{\prime}=x$ $y^{\prime}=y$
Scalie factor s	s	0	0	0	s	0	$x^{\prime}=s x$ $y^{\prime}=s y$
Rotation by θ	$\cos \theta$	$-\sin \theta$	0	$\sin \theta$	$\cos \theta$	0	$x^{\prime}=\cos \theta x-\sin \theta y$ $y^{\prime}=\sin \theta y+\cos \theta y$

$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}a_{0} & a_{1} & a_{2} \\ b_{0} & b_{1} & b_{2} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

INF 2310 - More examples

Transform	a_{0}	a_{1}	a_{2}	b_{0}	b_{1}	b_{2}	Expression
Translation by Δx og Δy	1	0	Δx	0	1	Δy	$x^{\prime}=x+\Delta x$ $y^{\prime}=y+\Delta y$
Horisontal "shear" factor s_{1}	1	$s 1$	0	0	1	0	$x^{\prime}=x+s 1 y$ $y^{\prime}=y$
Vertical "shear" factor s2	1	0	0	$s 2$	1	0	$x^{\prime}=x$ $y^{\prime}=s 2 x+y$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

INF 2310 - Combinations of affine transforms

transl. $\quad]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]$
$\left[\begin{array}{ll}\operatorname{rot}\end{array}\right]\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{c}x^{\prime \prime} \\ y^{\prime \prime} \\ 1\end{array}\right]$
$[\underbrace{[\operatorname{rot}]\left[\begin{array}{ll} \\ \text { transl. }\end{array}\right]}=\left[\begin{array}{c}x^{\prime \prime} \\ y \\ y^{\prime \prime} \\ 1\end{array}\right]$
transl. \& rot

$$
\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x^{\prime \prime} \\
y^{\prime \prime} \\
1
\end{array}\right]
$$

INF 2310 - Higher order transforms

- Bilinear transforms:

$$
\begin{aligned}
& x^{\prime}=a_{0} x+a_{1} y+a_{2}+a_{3} x y \\
& y^{\prime}=b_{0} x+b_{1} y+b_{2}+b_{3} x y
\end{aligned}
$$

- Quadratic transforms:

$$
\begin{aligned}
& x^{\prime}=a_{0} x+a_{1} y+a_{2}+a_{3} x y+a_{4} x^{2}+a_{5 y} y^{2} \\
& y^{\prime}=b_{0} x+b_{1} y+b_{2}+b_{3} x y+b_{4} x^{2}+b_{5 y} y^{2}
\end{aligned}
$$

- Higher order polynomials can also be used

2D Transform equations

Transform	Matrix	Parameters p	Jacobian J
translation	$\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}\right)$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Euclidean	$\left[\begin{array}{ccc}c_{\theta} & -s_{\theta} & t_{x} \\ s_{\theta} & c_{\theta} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, \theta\right)$	$\left[\begin{array}{ccc}1 & 0 & -s_{\theta} x-c_{\theta} y \\ 0 & 1 & c_{\theta} x-s_{\theta} y\end{array}\right]$
similarity	$\left[\begin{array}{ccc}1+a & -b & t_{x} \\ b & 1+a & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a, b\right)$	$\left[\begin{array}{cccc}1 & 0 & x & -y \\ 0 & 1 & y & x\end{array}\right]$
affine	$\left[\begin{array}{ccc}1+a_{00} & a_{01} & t_{x} \\ a_{10} & 1+a_{11} & t_{y}\end{array}\right]$	$\left(t_{x}, t_{y}, a_{00}, a_{01}, a_{10}, a_{11}\right)$	$\left[\begin{array}{llllll}1 & 0 & x & y & 0 & 0 \\ 0 & 1 & 0 & 0 & x & y\end{array}\right]$
projective	$\left[\begin{array}{ccc}1+h_{00} & h_{01} & h_{02} \\ h_{10} & 1+h_{11} & h_{12} \\ h_{20} & h_{21} & 1\end{array}\right]$	$\left(h_{00}, h_{01}, \ldots, h_{21}\right)$	(see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations $\boldsymbol{x}^{\prime}=\boldsymbol{f}(\boldsymbol{x} ; \boldsymbol{p})$ shown in Table 2.1, where we have re-parameterized the motions so that they are identity for $p=0$.

Projective Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- Projective transformations:
- Affine transformations, and
- Projective warps
- Parallel lines do not necessarily remain parallel

From INF 2310: Image co-registration

INF 2310 - coregistration III

- The root mean square error is used to evaluate how good a match is
- Given M point pairs $\left(x_{i}, y_{i}\right),\left(x_{i}^{r}, y_{i}^{r}\right)$ (r is the reference image)
- Assume that the transform gives estimated coordinates in the reference image as ($x_{i}^{\prime}, y_{i}^{\prime}$)
- $\left(x_{i}, y_{i}\right)$--> $\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$
- The number of point pairs is $M \gg 3$ for affine transforms og $M \gg 6$ for quadratic
- The coefficients in the transform are computed as the values that minimize the square error between the true coordinates
- $\left(x_{i}{ }^{r}, y_{i}{ }^{r}\right)$ and the transformed coordinates ($\left.x_{i}{ }^{\prime}, y_{i}{ }^{\prime}\right)$

$$
J=\sum_{i=1}^{M}\left(x_{i}^{\prime}-x_{i}^{r}\right)^{2}+\left(y_{i}^{\prime}-y_{i}^{r}\right)^{2}
$$

- Simple linear algebra is used to find the solution to this problem.

INF 2310 - Mean square error

$$
J=\sum_{i=1}^{M}\left(x_{i}{ }^{\prime}-x_{i}^{r}\right)^{2}+\left(y_{i}{ }^{\prime}-y_{i}^{r}\right)^{2}=J_{x}+J_{y} \quad J_{x}=\sum_{i=1}^{M}\left(x_{i}{ }^{\prime}-x_{i}^{r}\right)^{2}
$$

Note that this is based on a linear relationship between the estimated and true coordinates.
$\overbrace{\left[\begin{array}{c}x_{1}^{r} \\ x_{2}^{r} \\ \vdots \\ x_{n}{ }^{r}\end{array}\right]}^{\mathrm{d}}=\overbrace{\left[\begin{array}{ccc}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \vdots & \vdots \\ x_{n} & y_{n} & 1\end{array}\right]}^{\mathrm{G}} \overbrace{\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]}^{\mathrm{a}}$

Find a that minimize the error

$$
J_{x}=(d-G a)^{T}(d-G a)=d^{T} d+a^{T} G^{T} G a-2 a^{T} G^{T} d
$$

$$
\frac{\delta J_{x}}{\delta a^{T}}=2 G^{T} G a-2 G^{T} d=0 \quad \Rightarrow \quad a=\left(G^{T} G\right)^{-1} G^{T} d
$$

A data example Estimated vs. true coordinates

Limitations of least squares matching (LSM)

- LSM matching assumes that all feature points are matched with the same accuracy. This is normally not the case.
- Possible solution: weighted least squares, where each points is weighted by an uncertainty measure:

$$
E_{W L S}=\sum_{i} \sigma_{i}^{2}\left\|x_{i}-x_{i}^{\prime}\right\|^{2}
$$

- LSM assumes a linear relationship between the measurements and the unknowns. This is also often not the case.
- An alternative is non-linear least squares which uses iterative algorithms (6.1.3). We will not go through this.

Robustness of matching

Robustness in data fitting

Problem: Fit a line to these datapoints

Least squares fit

Is this a good fit?

Introducing a robust matching algorithm

- The detected features are not perfect, there may be outliers where the match is NOT good.
- If we want to fit a line:
- Count the number of points that agree with the line.
- Agree means that the distance between the location of the estimated and the true coordinates is very small.
- Points which fulfill this criterion are called inliers.
- Other points are called outliers.
- For all possible lines, select the one with the larges number of inliers.

How do we find the best line?

- Unlike least-squares, there is no simple closed-form solution.
- Trial-and-test:
- Try out many lines, keep the best one

RANdom Sample Consensus

- In this example: Linear model, two points needed to get a fit.
- Select two points at random, compute the transform coefficients.
- Try this model for all other samples and count the number of inliers among the other samples.

RANdom Sample Consensus

RANdom Sample Consensus

RANSAC

- RANdom Sample Consensus (Fischler and Bolles, 1981)
- Algorithm:

1. Sample (randomly) exactly the number of points needed to fit the model.
2. Solve for the model parameters based on the samples.
3. Score by the fraction of inliers within a preset threshold.

- Repeat 1-3 until the best model is found with high confidence.

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

$$
N_{I}=6
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

$$
N_{I}=14
$$

Algorithm:

1. Sample (randomly) the number of points required to fit the model (\#=2)
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

- The inlier threshold is related to the amount of noise we expect in the inliers.
- Assume Gaussian noise with a given standard deviation (usually set in pixels, e.g. 3 pixels)
- The algorithm should terminate when the probability of finding a better consensus set (higher number of inliers) is lower than a certain threshold.
- More on this shortly

RANSAC algorithm

General version:

1. Randomly choose s samples $s=$ minimum sample size that let you fit a model
2. Fit a model (e.g. line) to those samples
3. Count the number of inliers that approximately fit the model.
4. Repeat N times
5. Choose the model that has the largest set of inliers, and fit this model to all inliers using e.g. least squares.

- When we have the best set of points, refine the model using all inliers.

Different models and s

- For alignment, s, the number of points needed, depends on the motion model. Each corresponding point in the image pair is one sample.

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Final step: refine the best model

- When the model with the highest number of inliers is found, this model is refitted to the set of all samples that are inliers.

Termination of the algorithm

- The criterion for terminating the algorithm is that the probability of finding a better consensus set is lower than a certain threshold.
- Let q be the probability for picking a set that does not contain any outliers.
- This depends on the number of points picked as $q=p_{i}{ }^{5}$
- The probability of picking as least one outlier will then be 1-q.
- If this is repeated h times, the probability to pick outliers in every random pick is $(1-q)^{h}$.
- Since we are selecting a small number s out of all corresponding points we will sooner or later make a good pick and this quantity goes to zero as h goes to infinity.

Termination of the algorithm

- Goal: pick h large enough so that $(1-q)^{h}$ is smaller than a probability threshold ε.

$$
\begin{aligned}
& (1-q)^{h} \leq \varepsilon \\
& h \log (1-q) \leq \log \varepsilon \\
& h \geq\left[\frac{\log \varepsilon}{\log (1-q)}\right]
\end{aligned}
$$

- The threshold for the iterations will be to stop at iteration

$$
\hat{T}_{\text {iter }}=\left\lceil\frac{\log \varepsilon}{\log (1-q)}\right\rceil \longleftarrow \begin{aligned}
& \text { Notation means smallest } \\
& \text { integer larger than }
\end{aligned}
$$

The number of iterations

- e, the outlier ratio, is unknown. We often pick worst case, e.g. 50% first, then adapt as we find more inliners.
- $\left.N=\log (1-\varepsilon) / \log \left(1-(1-e)^{s}\right)\right)$
- While $\mathrm{N}>$ sample_count repeat
- Choose a sample and count the number of inliers
- Set $\mathrm{e}=(1$-(number of inliners))/(total number of points)

Recompute N from e

- Increment sample_count

A table for the number of iterations

proportion of outliers e								
\mathbf{s}	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

RANSAC parameters

- Model
- Choose the simplest model that describes the type of motion involved
- Possible simple motion models (for equations see RANSAC4Dummies section 4.2)
- Linear
- Plane
- Rotation, scaling and translation
- Homographic(linear transform to relate two views from the same camera, used for panography)
- Distance threshold t:
- Choose t such that the probability for inlier is p (e.g. 0.95).
- Assume zero mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of iterations: Choose according to the table

Determine:
n - the smallest number of points required
k - the number of iterations required
t - the threshold used to identify a point that fits well
d - the number of nearby points required to assert a model fits well
Until k iterations have occurred
Draw a sample of n points from the data
uniformly and at random
Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the line against t; if the distance from the point to the line is less than t, the point is close
end
If there are d or more points close to the line then there is a good fit. Refit the line using all these points.
end
Use the best fit from this collection, using the fitting error as a criterion

RANSAC conclusions

- Good:
- Robust to outliers (can handle up to 50% outliers)
- Applicapable to a larger number of parameters than Hough transform/parameters are easier to choose.
- Bad:
- Computational time grows quickly with fraction of outliers and number of parameters.
- Not good for getting multiple fits.
- Common applications:
- Robust linear regression (and similar)
- Computing the transform behind image stitching (called homography)
- Image registration/Estimating the fundamental matrix relating two views.

Panoramas

Obtain a wider angle view by combining multiple images.

How to stitch together a panorama?

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)

Panoramas: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

- The mosaic has a natural interpretation in 3D
- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Homography

- How to relate two images from the same camera center?
- how to map a pixel from PP1 to PP2?
- Think of it as a 2D image warp from one image to another.
- A projective transform is a mapping between any two PPs with the same center of projection
- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines
- called Homography

$$
\begin{aligned}
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right] }
\end{aligned} \mathbf{p}^{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \underset{\mathbf{H}}{\mathbf{p}}
$$

Homography

To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of \mathbf{H} are the unknowns...

Solving for homographies

$$
\mathbf{p}^{\prime}=\mathbf{H p}\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

-Can set scale factor $i=1$. So, there are 8 unknowns.
-Set up a system of linear equations:

$$
\cdot A h=b
$$

-where vector of unknowns $h=[a, b, c, d, e, f, g, h]^{\top}$

- Need at least 8 eqs, but the more the better...
- Solve for h. If overconstrained, solve using least-squares:

$$
\min \|A h-b\|^{2}
$$

Summary: How to stitch together a panorama?

- Basic Procedure

- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)

