CHAPTER 6

FEATURE
GENERATION I:
LINEAR TRANSFORMS

6.1 INTRODUCTION

The goal of this chapter is the generation of features via linear transforms of the
input (measurement) samples. A number of transforms will be presented and re-
viewed. The basic concept is to transform a given set of measurements to a new
set of features. If the transform is suitably chosen, transform domain features
can exhibit high “information packing” properties compared with the original in-
put samples. This means that most of the classification-related information is
“squeezed” in a relatively small number of features, leading to a reduction of the
necessary feature space dimension.

The basic reasoning behind transform-based features is that an appropriately
chosen transform can exploit and remove information redundancies, which usually
exist in the set of samples obtained by the measuring devices. Let us take for
example an image resulting from a measuring device, for example, X-rays or a
camera. The pixels (i.e., the input samples) at the various positions in the image
have a large degree of correlation, due to the internal morphological consistencies
of real-world images that distinguish them from noise. Thus, if one uses the pixels
as features, there will be a large degree of redundant information. Alternatively,
if one obtains the Fourier transform, for example, of a typical real-world image,
it turns out that most of the energy lies in the low-frequency components, due
to the high correlation between the pixels, Hence, using the Fourier coefficients
as features seems a reasonable choice, because the low-energy, high-frequency
coefficients can be neglected, with little loss of information. In this chapter we
will see that the Fourier transform is just one of the tools from a palette of possible
transforms.
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6.2 BASIS VECTORS AND IMAGES

Let x(0), x(1), . o x(N

— 1) be a set of input samples and x be the N x | corre-
sponding vector,

xT = [x(0),.. L X(N = 1)]

Given a unitary N x N matrix A’ we define the transformed vector y of x as

H
L)

(6.1)

where “H™ denotes the Hermitian operation,

that is, complex conjugation and
transposition. From (6.1) and the definition of

unitary matrices we have

N~1
r=Ay=3 yi)a (6.2)
i=0

The columns of A, a,i =0,1,...,N
transform. The elements ¥(i) of y are no
basis vectors. Indeed, takin g the inner p

— 1, are called the basis vectors of the
thing but the projections of x onto these
roduct of x with g j we have

N—1

N=1
<xaj>=xlaj=3 "yi)<a,a >= 208 =y (63
i=(0 i=f

This is due to the unitary property of A, thatis, A% A =  or < g, a;>=aflg; =
5,}'.

In many problems, such as in image analysis, the inp
dimensional sequence X, )i, j=0,1,.... N
X instead of a vector. In such cases, one can de

for example, by orderin g the rows of the matrix o
ordering)

ut set of samples is a two-
— 1, defining an N x N matrix
fine an equivalent N2 vector x,
ne after the other (lexicographic

x7 =[X(0,0),...,X(O,N——l},...,X(N— LO),....,X(N ~1,N - 1))

and then transform this equivalent vector.
way to work. The number of operations re

matrix (A) with an N2 x 1 vector x is of the order of O(N*), which is prohibitive
for many applications. An alternative possibility is to transform matrix X via a

set of basis matrices or basis images. Let U and V be unitary N x N
e e

*A complex matrix is called unitary if A~ = A, Real matrices are equivalently called orthogonal
ifA™ = AT,

However, this is not the most efficient
quired to multiply an N? x N2 square

matrices.
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Define the transformed matrix ¥ of X as
Y =U"XV (6.4)

or

X=UyvH (6.5)
The number of operations is now reduced to O(N?). Equation (6.5) can alterna-
tively be written (Problem 6.1) as

N-IN=I

X = Z Z Y, j)u‘-v? (6.6)

i=0 j=0
where u; are the column vectors of U and v the column vectors of V. Each of
the outer products ufvf isan N x N matrix
H,‘OU;G st HfQU;N_I
uy, = : T ; — 'AU

e

" *
Uin-1Vjg «or Uin—1Ujy_

and (6.6) is an expansion of matrix X in terms of these N? basis images (matrices).
Furthermore, if ¥ turns out to be diagonal, then (6.6) becomes

N-1
X =Y huvl
=0

and the number of basis images is reduced to N. An interpretation similar to (6.3)
is also possible. To this end, let us define the inner product between two arrays as

N-1N-1
<A B>=) %" Alm,n)B*(m,n) (6.7)

m=0 n=0

Then it is not difficult to show that (Problem 6.1)
YU, jy=<X Ay > (6.8)

In words, the (i, j) element of the transformed matrix results from multiplying each
element of X by the conjugate of the corresponding element of .4;; and summing
up all products. y

Transformations of the type (6.4) are also known as separable (Problem 6.2).
The reason is that one can look at them as a succession of one-dimensional trans-
forms, first applied on column vectors and then on row vectors. For example, the
intermediate result in (6.4), Z = U X, is equivalent to N transforms applied to
the column vectors of X, and (U# X)V = (VH Z#)H is equivalent to a second
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sequence of N transforms actin
transforms that we will deal wit

& upon the rows of Z. All the two-dimensional (Append
h in this chapter are separable ones,

Example 6.1. Given the image X and the orthogonal transform matrix U
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6.3 THE KARHUNEN-LORVE TRANSFORM

Let x be the vector of input samples. In the case of an image array,
by lexicographic order;

enerated features Our goal nc
1s to be mutually uncorrelated In order to avoid information redundancies. The (6.14) and t
goal of this section is to generate features that are optimally uncorrelated, that is, have
EDY@Dy(NI =0, i # j. Let?
y=ATy (6.9)
From the definition of the correlation matrix we have
Ry =Elyy ] = E[ATxxT 4] = ATR. A (6.10)
However, R, is a Symmetric matrix, and hence its eigenvectors are mutually or- Combining
thogonal (Appendix B). Thus, if matrix A4 is chosen so that its columns are the

orthonormal eigenvectors a,i=01,.._.N~— 1, of R,, then R, is diagonal

—_—

2We deal with real data. The complex case is a straightforward extension,
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(Appendix B)
B=A Bl =4 (6.11)

where A is the diagonal matrix having as elements on its diagonal the respective
eigenvalues A;, i =0, 1,..., N — 1, of R,. Furthermore, assuming R, to be pos-
itive definite (Appendix B) the eigenvalues are positive. The resulting transform
is known as the Karhunen—Loéve (KL ) transform, and it achieves our original goal
of generating mutually uncorrelated features. The KL transform is of fundamental
significance in pattern recognition and in a number of signal and image processing
applications. Let us look at some of its important properties.

Mean square error approximation. From Egs. (6.2) and (6.3) we have
X = i y(i)a; and y(i)=alx (6.12)
Let us now define a new vector in the m-dimensional subspace
=) yli)a; (6.13)

where only m of the basis vectors are involved. Obviously. this is nothing but the
projection of x onto the subspace spanned by the m (orthonormal) eigenvectors
involved in the summation. If we try to approximate x by its projection £, the
resulting mean square error is given by

E[llx — 2I1°] = [n}jy(:)a,n] (6.14)

i=m

Our goal now is to choose the eigenvectors that result in the minimum MSE. From
(6.14) and taking into account the orthonormality property of the eigenvectors, we
have

Il

= [Z > Gl)a] )(J-'U)a;)] (6.15)

N=—

Z E[y3()] = ZaTE[xIT]af (6.16)

=m i=m

N-1
E{n > y(;)a,.[;z]

Combining this with (6.14) and the eigenvector definition, we finally get
N’

E[llx —2P] = Za A,aa_z i (6.17)

I=m i=m
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FIGURE 6.1: The KL transform is not always best for pattern recognition. In
this example, projection on the eigenvector with the larger eigenvalue makes the
two classes coincide. On the other hand, projection on the other eigenvector keeps

the classes separated.

correlation matrix are equal to the variances of the transformed features. Thus,
selecting those features, y(i) = a! x, corresponding to the m largest eigenvalues
makes their sum variance 3, A; maximum. In other words, the selected m features
retain most of the total variance associated with the original random variables x(i).
Indeed, the latter is equal to the trace of R, which we know from linear algebra
to be equal to the sum of the eigenvalues Mo A [Stra80]. It can be shown
that this is a more general property. That is, from all possible sets of m features,
obtained via any orthogonal linear transformation on x, the ones resulting from
the KL transform have the largest sum variance (Problem 6.3).

Entropy. We know from Chapter 2 that the entropy of a process is defined as

hy = —E[ln py(y)]

and it is a measure of the randomness of the process. For a zero mean Gaussian
multivariable m-dimensional process the entropy becomes

1 1
hy = 3EDTR;'Y1+ 5 n Ry | + ”ziln(zn) (6.20)
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However,

Ey Ry = Errrace{yTR;IyJ] = Eftrace(R ' yyT}} = trace(/) = m

and using the known property from linear algebra the determinant s

In]R}.f = In(ipi; .. i 1)

In words, selection of the m features tha
maximizes the entropy of the process.
randomness are directly related.

Remarks

¢ The concept of principal eigenvectors subspace has also b
a classifier, First, the sample mean of the whole
from the feature vectors. For each class, w;, the correlation matrix R; is
estimated and the principal m eigenvectors (corresponding to the m largest
eigenvalues) are computed. A matrix A; is then formed using the respective

eigenvectors as columns. An unknown feature vector x js then classified in
the class w; for which

een exploited as
training set is subtracted

HAT x|l > HATxli, Vi j (6.21)
that is, the class corresponding to the maximum norm subspace projection
of x [Wata 73). From Pythagoras’ theorem this is equivalent to classifying a
VECtor in its nearest class Subspace. The decision surfaces are hyperplanes
if all the subspaces have the same dimension or quadric surfaces in the

more general case. Subspace classification integrates the stages of feature
§eneration/selection and classifier des

ign.
If this approach results in a relatively high classification error, the per-

formance may be improved by suitable modifications known as learning
subspace methods. For example, one can iteratjve] Yy rotate the subspaces to
adjust the lengths of the projections of the training vectors. The basic idea is

€ subspace of the correct clasg and
have been applied successfully in
recognition, texture classification,

[Oja 83, Koho 89, Prak 97].
For the computation of the correlation matrix eigenvectors, a number of jter-

ative schemes have been developed, The computation is performed working
directly with the vectors, without having to estimate the corresponding cor-
relation matrix, using neural networ]

k concepts [Oja 83, Diam 96].
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Example 6.2, The correlation matrix of a vector x is given by

03 0.1 0.1
Ry, =1 0.1 03 =01
0.1 -0.1 0.3

Compute the KL transform of the input vector.
The eigenvalues of Ry are g = 0.1, 41 = A2 = 0.4. Since the matrix Ry is symmetric,
we can always construct orthonormal eigenvectors. For this case we have

1 1 1 2 0
ag=—=1-11. ag=—=1[1], az = 1
V3 -1 V6 1 =

The KL transform is then given by

¥(0) 2/v6  1/N6 1767 [x(0)
y) |=| o0 1/v2 ~1//2 | | (1)
»(2) 1/v/3 =1/3 =1/4/3 | [ x2)

Sl

where y(0), y(1) correspond to the two largest eigenvalues.

6.4 THE SINGULAR VALUE DECOMPOSITION

Given a matrix X of rank », we will show that there exist N x N unitary matrices
U and V so that

al—

i g]v” o YE[M O}:U”XV (6.22)

X:U[ 0 0

where A 1 is the r x r diagonal matrix with elements +/%;, and A; are the r nonzero
eigenvalues of the associated matrix X X. O denotes a zero element matrix. /n
other words, there exist unitary matrices U and V so that the transformed matrix
Y is diagonal. From (6.22) it is readily shown that

r—1
X =Y iuvf (6.23)
i=0

where u;, v; are the first r columns of U and V, respectively. More precisely,




APPENDIX B

LINEAR ALGEBRA BASICS

POSITIVE DEFINITE AND SYMMETRIC MATRICES

® An/ x [ real matrix A is called positive definite if for every nonzero vector
x the following is true:

xTAx >0 (B.1)

If equality with zero is allowed, A is called nonnegative or positive semidef-
inite.

e [tis easy to show that all eigenvalues of such a matrix are positive. Indeed,
let ); be one eigenvalue and v; the corresponding unit norm eigenvector
(vTv; = 1). Then by the respective definitions

Av; = hy; or (B.2)
0 < v Av; =N (B.3)

Since the determinant of a matrix is equal to the product of its eigenvalues,
we conclude that the determinant of a positive definite matrix is also positive.

e Let Abean/ x ! symmetric matrix, A7 = A. Then the eigenvectors corre-
sponding to distinct eigenvalues are orthogonal. Indeed, let A; 7 A be two
such eigenvalues. From the definitions we have

Av; = Ay (B.4)
Ai’f' = lj}’j (Bj)

Multiplying (B.4) on the left by vi-' and the transpose of (B.5) on the right
by v;, we obtain

viAv; —vT Ay = 0= (% - Mwivi (B.6)

Thus, v?v,- = (. Furthermore, it can be shown that even if the eigenvalues
are not distinct, we can still find a set of orthogonal eigenvectors. The same

601
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is true for Hermitian matrices, in case we deal with more general complex-

valued matrices.
e Based on this, it is now straightforward to show that a symmetric matrix A

can be diagonalized by the similarity transformation
dTAD = A (B.7)

where matrix @ has as its columns the unit eigenvectors (v}'v,- = 1) of A,
that is,

D =[v,v2,...,7] (B.8)

and A is the diagonal matrix with elements the corresponding eigenvalues of
A. From the orthonormality of the eigenvectors it is obvious that TP =1,
that is, @ is a unitary matrix, ®7 = ®~1. The proof is similar for Hermitian
complex matrices as well.

CORRELATION MATRIX DIAGONALIZATION

Let x be a random vector in the /-dimensional space. Its correlation matrix is
defined as R = E[xxT]. Matrix R is readily seen to be positive semidefinite. For
our purposes we will assume that it is positive definite, thus invertible. Moreover,
it is symmetric, and hence it can always be diagonalized

®TRO = A (B.9)

where @ is the matrix consisting of the (orthogonal) eigenvectors and A the di-
agonal matrix with the corresponding eigenvalues on its diagonal. Thus, we can
always transform x into another random vector whose elements are uncorrelated.

Indeed

x=0Tx (B.10)

Then the new correlation matrix is R; = ®7 R® = A. Furthermore, if A'/? is the
diagonal matrix whose elements are the square roots of the eigenvalues of R
(AY2AY2 = A), then it is readily shown that the transformed random vector

x;= A"y (B.11)

has uncorrelated elements with unit variance. A~"/2 denotes the inverse of A'/2,
It is now easy to see that if the correlation matrix of a random vector is the identity
matrix [, then this is invariant under any unitary transformation A”x, ATA = I.
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CORRELATION MATRIX DIAGONALIZATION

That is, the transformed variables are also uncorrelated with unit variance, A useful
byproduct of this is the following lemma.

Lemma. Let x, y be two zero mean random Vectors with correlation matrices
R, R, respectively. Then there is a linear transformation that diagonalizes both

matrices simultaneously.
Proof. Let ® be the eigenvector matrix diagonalizing Rx. Then the transfor-
mation
xi= ATy (B.12)
yy = ATy (B.13)

if

generates two new random vectors with correlation matrices R} = I, R ; respec-
tively. Now let W be the eigenvector matrix diagonalizing R }1 Then the random
vectors generated by the unitary transformation Wiy =1

x = ¥Tx (B.14)
y, ="y, (B.15)
have correlation matrices Rf i Ri = D, where D is the diagonal matrix with

elements the eigenvalues of RJ',. Thus, the linear transformation of the original
vectors by the matrix

AT s lIJTA—led}T (B'ls)

diagonalizes both correlation matrices simultaneously (one to an identity matrix).
All these are obviously valid for covariance matrices as well.



