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Sybil identities

I A user can pretend many fake/sybil
identities

I i.e., create multiple accounts
I observed in real-world P2P

systems
I also observed in open systems

such as Amazon

I No one-to-one correspondence
between entity and identity

I Sybil identities can become a large
fraction of all identities

Entity

Identities
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Sybil attack

Enables malicious users to out-vote honest users

I Majority voting: cast more than one vote

I Byzantine consensus: exceed the 1/3 threshold

I DHT: control large portion of the ring

I Recommendation systems: manipulate the recommendations
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Defending against sybil attacks

I Requires binding an entity to an identity
I Difficult in absence of trusted central authority [Douceur 2002]

I Simple sybil defenses include
I CAPTCHAs
I IP address filtering
I Computational puzzles

I Simple defenses
I leave out large number of honest users, or
I are too weak to deter resourceful attacker
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Social graph

Identities

Undirected edges

(strong mutual trust)

Social graph

System model

I Social graph G
I n honest users with single honest identity

I Multiple malicious users, each with multiple identities (sybil
nodes)

I Assumption: Neighbors in social graph share secret symmetric
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Goal of sybil defense

Identities

Undirected edges

(strong mutual trust)

Social graph

Goal

I Allow any given honest identity V to label any other given identity
S as either honest or sybil

I Bound the total number of false negatives below the tolerance
threshold of the distributed system

I Small fraction of false positives can be tolerated
6 / 26



Insights for SybilLimit solution

Key insights

I Assumption: The number of attack edges is independent of the
number of sybil identities

I Assumption: The cut along the attack edges will have a small
quotient

I i.e., number of attack edges
number of nodes disconnected is small

I Break symmetry to properly label nodes
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General approach for the SybilLimit solution

Given an honest node V , search for a subgraph H of G such
that

I H contains V

I H has n nodes (n: number of honest nodes in system)

I the minimum quotient cut of H is not excessively small

Challenge
Make sure that H does not grow in sybil region
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From cuts to mixing time

Difficulty with cuts

I Need to perform computation over all nodes

I Centralized

Idea
If a subgraph has small quotient cut, then the mixing time of the

subgraph is large

Advantage

I Can be performed in incremental manner

I Decentralized
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Mixing time

I Stationary distribution of a random walk
I a probability distribution π that is invariant to the transition matrix P
I i.e., πP = π

I Mixing time of a random walk, T
I minimal length of the random walk in order to reach the stationary

distribution

P =


0 1

deg(v1)
. . . 0
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]
m : no. of edges in the undirected graph

Random walk
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Assumption for mixing time of H

Assumption for SybilLimit
The honest region (i.e. subgraph) of G has a mixing time no larger
than t(n), where t(n) is a function of the size n of the honest region

I SybilLimit assumes t = O(logn)

I Theoretical evidences exist to support t = O(logn) for some
models of social networks such as Kleinberg’s social network
model

Solution basis
Use random walks in G to exploit its abnormal mixing time for

differentiating sybil nodes from honest nodes
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Escaping random walks and escaping nodes

Probability for escaping random walks

I Escaping probability of a length-w random walk starting from a
uniformly random honest node is at most gw/n

I g: total number of attack edges
I n: total number of honest nodes
I assumes honest nodes form a connected component
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Escaping random walks and escaping nodes

Only protects non-escaping nodes

I For at most ε fraction of honest nodes, corresponding probability
is above (gw)/(nε)

I Provable guarantees only for non-escaping nodes

I Escaping nodes are likely to be close to attack edges
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Birthday paradox

Approximate probability of at least two people sharing a birthday
amongst a certain number of people

I Assumes all birthdays are equally likely

I In the honest region, all edges are equally likely to be tail of
random walks
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SybilLimit protocol in honest region

Verifier S

S performs random walks and

registers itself and the tail

of the random walk at the

last node visited

Tail edge

Random walks

I Scenario when both Verifier and S are in honest region
I S performs Θ(

√
m) random walks where m is the number of

edges in honest region
I Θ(

√
m) random walks results in Θ(

√
m) tail edges
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SybilLimit protocol in honest region

Verifier S

Tail edge

S sends the list of tail edges and the

nodes where it is registered

I Scenario when both Verifier and S are in honest region
I S performs Θ(

√
m) random walks where m is the number of

edges in honest region
I Θ(

√
m) random walks results in Θ(

√
m) tail edges
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SybilLimit protocol in honest region

Verifier S

Matching

tail edges

Verifier performs random

walks

If there is a matching edge,

Verifier accepts S

Verifier asks destination node

for to confirm if the edge is

registered at the node

I All edges in honest region are equally likely
I By Birthday paradox, there is a high probability that a matching

edge is found by the Verifier
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SybilLimit protocol when sybil nodes are involved

Verifier S

Sybil

region

Honest

region

Attack

edge

Secure random walk

version is used

Once two random walks enter

at a node in honest region,

the random walks stay

converged

I Scenario S is in sybil region
I A node uses a tail to label only Θ(n/

√
m) nodes

I For sybil nodes collectively, the umber of possible tainted tails is
bound within O(gt

√
m)
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SybilLimit protocol when sybil nodes are involved

Verifier S

Sybil

region

Honest

region

Attack

edge

Chances that random routes from

verifier will intersect at S’s tail

edges are less

I Scenario S is in sybil region
I A node uses a tail to label only Θ(n/

√
m) nodes

I For sybil nodes collectively, the umber of possible tainted tails is
bound within O(gt

√
m)
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SybilLimit protocol when sybil nodes are involved

Verifier S

Sybil

region

Honest

region

Attack

edge

Verifier uses a balance condition to select

only a small no. of nodes per

intersecting tail edge

There is a small chance that

random routes from verifier

will intersect at S’s

I Scenario S is in sybil region
I A node uses a tail to label only Θ(n/

√
m) nodes

I For sybil nodes collectively, the umber of possible tainted tails is
bound within O(gt

√
m)
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SybilLimit results

Formal guarantees

I Assuming
I Honest region has mixing time no larger than t
I Number of attack edges, g = o(n/t)

I A honest node V with probability at least 1−δ (for δ > 0) labels
I At least (1− ε)n honest nodes as honest (for ε > 0)
I At most O(t) sybil nodes per attack edge as honest

Numerical example

I Sample social network sizes: 100,000 to 1,000,000 honest nodes

I Sybil nodes generated synthetically

I Labels 95% of honest nodes as honest

I Labels 10-20 sybil nodes as honest per attack edge
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Estimating unknown parameters

t : size of random walks (mixing time)

I In practice, t = O(logn)

I Simply use a t around 20 or 30 (sufficient for 1 million nodes)

I Increasing t linearly increases the number of false negatives

m: total number of edges in honest region

I Estimates m using a benchmarking technique

I Never over-estimates, but under-estimation is possible
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Practical implication and deployment considerations

I What can be used as a social network for sybil defense?
I Do social networks have really small mixing time?

I Research community divided into 2 camps
I SybilLimit removes low-degree nodes while performing evaluation
I Do we really need small mixing time?

I Will targeted sybil attacks break these defenses in practice?
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SybilLimit summary

I Sybil defense mechanisms via social networks
I Assumptions

I Social graph has low mixing time for random walks
I Sybil nodes can establish only a small number of edges with

honest nodes

I Exploits the knowledge that addition of sybil nodes increases the
mixing time for random walks

I Allows a node to identify another node as honest or sybil

I Decentralized
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Secure random walks

I Sybil nodes can perform unlimited number of random walks

I These may result in large number of different tainted tails
I Possible solution

I Each edge in the graph enforces a quota on the total number of
times that edge can be crossed by all random walks collectively
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Secure random walks using random routes

I Random routes in place of random walks
I Rather than selecting next hop randomly, there is a random

mapping between incoming edge and outgoing edge

I Each node maintains Θ(m) independent instances of routing
table

I If two random routes in a given instance ever cross the same
edge, they merge and stay together for ever

I If a random route encounters some node more than once, that
node will use additional independent routing tables for those extra
routing decisions

I Node keeps track of hop count viewed for a random routes

I Node can drop random routes when they observe that hop counts
are not maintained correctly
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Comparison of social-based social defenses

I Assumption 1: The honest region (i.e., subgraph) of G has mixing time
no larger than O(logn)

I Assumption 2: The honest region (i.e., subgraph) of G is reasonably
balanced
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Comparison of defenses against sybil attacks not based on
social graph

Techniques Advantages Disadvantages
Certificates signed by trusted au-

thority

- Controls who can join the system - Administrative overhead

(Castro et al. 2002) - Certificate revocation may be costly

Distributed registration - No barriers to enter - Fails under attacks involving large no. of IPs

(Dinger et al. 2006) - Decentralized - New attacks possible

Use of bootstrap graph based on so-

cial network

- No barriers to enter - Significant overhead

(Danezis et al. 2005) - Decentralized - Not sure if it scales
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Comparison of defenses against sybil attacks not based on
social graph. . .

Techniques Advantages Disadvantages
Use of physical network character-

istics to identify nodes

- No barrier to enter - Lack of consistent identity resulting from

change in measurement over time

(Wang et al. 2005) - Changes to the network measurement infras-

tructure may invalidate the identity of all nodes

Use of network coordinates to group

nodes

- Works when a single node is re-

porting multiple identities

- Fails when attacker controls large number of

nodes in multiple network positions

(Bazzi et al. 2005) - Works when a group of nearby

nodes are colluding

- May require a trusted network measurement

infrastructure

Use of network coordinates to differ-

entiate nodes

- Hop-count distance used to tell

physically nodes separated nodes

apart

- Fails when attacker controls large number of

nodes in multiple network positions

(Bazzi et al. 2006) - Requires appropriately placed trusted beacons
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Comparison of defenses against sybil attacks not based on
social graph. . .

Techniques Advantages Disadvantages
Computational puzzles - Works for computationally limited

adversaries

- Overhead for honest nodes

(Borisov 2006) - Decentralized - Difficult to choose appropriate puzzle

- Nodes can choose their ID, which facilitates

targeted attacks

Computational puzzles generated

hierarchically

- Works for computationally limited

adversaries

- Requires centralized online trusted authority

(Rowaihy et al. 2007) - Requires reliable nodes in the upper levels of

the certification hierarchy

Economic incentives - Decentralized - Requires implementation of currency

(Margolin et al. 2007) - Requires expressing all costs and utilities in

terms of a currency

- Only detection of attack
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