	Contact information	
INF 5300 15.1.14 Introduction and a taste of the course	 Are Jensen On IFI wednesdays, room 4457 Email: arej@ifi.uio.no 	
Lecturers: • Are Jensen • Anne Schistad Solberg	 Anne Schistad Solberg Room 4458 anne@ifi.uio.no , 22852435 	
15.1.14 INF 5300 1	INF 5300	2
Course hightlights	Lecture plan	
• Two main parts:	Lecture plan 22.01: Introduction to regularization	(Anne)
Two main parts: _ Computer vision	22.01: Introduction to regularization29.01: Active contour models	(Anne) (Anne)
Two main parts:	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 	(Anne) (Anne)
 Two main parts: Computer vision Pattern recognition 	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 	(Anne) (Anne) (Anne)
Two main parts: _ Computer vision	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 26.02: Extracting good features for tracking/geometry 	(Anne) (Anne) (Anne) (Anne)
 Two main parts: Computer vision Pattern recognition One mandatory exercise 	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 26.02: Extracting good features for tracking/geometry 05.03: Lab 	(Anne) (Anne) (Anne) (Anne) (Anne)
 Two main parts: Computer vision Pattern recognition One mandatory exercise Individual themes Can be linked to your master topic if requested Deadline can be fitted to your schedule if it fits with the 	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 26.02: Extracting good features for tracking/geometry 	(Anne) (Anne) (Anne) (Anne)
 Two main parts: Computer vision Pattern recognition One mandatory exercise Individual themes Can be linked to your master topic if requested 	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 26.02: Extracting good features for tracking/geometry 05.03: Lab 12.03: Feature selection 	(Anne) (Anne) (Anne) (Anne) (Anne) (Are)
 Two main parts: Computer vision Pattern recognition One mandatory exercise Individual themes Can be linked to your master topic if requested Deadline can be fitted to your schedule if it fits with the course schedule. 	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 26.02: Extracting good features for tracking/geometry 05.03: Lab 12.03: Feature selection 19.03: Linear feature transforms 	(Anne) (Anne) (Anne) (Anne) (Anne) (Are) (Are)
 Two main parts: Computer vision Pattern recognition One mandatory exercise Individual themes Can be linked to your master topic if requested Deadline can be fitted to your schedule if it fits with the course schedule. Lab exercise sessions 	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 26.02: Extracting good features for tracking/geometry 05.03: Lab 12.03: Feature selection 19.03: Linear feature transforms 26.03: Lab 02.04: Image registration 09.04: Motion estimation 	(Anne) (Anne) (Anne) (Anne) (Anne) (Are) (Are)
 Two main parts: Computer vision Pattern recognition One mandatory exercise Individual themes Can be linked to your master topic if requested Deadline can be fitted to your schedule if it fits with the course schedule. 	 22.01: Introduction to regularization 29.01: Active contour models 05.02: Markov random fields and contextual models 12.02: Lab on active contours/Markov fields 26.02: Extracting good features for tracking/geometry 05.03: Lab 12.03: Feature selection 19.03: Linear feature transforms 26.03: Lab 02.04: Image registration 	(Anne) (Anne) (Anne) (Anne) (Anne) (Are) (Are) (Are) (Are) (Anne)

Curriculum

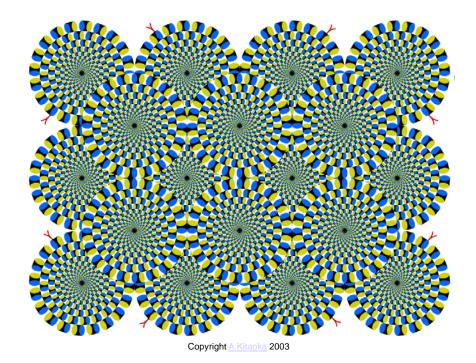
Computer Vision book

 Lecture notes are most important! Some lectures are based on: "Pattern Recognition" by S. Theodoridis and K. Koutroumbas: (A paper copy of selected sections will be provided) Many of the lectures are based on: «Computer vision: Algorithms and applications» by R. Szeliski 	 See <u>http://szeliski.org/Book/</u> See webpage for ordering A PDF of book is also available 	Computer Vision Algorithms and Applications
INF 5300 5	INF 5300	6

Every picture tells a story

 Goal of computer vision is to write computer programs that can interpret images

Can computers match (or beat) human vision?



- Yes and no (but mostly no!)
 - humans are much better at "hard" things
 - computers can be better at "easy" things

Human perception has its shortcomings...

Sinha and Poggio, Nature, 199

Current state of the art

• The next slides show some examples of what current vision systems can do

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

Face detection

Many new digital cameras now detect faces
 – Canon, Sony, Fuji, ...

Smile detection?

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

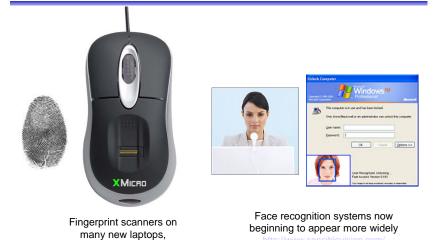
Sony Cyber-shot® T70 Digital Still Camera

Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics

"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it... "

Vision-based biometrics



"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Login without a password...

Object recognition (in mobile phones)

- This is becoming real:
 - Lincoln Microsoft Research
 - Point & Find, Nokia

Special effects: shape capture

other devices

Sports

Sportvision first down line Nice explanation on www.howstuffworks.com

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Slide content courtesy of Amnon Shashua

Mobileye

- Vision systems currently in high-end BMW, GM, Volvo models
- By 2010: 70% of car manufacturers.
- Video demo

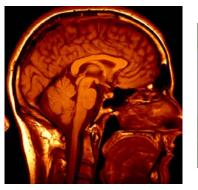
Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

Robotics



NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

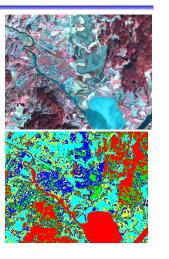
Medical imaging

3D imaging MRI, CT

Image guided surgery Grimson et al., MIT

Current state of the art

- You just saw examples of current systems.
 - Many of these are less than 5 years old
- This is a very active research area, and rapidly changing
 - Many new apps in the next 5 years
- To learn more about vision applications and companies
 - <u>David Lowe</u> maintains an excellent overview of vision companies
 - <u>http://www.cs.ubc.ca/spider/lowe/vision.html</u>

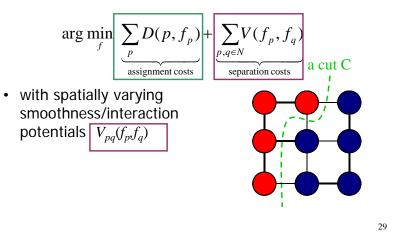

A taste of regularization

- In segmentation, we often want objects with smooth boundaries.
- Regularization is the process of contraining a an algorithmg to produce smooth objects/boundaries.
- We can regularize simple classification using contextual models
 - The class labels for a pixel will be modelled as a function of its neighbors.
- We can regularize the shape of the boundaries
 - Example: snakes
- We can regularize the estimated motion of objects in e.g. a video.

INF 5300

Background – contextual classification

- An image normally contains areas of similar class
 - neighboring pixels tend to be correlated.
- Classified images based on a non-contextual model often contain isolated misclassified pixels (or small regions).
- How can we get rid of this?
 - Majority filtering in a local neighborhood
 - Remove small regions by region area
 - Relaxation (Kittler and Foglein see INF 3300 Lecture 23.09.03)
 - Bayesian models for the joint distribution of pixel labels in a neighborhood.
- How do we know if the small regions are correct or not?
 - Look at the data, integrate spatial models in the classifier.


Markov Random Fields

- Used a lot in computer vision and graphics:
- stereo matching
- image segmentation
- image blending
- texture synthesis
- image restoration


Markov Random Fields

• We want to minimize the energy function *E*(*f*)

Snakes – active contours

Example – segmenting ultrasound images of the hearth

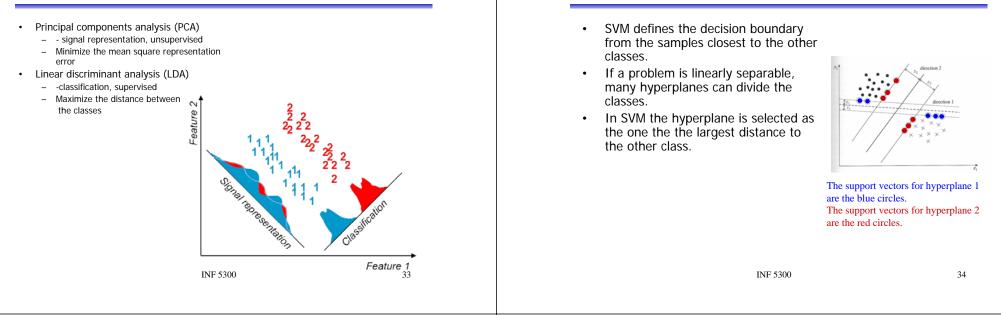
Find the border of the left ventricle

- 2D views have partly discontinuous border
- Noisy image

30

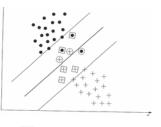
The initial idea: Snakes

- An active contour (snake) is a set of points which aims to enclose a target feature.
- Snakes are model-based methods for localization and tracking of image structures.
- The snake is defined as an energy minimizing contour (often defined using splines).
- g
- The <u>energy</u> of the snake depends on its shape and location within the image.
- Snakes are attracted to image boundaries through forces.


Back to pattern recognition: Feature selection

- Given a large set of N features, how do we select the best subset of m features?
 - How do we select m?
 - Finding the best combination of m features out a N possible is a large optimization problem.
 - Full search is normally not possible.
 - Suboptimal approaches are often used.
 - How many features are needed?
- Alternative: compute lower-dimensional projections of the N-dimensional space
 - PCA
 - Fisher's linear discriminant
 - Projection pursuit and other non-linear approaches

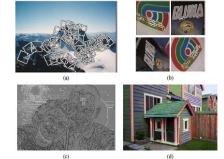
31


INF 5300

SVM: The nonseparable case

- If the two classes are nonseparable, a hyperplane satisfying the conditions w^Tx-w₀=±1 cannot be found.
- A penalty will now be given to the samples closest to the boundary.
- A magic trick solves the classification problem in a higher dimensional space.

- Correctly classified
- Erroneously classified


Which features are good for tracking?

Classification by Support Vector Machines

- In many applications, we need to match or track different parts of the image.
- Applications are e.g.
 - Tracking in video
 - Motion estimation
 - Multi-camera views

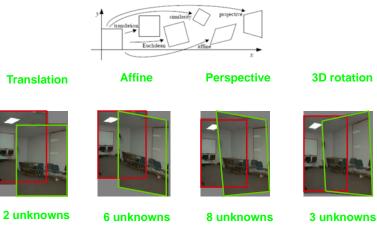
Features for tracking

- Should we track:
 - Pixel patches?
 - Regions?
 - Edges?
 - Lines?
 - Is multiscale needed?

Motion estimation

- Motion estimation in e.g. medical ultrasound images gives information about the object (e.g. how the hearth behaves).
- Motion estimation in a video sequence can be due to camera instability and might be removed.
- Visual motion indicates the dynamics in the scene.
- Geometrical motion models are used in parametric motion estimation.

Patch matching


INF 5300

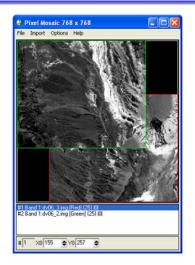
- How do we determine correspondences?
 - block matching or SSD (sum squared differences)
- How do we ensure a smooth motion estimate?

INF 5300

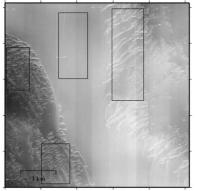
37

Motion estimation

Image Mosaics



Goal: Stitch together several images into a seamless composite


Applications of stitching: Panoramic images

Applications of stitching: remote sensing

Applications of stitching: seafloor mapping

(a) Original DTM

41

Curriculum for next lecture:

- Have a brief look at section 3.7 Global optimization in Szeliski
- Active contours will be based onon Chapter 6 from Feature Extraction & Image Processing by Nixon and Aguado. You can find it at
- /ifi/asgard/k00/inf5300/pensum-artikler/activecontour_kap6.pdf

INF 5300