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INF 5300 – Support Vector 
Machine Classifiers (SVM)

Anne Solberg (anne@ifi.uio.no)

• Introduction:

• Linear classifiers for two-class problems 

• The kernel trick – from linear to a high-
dimensional generalization

• Generation from 2 to M classes

• Practical issues
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Curriculum

• Lecture foils are most important!
• The lectures are based on selected sections from 

Pattern Recognition, Third Edition, by Theodoridis 
and Koutroumbas:
– 3.1-3.2, 3.7 (but 3.7.3 is a SVM-variant that we will skip)
– 4.17
– These sections use optimization theory described in 

Appendic C. We only include enough mathematics to state 
the optimization problem, and you are not required to 
understand how this optimization is solved. 
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Learning goals

• Understand enough of SVM classifiers to be able to 
use it for a classification application.
– Understand the basic linear separable problem and what the

meaning of the solution with the largest margin means.
– Understand how SVMs work in the non-separable case using

a cost for misclassification. 
– Accept the kernel trick: that the original feature vectors can

be transformed into a higher dimensional space, and that
linear  SVM is applied in this space.

– Know briefly how to extend from 2 to M classes.
– Know which parameters the user must specify and how to 

perform a grid search for these.
– Be able to find a SVM library and use it correctly 
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Linear classification
What we learned in INF 4300

• The classes were described by multivariate Gaussian distributions 
given the mean vector s and covariance matrix s :

• Finding the best class for a new pattern was done by computing 
the probability for each class. 

• This could be reformulated as computing discriminant functions:
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Linear classification
What we learned in INF 4300

• We looked at some special cases of this
(uncorrelated features, common covariance
matrix, and full covariance matrix).

• If the features were indepenent (Σj=σ2I) 
the discriminant function was simplified to: 

• This resulted in linear decision boundaries.
• Computing this discriminant function to 

classify pattern xi involves computing the
distance from the point to the mean values
s for each class. 
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Linear classification
What we learned in INF 4300

• We also found that the discriminant
function (when Σj=σ2I) that defines the
border between class 1 and 2 in the
feature space is a straight line.

• The discriminant function intersects the
line connecting the two class means at 
the point c=(1- 2)/2 (if we do not 
consider prior probabilities).

• The discriminant function will also be 
normal to the line connecting the
means. 
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Introduction to 
Support Vector Machine classifiers

• To understand Support Vector Machine (SVM) 
classifiers, we need to study the linear classification
problem in detail.

• We will need to see how classification using this (the
linear case on the previous slide) can be computed
using inner products. 

• We start with two linearly separable classes.
• Extension to two non-separable classes.
• Extenison to M classes.
• The last step will be to use kernels to separate 

classes that cannot be separated in the input space. 
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Linear algebra basics:
Inner product between two vectors.

• The inner product (or dot
product) between two vectors (of
length N) x and y or is given by 

• The angle between two vectors A 
and B is defined as: 

• Scalar projection of A onto B
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Linear algebra basics:
Inner product between two vectors.

• If two vectors A and B are
orthogonal, the angle between
then is 90 and 

AB=0.

• If they are co-directional the
angle is 0 and 
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A new view at linear classification
with 2 classes using inner products

• We have two classes (+ and -) represented by the class means c+
and c-. 

• Let the feature vector be xi, and let yi be the class of feature 
vector i. 

• If we have m+ samples from class + and m- samples from class -, 
the class means are given by

• A new pattern x should be classified to the class with the closest
mean. 
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• Half way between the means lies the point
c=(c++c-)/2.

• We can compute the class of a new
sample x by checking whether the vector
x-c (connecting x to c) encloses an angle 
smaller than /2 ( in terms of absolute
value) with the vector w=c+- c-.

• This angle is given by the inner product
between w and x-c: wT(x-c) 

• If a point x is on the decision boundary
hyperplane, then wTx=0.

• The angle between two vectors is 
computed by the inner product, which
changes sign as the angle passes through
/2 .
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Support Vector Machines 
Two linear separable classes

• Let xi, i=1,...N be all the l-dimensional feature vectors
in a training set with N samples.

• These belong to one of two classes, 1 and 2. 
• We assume that the classes are linearly separable.
• This means that a hyperplane 

g(x)=wTx+w0=0
correctly classifies all these training samples. 

• w=[w1,...wl] is called a weight vector, and w0 is the
threshold.
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What is w related to the hyperplane?

• If x1 and x2 are two points
on the decision boundary
(on the hyperplane) the
following must be true:

• Thus w must be normal to 
the line connecting x1 and x2
(w must be normal to the
decision boundary). 
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• If the classes are linearly separable, there exist a hyperplane 
w*Tx=0 such that:

• The above  also covers the situation where the hyperplane 
does not cross the origin, w*Tx+w0=0, since this can 
reformulated as x’=[x,1]T, w’=[w*T,w0]T. Then w*Tx+w0=w’Tx’.

• Remember from 4300 that the decision boundary was defined 
as the surface where the discriminant function g1(x)-g2(x)=0 
(g1(x)=g2(x)). 
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• There can be many such
hyperplanes.

• Which of these two is best, and 
why?
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Hyperplanes and margins
• A hyperplane is defined by its

direction (w) and exact position (w0). 
• Remember that w is orthogonal to 

the hyperplane
• If both classes are equally probable, 

the distance from the hyperplane 
to the closest points in both
classes should be equal. This is called
the margin.

• The margin for direction 1 is 2z1, and 
for direction 2 it is 2z2.

• The distance from a point to a 
hyperplane is  
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Hyperplanes and margins
• We can scale w and w0 such

that g(x) will be equal to 1 at 
the closest points in the two
classes. This is equivalent to:

1. Have a margin of

2. Require that

• Goal: find w and w0

www

211


20

10

     ,1

     ,1









xwxw

xwxw
T

T

SVM 25.4.12 INF 5300 18

The optimization problem with margins

• The class indicator for pattern i, yi, is defined as 1 if yi belongs to 
class 1 and -1 if it belongs to 2.

• The best hyperplane with margin can be found by solving the
optimization problem with respect to w and w0 : 

• Checkpoint: do you understand this formulation?
• How is this criterion related to maximizing the margin?
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The optimization problem with margins

• This is a quadratic optimization task with a set of linear inequality
contraints.

• It can be shown that the solution has the form:

• The i’s are called Lagrange multipliers.
• The i’s can be either 0 or positive. 
• We see that the solution w is a linear combination of NsN

feature vectors associated with a i>0.
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• The feature vectors xi with a 
corresponding i>0 are called the
support vectors for the problem.

• The classifier defined by this
hyperplane is called a Support Vector
Machine.  

• Depending on yi (+1 or -1), the
support vectors will thus lie on either
of the two hyperplanes 

wTx+w0=1
• The support vectors are the points in 

the training set that are closest to the
decision hyperplane. 

• The optimization has a unique
solution, only one hyperplane satisfies
the conditions. 

The support vectors for hyperplane 1
are the blue circles.
The support vectors for hyperplane 2
are the red circles.
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Solving the optimization problem 

• The optimization problem

has a dual representation with equality constraints:

• This is easier to solve and can be reformulated as: 

• Note that the training samples xi and xj occurr as inner products of pairs of feature 
vectors. The solution does not depend on the dimensionality of the feature 
vector, only on the inner product.

• The computational complexity can be expected to depend on the number of pixels
in the training data set, N.  

• In this setting we just accept that the solution can be found in optimization theory.
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The nonseparable case
• If the two classes are nonseparable, 

a hyperplane satisfying the
conditions wTx-w0=1 cannot be 
found.

• The feature vectors in the training
set are now either:

1. Vectors that fall outside the band 
and are correctly classified.

2. Vectors that are inside the band 
and are correctly classified. They
satisfy 0yi(wTx+w0)<1

3. Vectors that are misclassified –
expressed as yi(wTx+w0)<0

Correctly classified

Erroneously classified
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• The three cases can be treated under a single type of contraints if
we introduce slack variables i:

– The first category (outside, correct classified) have i=0
– The second category (inside, correct classified) have 0 i 1
– The third category (inside, misclassified) have i >1

• The optimization goal is now to keep the margin as large as 
possible and the number of points with i >0 as small as possible.
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Cost function – nonseparable case
• The cost function to minimize is now

• C is a parameter that controls how much misclassified
training samples is weighted. 

• We skip the mathematics and present the alternative dual 
formulation:

• All points between the two hyperplanes (i>0) can be shown to 
have i=C.
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Nonseparable vs. separable case

• Note that the slack variables i does not enter the
problem explicitly.

• The only difference between the linear separable and 
the non-separable case is that the Lagrange-
multipliers are bounded by C.

• Training a SVM classifier consists of solving the
optimization problem.
– The problem is quite complex since it grows with the

number of training pixels. 
– It is computationally heavy.
– We will get back with hints of software libraries to use at the

end of the lecture....
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An example – the effect of C
• C is the misclassification cost.

• Selecting too high C will give a classifier that fits the training 
data perfect, but fails on different data set.

• The value of C should be selected using a separate validation 
set. Separate the training data into a part used for training, 
train with different values of C and select the value that gives 
best results on the validation data set. Then apply this to new 
data or the test data set. (explained later)

C=0.2 C=100
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How to go from 2 to M classes

• All we have discussed up to now involves only
separating 2 classes. How do we extend the methods
to M classes?

• Two common approaches:
– One-against-all

• For each class m, find the hyperplane that best disciminates
this class from all other classes. Then perform a majority vote
across classifiers or use some other measure to select the best 
of these. (To use this, we need the VALUE of the inner product
and not just the sign.)

– Compare all sets of pairwise classifiers
• Find a hyperplane for each pair of classes. This gives M(M-1)/2 

pairwise classifiers. Again, use of voting scheme for selecting
the best of these. 
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-SVM

• -SVM is a variant of SVM.
• Ordinary SVM is most commonly used, but -SVM can

be more effective if the two classes are imbalances
(more data from one of the classes).

• We will not go through -SVM (section 3.7.3).....
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SVM: A geometric view

• SVMs can be related to the convex hull of the
different classes. Consider a class that contains
training samples X={x1,...xN}. 

• The convex hull of the set of points in X is given by 
all convex combinations of the N elements in X. 

• From INF 4300:
– A region R is convex if and only if for any two points x1,x2

in R, the whole line segment between x1 and x2 is inside
the R.

– The convex hull of a region is the smalles convex region H 
which satisfies the conditions RH.
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• The convex hull for a class is the smallest convex set that
contains all the points in the class (X).

• Searching for the hyperplane with the highest margin is 
equivalent to searching for the two nearest points in the two
convex sets.
– This can be proved, but we just take the result as an aid to get a 

better visual interpretation of the SVM hyperplane. 
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Reduced convex hull
• To get a useable interpretation for nonseparable classes, we need

the reduced convex hull. 
• The convex set can be expressed as:

• The reduced convex hull is : 

•  is a scalar between 0 and 1.  = 1 gives the regular convex
hull.
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Reduced convex hull - example

• Data set with overlapping classes.

• For small enough values of , we can make the two reduced convex
hulls non-overlapping.

• A very rough explanation of the non-separable SVM problem is that a 
value of  that gives non-intersecting reduced convex hulls must be 
found. 

• Given a value of  that gives non-intersecting reduced convex hulls, 
the best hyperplane will bisect the line between the closest points in 
these two reduced convex hulls. 

=1
Regular
convex
hulls

.....: =0.4
----: =0.1
Reduced
convex
hulls
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Relating  and C

• Given a value of  that gives non-intersecting reduced convex hulls, 
find the hyperplane by finding the closest two points in the two sets.

• Several values of  can give nonintersecting reduced hulls.
•  is related to C, the cost of misclassifying training regions (see page

101). 
• A high C will give regions that just barely give nonintersecting regions.
• The most robust considering a validation data set is probably a smaller

value of C (and ). 
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Checkpoint
• What does this criterion mean:

• Which points are the support vectors in the linear case?
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SVMs: The nonlinear case
• We have now found a classifier that is not defined in terms of the

class centres or the distributions, but in terms of patterns close
to the borders between classes, the support vectors.

• It gives us a solution in terms of a hyperplane. This hyperplane 
can be expressed as a inner product between the training samples:

• The training samples are l-dimensional vectors.
• What if the classes overlap in l-dimensional space:

– Can we find a mapping to a higher dimensional space, and use the
SVM framework in this higher dimensional space?
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• Assume that there exist a mapping from l-dimensional feature 
space to a k-dimensional space (k>l) :

• Even if the feature vectors are not linearly separable in the input 
space, they might be separable in a higher dimensional space. 

• Classification of a new pattern x is to be computed by computing
the sign of

• In k-dimensional space, this involves the inner product between
two k-dimensional vectors.

• Can it really help to go to a higher dimensional space?
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An examle: from 2D to 3D
• Let x be a 1x2 vector x=[x1,x2].
• Consider the transformation

• On the toy example, the two classes
can not be linearly separated in the
original 2D space. 

• It can be shown that

• Given the transformation above, 
these points in a 3D space CAN 
actually be separated by a 
hyperplane. 

• In 2D, we would need an ellipse to 
separate the classes. 

• In 3D, this ellipse can be expressed
as a linear function of y. 
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A useful trick: Mercer’s theorem – finding a mapping
to the high-dimensional space using a kernel

Assume that  is a mapping:

where H is an Euclidean space. 
The inner product has an equivalent representation

where r(x) is the r-component of the mapping (x) of x, and K(x,z)
is a symmetric function satisfying

for any g(x), xRl such that

K(x,z) defines a inner product. K(x,z) is called a kernel. 
Once a kernel has been defined, a mapping to the higher
dimensional space is defined.  
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What we need from all this math 
is just that the inner product can 
be computed using the kernel 
K(x,z). Someone has also 
identified some useful kernels. 
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Useful kernels for classification
• Polynomial kernels

• Radial basis function kernels (most commonly used)

• Hyperbolic tangent kernels (often with =2 and =1)

• The most common type of kernel is the radial basis function. It 
has an extra parameter  that must be tuned. 
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The kernel formulation of 
the cost function

• Given the appropriate kernel (e.g. Radial with width ) and the cost of 
misclassification C, the optimization task is: 

• The resulting classifier is:
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SVM architecture

• Notice how the kernels are 
used to compute the inner 
product between all pairs of 
samples xi in the training 
data set. 
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Example of the decision boundary

• This illustrates how the 
nonlinear SVM might look in 
the original feature space. 
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How to use a SVM classifier

• Find a library with all the necessary SVM-functions 
– For example libSVM  http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• Read the introductory guide
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

• Use a radial basis function kernel.
• Scale the data to the range [-1,1] (will not be dominated with 

features with large values).

• Find the optimal values of C and  by performing a grid search 
on selected values and using a validation data set. 

• Train the classifier using the best value from the grid search.
• Test using a separate test set.  
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How to do a grid search

• Use n-fold cross valiation (e.g. 10-fold cross-
validation).
– 10-fold: divide the training data into 10 subsets of equal 

size. Train on 9 subsets and test on the last subset. Repeat 
this procedure 10 times. 

• Grid search: try pairs of (C,). Select the pair that 
gets the best classification performance on average 
over all the n validation test subsets.

• Use the following values of C and :
• C = 2-5, 2-3, ..., 215

•  = 2-15, 2-13, ...., 23
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Learning goals

• Understand enough of SVM classifiers to be able to 
use it for a classification application.
– Understand the basic linear separable problem and what the 

meaning of the solution with the largest margin means.
– Understand how SVMs work in the non-separable case using 

a cost for misclassification. 
– Accept the kernel trick: that the original feature vectors can 

be transformed into a higher dimensional space, and that 
linear  SVM is applied in this space.

– Know briefly how to extend from 2 to M classes.
– Know which parameters (C,) the user must specify and how 

to perform a grid search for these.
– Be able to find a SVM library and use it correctly 


