Dependability in Web Services

Christian Mikalsen

chrismi@ifi.uio.no

INF5360, Spring 2008

Introduction to Web Services.

Extensible Web Services Architecture for Notification in Large-

Scale Systems.
Krzysztof Ostrowski; Ken Birman. Web Services, 2006. ICWS ‘06.

Sept. 2006 pp. 383 — 392.

Fault Tolerance Connectors for Unreliable Web Services.
Salatge, Nicolas; Fabre, Jean-Charles. Dependable Systems and
Networks, 2007. DSN ‘07. June 2007 pp. 51 — 60.

Commonly used to create applications using Service
Oriented Architectures (SOA).

Loosely coupled services, communicating over HTTP.

WSDL defines a contractual relation between a client and
a web service provider.

Web services often use SOAP to format request and
replies.

Due to the nature of the web, web services used in an
application can be moved, deleted, unavailable due to
communication failures or subject to other failures.

Introduction to Web services

0 Service broker
4

\
/ \
)

K
Service requester ’ SOAP |eemmm Service provider
/_

\/ e

Figure based on illustration from Wikipedia (Web service article).

Extensible Web Services Architecture for Notification in
Large-Scale Systems.

* Motivation

* Design principles and basic concepts
— Scopes and the Scope Manager (SM)
— Policies
— Communication channels
— Sessions

* Dissemination framework

* Reliability framework

Notifications are a widely-used primitive, allowing event
driven programming and message exchange between Web
Services.

Standardized in WS-Notifications and WS-Eventing.

Paper claims these standards are subject to limitations:

— Not self-organizing
Notification trees must be manually configured.

— Inability to use external multicast framework
Recipients must set up communication endpoints themselves.

— No forwarding among recipients
Recipients are passive, and unable to participate in distribution.

— Difficult to manage
Hard to support on Internet scale.

— Weak reliability
Limited to per-link guarantees (from TCP), no support for virtual
synchrony or transactional replication.

Contribution

The paper claims to offer an approach to building large-
scale systems for web services notification, free from the
previous limitations.

Programmable nodes
Nodes should be able to perform certain basic operations.

External control
Nodes should be controlled by trusted external entity.

Hierarchical structure
Messages are delivered reflecting policies at different levels.

Isolation and local autonomy
Freedom in how messages are forwarded internally in
administrative domains.

Channel negotiation
Channel creation should allow handshake — agree on configuration.

Managed channels
Active contracts — recipients influence how senders are sending.

Reusability
Policies for message forwarding should be reusable.

Basic concepts ()

* Notifications are associated with topics, produced by
publishers and delivered to subscribers.

* Prospective publishers and subscribers register with a
Subscription Manager, which can be independent.

Subscription Manager We may have more than one

‘ publisher for any topic.

Subscribe as a
receiver

Register as
publisher

Basic concepts (Il)

* Nodes reside in administrative domains, in which they
are jointly managed.
* Publishers and subscribers may be scattered across many

different administrative domains, but they must
cooperate in delivery of messages.

e

y L \/ Organization 1
Organization 3 ’ e P / ‘

Subscribers

Publishers

* A scope represents a set of jointly managed nodes.

* A scope may be a single node, all nodes within an AD or a
set of nodes clustered by another criteria.

Scope manager
/O_ SM— P &

Control interface

Forwarding policy

a

Incoming channels

Often, a scope for example may be a LAN, but such one-
to-one relationship not assumed.

A scope requires infrastructure to maintain membership
and administration.

The span of a scope refers to the set of all nodes at the
bottom of the hierarchy of scopes rooted at that scope.

Publishing a message consists of delivering it to all
subscribers in the span of some global scope.

The basis for the system is a hierarchical view of the
network.

Subscribers of a topic are divided into subsets, each
belonging to an administrative domain. Continuing this
recursively, we get a hierarchical structure.

Each administrative domain is responsible for managing
registration of its own publishers and subscribers.

Scalability arises by divide and conquer.

The Scope Manager provides infrastructure for managing
membership and administration for one or more scopes.

The Scope Manager offers a control interface, which is a
Web Service hosted at a well-known location.

The control Web Service dispatches control requests to
the scope(s) it controls.

The Scope Manager signals scope members to create
channels and filters when membership or subscription
changes.

Each scope is configured with a policy defining how
messages are forwarded among its members and to sub-
scopes (on a per-topic basis).

Policies are always defined at the granularity of X’s
members (not individual nodes).

A policy may require sub-scopes to perform specific
forwarding, but the sub-scope may perform this
internally as it wishes.

This forwarding structure completely determines the way
messages are forwarded.

* A policyis an algorithm that lives in an abstract context,
with a fixed set of events, operations and attributes.

* Prototype implementation with policies as .NET classes,
stored on a library server.

* The scope manager maintains mappings from topics to

policies — a graph of channels and filters to apply to
them.

IForwardingAlgorithm Forwarding algorithm

- / -

Senders, members ’ Create, delete or

or receivers added update channels
or removed between nodes

IForwardingAlgorithmContext

Channel is a mechanism through which messages can be
delivered to all the nodes in the span of a scope,
subscribed to a set of topics.

Connecting scopes asks SM for a specification of the
channel to be used for messages of topic T.

Is either an address/protocol pair, a reference to an
external multicast mechanism, or a set of sub-channels
with accompanying filters connecting to other scopes.

Filters control which messages are forwarded over a
channel, and can optionally tag messages.

* For asingle node scope, a channel might be a
address/protocol pair, which a local process would use to
open a socket.

* For scopes with several nodes, a channel may be a
multicast address, to which the member nodes listen.

* In an overlay network, channels may lead to nodes that
can forward the message across the overlay.

—N\ ()

V

Scopes spanning over several nodes are called distributed
scopes, and as such cannot directly send messages or
execute filters.

Delegation

— Rely on the fact that if a scope receives a message for a topic,
then some of its members must receive them.

— When using delegation, the scope requests that one such sub-
scope create the channel on behalf of it. Done recursively, down
to the level where a single node is requested to create the
channel.

Replication

— In the case of replication, the scope requests several of its sub-
scopes to create the channel, but constraints the channels with
a filter implementing round robin operation.

Communication Channels (IV)

Delegation
T ' ? Replication
-m =

20

* Reliability is provided by hierarchical recovery scopes,
similar to dissemination scopes.

* The separation of dissemination/recovery makes it
possible to combine an arbitrary unreliable
notification mechanism with a wide range of
reliability protocols.

* Reliability scopes are also controlled by a Scope
Manager, typically the same as the dissemination
scope.

Recovery in a scope is modeled as recovering within
sub-scopes, and then among the sub-scopes.

A recovery domain is created to handle loss recovery
and other reliability tasks for a specific set of topics
In a scope.

The recovery domain has a recovery algorithm,
specifying how members of the recovery domain
should exchange state and forward lost messages to
each other.

A recovery domain may contain sub-domains
handling recovery for a set of subscribers in a sub-
scope.

* Combined, we get a complete recovery structure:

— The recovery domain for a scope specifies how recovery is
handled in the specific scope.

— The super-scope uses recovery information from all its
sub-scopes, and combines them into its own recovery
domain.

— This continues hierarchically, until we have a complete
recovery structure.

* Recovery domains actually handle recovery for
sessions, not just for specific topics.

* Epochs correspond to membership views, in group
communication.

 When the set of subscribers change, a new epoch is
started. During an epoch, membership is constant.

 All reliability guarantees are expressed in terms of
epochs.

Sessions are a similar to epochs, but a new session may
be initiated even if membership is unchanged.

Subscribers are notified of beginning and endings of
sessions.

Sessions are given a session number by the top-level SM,
and published messages are tagged with the most recent
session number.

No nodes process messages received in a session until it
is notified that it should accept messages of the session.

When a new session is started, no messages are sent in
the old session, which finally completes flushing, cleanup
and other reliability mechanisms.

The recovery framework is based on the abstract
model of distributed protocols dealing with recovery
and other reliability properties.

Different recovery protocol can be defined in terms
of a group of peers cooperating by sending control
messages and forwarding lost packet to each other.

Peers are designed with abstract interfaces to allow
for a wide range of common recovery protocols to be
implemented and used.

Paper discusses detailed implementation of Reliable
Multicast Transport Protocol (RMTP).

Peers

* Peers have an upper interface for communication
with a controller (for aggregate operations,
retransmission to all nodes etc.)

* Peers have a bottom interface to change and inspect
local state (inspecting message order, marking
messages as deliverable etc).

/

% Channels to group of peers
/ (multicast)
Control messages

from other peers Bottom interface

Upper interface

Channels to other peers
/7 (unicast)

Membership change
notifications

The paper claims that the strength of the design is its
extensibility, ability to use a wide range of transport and
recovery protocols, and enabling global publish-subscribe
cooperation among independent parties.

“Such benefits are hard to quantify. However, in certain
scenarios, our approach also greatly improve scalability”.

The performance of the approach is not evaluated in the
papetr.
The authors are in the process of creating a reference

implementation of the infrastructure of the paper, which
should lead to specification like WS-Notification.

Existing Web Services notification and eventing standards
are useful for many applications, but have serious
limitations for large-scale deployment.

The paper proposes a design free from these limitations,
using principles of hierarchy and local autonomy.

The approach is extensible, has ability to accommodate a
wide range of protocols for dissemination and recovery,
and can assist in setting up a global infrastructure.

However, performance has not been extensively been
analyzed and a reference implementation is being
implemented at the time of writing.

Fault Tolerance Connectors for Unreliable Web Services.

Motivation

* Proposed solution
— Concepts

— Architecture

Case study and experiments
* Conclusion

Web Services are now common, and more critical
applications will use WS in the future.

Applications with high dependability requirements may
be composed a combination of highly reliable Web

Services. However, such highly reliable services may be
difficult to find.

Highly reliable WS can be specifically developed, but that
is contrary to the philosophy of SOA.

New Web Services are typically made by combining
existing unreliable services.

We are therefore interested in an approach where we
can equip existing, unreliable Web Services with
additional fault tolerance mechanisms.

The paper outlines a solution using customizable fault-
tolerance connectors to add fault-tolerance to existing,
unreliable Web Services.

* Connectors are software components that are able to
capture Web Service interactions, and perform fault-
tolerance actions.

* Connectors can be designed by clients, providers or

reliability experts using the original WSDL description of
the service.

 The connectors insert detection actions (“runtime
assertions”) and recovery mechanisms (based on various
replication strategies).

 Connectors provide various mechanisms:

— User-defined runtime assertions
Applying checks to input/output requests, with error detection.

— Recovery actions
Recovery actions based on different replication models can be
applied, depending on the target Web Service.

— Monitoring and error diagnosis
Collecting error information, leading to extended error reports.

\ Runtime assertions

\ . Recovery actions

Monitoring

! .
Clients of a critical Specific fault tolerance Unreliable target

/
/

Connectors must be highly reliable software
components.

A specific language, DeWel, was developed to prevent
software faults using compile-time and runtime
verification when creating connectors.

Applies common strict coding standards, such as no
dynamic memory allocation, no loops, no recursions etc.

The result is a custom, reliable WSDL contract for the
target Web Service.

Execution model

* An execution model describes the behavior at runtime:
— Pre- and post-processing correspond to DeWel assertions.
— RecoveryStrategy parameterized with location of WS replicas.
— Predefined CommunicationException and ServiceException.

Timeout Catch of Sending of
Legend: No message Communication Exception the response
Processing : Specific processing user-defined P S _,O o} or raise of an
in the DeWel Template L7 Non-SOAP - oK SOAP
T : : -7) Message- - exception
Activation Pre-processing Sending 7 Reception 3 Post-processing to the End of
of the connector execution of the request .~ of the response -~ execution client the activity
N \ N , N , .l
O—t—0O— o g o, g
OK , OK Service . SOAP OK
: execution “.response :
! SOAP™~ 0 o
' exception \%““‘O SOAP ?xceptlon !
' | !
Catch of OK :
I

I SOAP exception . .
l | u Service Exception

* The solution relies on a third-party
infrastructure/platform between clients and WS
providers.

* This platform, Infrastructure for Web Services
Dependability (IWSD), offers functionality for loading
connectors and running them.

* The platform must be highly reliable, achieved using
other techniques.

* Recovery mechanisms rely on service replicas being
available on the Net.

* Identical services are services with identical WSDL
documents, but with another access point.
— For example, Amazon has several replicas available across the
world for its Web Services.
* FEquivalent services are services that provide similar, but
not identical, service. Allows us to fulfill a similar
specification, or offer a degraded version of the service.

— For example, consider an e-commerce site. If we are unable to
perform a payment transaction with our typical payment
partner, we can instead perform the transaction with an
alternative partner.

The framework uses the notion of Abstract Web Services
(AWS), which is an abstraction of several similar services, with
its own WSDL contract.

The connector must convert between requests and replies,
transforming them from abstract to concrete (and vice versa).

Equivalence relations are semantic relations between two sets
of parameters:

Although syntactically different, sets of parameters or return
values can describe the same information.

The goal is to automate creation of the abstract operations
from equivalence relations provided by the user (in a tool).

Equivalent services (example)

* Three equivalent Web Services (A, B, C), offering a client
to purchase a computer.

* Task is creating the minimal abstract interface that allows
us to map to the three concrete services.

LT i
Abstract World interface A _.~"" " Kind of S ol T C oncret World

- P x Range computer screen o screen Web Service A

Abstract Input
Interface

...........................
ast®
.s®

S e | 2 I iaseanaa . caas iy
pmm e L \@ Web Servnce?
Brand Identification ReqMap, e % e e — —
* ” — P Processor N -y
(% Network Card x Screen "
Type % Screen Recorder
" ReqMap Cc::g;;i(lansput Web Service B BEa . .
= o - — . —— » " Video Card . % Sound Card w
== = :Mapping function (Abstract to Concrete WS) e RAM. TREES prm— ~ Concrete Input
-------------- Interface C

— . Equivalence relation

* Service B can be called directly.

e Service A can be called using equivalence relations 1, 2 and 4 to generate
input data.

e Service C can be called using equivalence relation 3 to generate input
data.

* Passive replication

— Only one replica processes an input request.
— In the case of failure, the request is forwarded to a spare replica.

— Connector provides failure detection (communication failure,
post-processing assertion errors etc.) and routing to spare

replica.
* Active replication

— The connector multicasts the request to WS replicas.

— The connector either transmits the first response received, or uses a
voting algorithm to tolerate faults in values.

To support stateful services, we must also ensure
state is managed between replicas. The paper offers
two main execution models for handling state.

The first approach is the StatefulExecution model:

— The target Web Service must provide SaveState and
RestoreState operations.

— It is then up to the provider to handle the state complexity.

Another approach is the LogBasedReplication:

— The connector provides StartSession and EndSession
operations to trigger logging of input requests.

— When an error is detected by the connector, the log of
requests is replayed with the new replica.

Case study: Equivalent services

* Created an abstract Web Service providing search
functionality, using Google and MSN Web Services as

equivalent services.

e Used passive replication with Google as the primary

service.

Availability

0,995
0,99
0,985
0,98
0,975
0,97
0,965
0,96

Abstract Google

Search

MSN
Search

6% of request were redirected to MSN
due to unavailability of Google WS.

Performance/overhead

* Experimentation for determining overhead of connectors
compared to a direct client/provider connection.

* Inthe experiment, they report less than 3% overhead for
stateless connectors without recovery.

* For stateful services, the number is still less than 5%.

6 -

5

Response time overhead (in %)

recovery

Active
Replication

Connector
without

Stateful
Replication
LogBased
Replication

Voting
Replication

Service Oriented Architecture is useful in realizing large-
scale applications, but multiple sources of failure can
introduce faults and decrease availability.

We want to make new services by combining existing
services, and address/improve dependability by using
fault-tolerance connectors.

The fault tolerance connectors provide clear separation
of concern between WS client and WS providers.

Identical services found on the Net are useful, but even
more useful is combining similar services transparently
using equivalence relations, allowing us to take
advantage of service/resource redundancy.

That’s it — questions?

* How practical/feasible is the generation of equivalence
relations in the real world?

* Performance of the reliable notification approach.
* Adaptability of the proposed approaches.

