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INF 5300 - 02.04.2014
Feature-based alignment

Anne Schistad Solberg

 Finding the alignment between features from different 
images 

Geometrical transforms – short repetition

RANSAC algorithm for robust transform computation

Curriculum
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Background in geometrical transforms: Read e.g. 2.1.1 and 
2.1.2  in Szeliski

Section 6.1 i Szeliski

Recommended additional reading:

 Ransac is not described in detail in the book, you can find
more detailes in:

– Ransac for Dummies: 
vision.ece.ucsb.edu/~zuliani/.../RANSAC/docs/RANSAC4Dummies.pdf

– Ransac Toolbox for Matlab: git://github.com/RANSAC/RANSAC-Toolbox.git 



From last lecture: Image matching

• How do we compute the correspondence between
these images?
– Extract good features for matching (last lecture)
– Estimation geometrical operation for match (this lecture)

•by Diva Sian
•by swashford

From last lecture: Scale-invariant 
features (SIFT)

• See Distinctive Image Features from Scale-Invariant Keypoints 
by D. Lowe, International Journal of Computer Vision, 
20,2,pp.91-110, 2004.

• Invariant to scale and rotation, and robust to many affine 
transforms.

• Main components:
1. Scale-space extrema detection – search over all scales and 

locations.
2. Keypoint localization – including determining the best 

scale.
3. Orientation assignment – find dominant directions.
4. Keypoint descriptor - local image gradients at the selected 

scale, transformed relative to local orientation. 
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From last lecture: 
SIFT: feature matching

• Compute the distance from each keypoint in image A 
to the closest neighbor in image B. 

• We need to discard matches if they are not good as 
not all keypoints will be found in both images. 

• A good criteria is to compare the distance between 
the closest neighbor to the distance to the second-
closest neighbor. 

• A good match will have the closest neighbor should 
be much closer than the second-closest neighbor.

• Reject a point if closest-neighbor/second-closest-
neighbor >0.8.
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Results from last lecture – feature 
detecting and matching

A set of keypoints are detected and matched in two images
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Starting point for this lecture

• A set of corresponding feature points in two images.
• Goal: estimate the geometrical transform that we 

need to align the two images.
• Problem: movements are noisy and establishing ONE 

geometric transform for the image is difficult.
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Goal of this lecture

• Consider two images containing partly the the same 
objects but at different times, from different sensors, 
or from different views.

• Assume that a set of features has been detected and 
the matching between corresponding features
determined.

• Now we need to:
– Verify that the mathing is geometrically consistent
– This is the case if we can compute the motion between the

features using a simple 2D or 3D geometric transform
– How do we do this robustly?
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2D and 3D feature-based alignment

• We restrict us to parametric transforms such as the ones
illustrated above.

Simple operations:
• Translation
• Euclidean = translation + rotation
• Affine transforms
• Similarity = scaled rotation
• Projection
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INF 2310 - Geometrical operations

• Transform the  pixel coordinates (x,y) to (x’,y’):

x’=Tx(x,y)
y’=Ty(x,y)

• The transforms Tx og Ty are often given as 
transforms.



2D coordinate transformations

• translation: x’ = x + t x = 
(x,y)

• rotation: x’ = R x + t
• similarity: x’ = s R x + t
• affine: x’ = A x + t
• perspective: x’  H x x = (x,y,1)

(x is a homogeneous coordinate (expanded for 
convenient notation)
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INF 2310: Affine transforms

• Affine transforms  are described by:
x’ = a0x+a1y+a2

y’ = b0x+b1y+b2

• Matrix form: 
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INF 2310 - Examples of simple transforms

Transform a0 a1 a2 b0 b1 b2 Expression

Identity
1 0 0 1 0 0

x’=x
y’=y

Scalie
factor s

s 0 0 0 s 0
x’=sx
y’=sy

Rotation by  cos - sin 0 sin cos 0
x’=cosx-siny
y’= siny+ cosy
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INF 2310 – More examples

Transform a0 a1 a2 b0 b1 b2 Expression

Translation by
x og y 

1 0 x 0 1 y
x’=x+x
y’=y+y

Horisontal ”shear” 
factor s1

1 s1 0 0 1 0
x’=x+s1y
y’=y

Vertical ”shear” 
factor s2

1 0 0 s2 1 0
x’=x
y’=s2x+y
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INF 2310 - Combinations of affine 
transforms
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INF 2310 - Higher order transforms

• Bilinear transforms:
x’ = a0x+a1y+a2+a3xy
y’ = b0x+b1y+b2+b3xy

• Quadratic transforms:
x’ = a0x+a1y+a2+a3xy+a4x2+a5yy2

y’ = b0x+b1y+b2+b3xy+b4x2+b5yy2

• Higher order polynomials can also be used



2D Transform equations
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Projective Transformations

• Projective transformations:
– Affine transformations, and
– Projective warps

• Parallel lines do not necessarily remain parallel
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From INF 2310: Image co-registration

Original

Transformert

Image to co-register with

INF 2310 - coregistration III

• The root mean square error is used to evaluate how good a match is
• Given M point pairs (xi,yi),(xi

r,yi
r) ( r is the reference image)

• Assume that the transform gives estimated coordinates in the 
reference image as (x’i,y’i)

• (xi,yi) --> (x’i,y’i)
• The number of point pairs  is M >>3 for affine transforms og M>>6 for 

quadratic 
• The coefficients in the transform are computed as the values that 

minimize the square error between the true coordinates
• (xi

r,yi
r) and the transformed coordinates (xi’,yi’) 

• Simple linear algebra is used to find the solution to this problem.
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INF2310

INF 2310 – Mean square error
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Find a that minimize 
the error

=

Note that this is based
on a linear relationship
between the estimated
and true coordinates.

A data example
Estimated vs. true coordinates
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X’i Can we get a good fit to this data with
• A linear model?
• A quadratic model?



Limitations of least squares matching (LSM)

• LSM matching assumes that all feature points are 
matched with the same accuracy. This is normally 
not the case.
– Possible solution: weighted least squares, where each points 

is weighted by an uncertainty measure:

• LSM assumes a linear relationship between the 
measurements and the unknowns. This is also often 
not the case.
– An alternative is non-linear least squares which uses 

iterative algorithms (6.1.3). We will not go through this.
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Robustness in data fitting
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Is this a good fit?

Introducing a robust matching algorithm

• The detected features are not perfect, there may be 
outliers where the match is NOT good. 

• If we want to fit a line:
– Count the number of points that agree with the line.

• Agree means that the distance between the location of the 
estimated and the true coordinates is very small.

• Points which fulfill this criterion are called inliers.
• Other points are called outliers.

– For all possible lines, select the one with the larges number 
of inliers. 
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How do we find the best line?

• Unlike least-squares, there is no simple closed-form 
solution.

• Trial-and-test:
– Try out many lines, keep the best one
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RANdom Sample Consensus
• In this example: Linear model, two points needed to get a fit.
• Select two points at random, compute the transform

coefficients.
• Try this model for all other samples and count the number of

inliers among the other samples. 
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RANdom Sample Consensus
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RANdom Sample Consensus
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RANSAC

• RANdom Sample Consensus 
(Fischler and Bolles, 1981)

• Algorithm:
1. Sample (randomly) exactly the

number of points needed to fit the
model.

2. Solve for the model parameters based
on the samples.

3. Score by the fraction of inliers within a 
preset threshold.

• Repeat 1-3 until the best model is 
found with high confidence. 
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RANSAC

• The inlier threshold is related to the amount of noise
we expect in the inliers.

• Assume Gaussian noise with a given standard 
deviation (usually set in pixels, e.g. 3 pixels)

• The algorithm should terminate when the probability
of finding a better consensus set (higher number of
inliers) is lower than a certain threshold. 
– More on this shortly
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RANSAC algorithm

General version:
1. Randomly choose s samples

s=minimum sample size that let you fit a model

2. Fit a model (e.g. line) to those samples
3. Count the number of inliers that approximately fit

the model.
4. Repeat N times
5. Choose the model that has the largest set of inliers, 

and fit this model to all inliers using e.g. least
squares. 
– When we have the best set of points, refine the model

using all inliers. 
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Different models and s
• For alignment, s, the number of points needed, depends on the

motion model. Each corresponding point in the image pair is 
one sample.

INF 5300 38



Final step: refine the best model
• When the model with the highest number of inliers is found, this

model is refitted to the set of all samples that are inliers. 
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Termination of the algorithm
• The criterion for terminating the algorithm is that the probability

of finding a better consensus set is lower than a certain
threshold.

• Let q be the probability for picking a set that does not contain
any outliers. 

• This depends on the number of points picked as q =pi
s

• The probability of picking as least one outlier will then be 1-q. 
• If this is repeated h times, the probability to pick outliers in 

every random pick is (1-q)h.
• Since we are selecting a small number s out of all corresponding

points we will sooner or later make a good pick and this
quantity goes to zero as h goes to infinity.
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Termination of the algorithm
• Goal: pick h large enough so that (1-q)h is smaller than a 

probability threshold . 

• The threshold for the iterations will be to stop at iteration
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The number of iterations

• e, the outlier ratio, is unknown. We often pick worst case, e.g. 
50% first, then adapt as we find more inliners. 

• N=log(1-)/log(1-(1-e)s))
• While N>sample_count repeat

– Choose a sample and count the number of inliers
– Set e=(1-(number of inliners))/(total number of points)

Recompute N from e 
– Increment sample_count
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A table for the number of iterations
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RANSAC parameters
• Model 

– Choose the simplest model that describes the type of motion 
involved

– Possible simple motion models (for equations see
RANSAC4Dummies section 4.2)

• Linear
• Plane
• Rotation, scaling and translation
• Homographic(linear transform to relate two views from the

same camera, used for panography)
• Distance threshold t: 

– Choose t such that the probability for inlier is p (e.g. 0.95).
– Assume zero mean Gaussian noise with std. dev. : t2=3.84 2

• Number of iterations: Choose according to the table
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RANSAC conclusions
• Good:

– Robust to outliers (can handle up to 50% outliers)
– Applicapable to a larger number of parameters than Hough

transform/parameters are easier to choose.
• Bad:

– Computational time grows quickly with fraction of outliers
and number of parameters.

– Not good for getting multiple fits.
• Common applications:

– Robust linear regression (and similar)
– Computing the transform behind image stitching (called

homography)
– Image registration/Estimating the fundamental matrix

relating two views. 
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Panoramas

Obtain a wider angle view by combining multiple images.
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How to stitch together a panorama?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and 
first

– Transform the second image to overlap with the first
– Blend the two together to create a mosaic
– (If there are more images, repeat)



Panoramas: generating synthetic views

real
camera

synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Source: Alyosha Efros

mosaic PP

Image reprojection

• The mosaic has a natural interpretation in 3D
– The images are reprojected onto a common plane
– The mosaic is formed on this plane
– Mosaic is a synthetic wide-angle camera

Source: Steve Seitz



Homography
• How to relate two images from the same camera center?

• how to map a pixel from PP1 to PP2?
• Think of it as a 2D image warp from one image to 

another.
• A projective transform is a mapping between any two PPs 

with the same center of projection
– rectangle should map to arbitrary quadrilateral 
– parallel lines aren’t
– but must preserve straight lines

• called Homography
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Source: Alyosha Efros

Homography

 11, yx  11, yx 

To compute the homography given pairs of corresponding 
points in the images, we need to set up an equation where 
the parameters of H are the unknowns…

 22 , yx  22 , yx

… …

 nn yx ,  nn yx  ,

Grauman



Solving for homographies

•Can set scale factor i=1. So, there are 8 unknowns.
•Set up a system of linear equations:

•Ah = b
•where vector of unknowns h = [a,b,c,d,e,f,g,h]T

•Need at least 8 eqs, but the more the better…
•Solve for h. If overconstrained, solve using least-squares: 
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Summary: How to stitch together a 
panorama?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and 
first

– Transform the second image to overlap with the first
– Blend the two together to create a mosaic
– (If there are more images, repeat)

Source: Steve Seitz


