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Chapters in Johnson & Dungeon
Ch 1: Introduction• Ch. 1: Introduction.

• Ch. 2: Signals in Space and Time.
– Physics: Waves and wave equation.

» c, λ, f, ω, k vector,...
» Ideal and ”real'' conditions

• Ch. 3: Apertures and Arrays.
Ch 4 B f i

DEPARTMENT OF INFORMATICS 2

• Ch. 4: Beamforming.
– Classical, time and frequency domain algorithms.

• Ch. 7: Adaptive Array Processing.
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Norsk terminologi
• BølgeligningenBølgeligningen
• Planbølger, sfæriske bølger
• Propagerende bølger, bølgetall
• Sinking/sakking:
• Dispersjon
• Attenuasjon eller demping
• Refraksjon
• Ikke-linearitet
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• Diffraksjon; nærfelt, fjernfelt
• Gruppeantenne ( = array)
Kilde: Bl.a. J. M. Hovem: ``Marin akustikk'', NTNU, 1999
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Wave equation
• This is the equation in array signal processing.This is the equation in array signal processing.
• Lossless wave equation

• Δ=∇2 is the Laplacian operator (del=nabla squared)
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• s = s(x,y,z,t) is a general scalar field 
(electromagnetics: electric or magnetic field, 
acoustics: sound pressure ...) 

• c is the speed of propagation
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Three simple principles behind 
the acoustic wave equation
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dz 1. Equation of continuity: 
conservation of mass 

2. Newton’s 2. law: F = m a
3. State equation: relationship 

between change in pressure and 
volume (in one dimension this 
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x 

y dx  is Hooke’s law: F = k x –
spring)

Figure: J Hovem, TTT4175 
Marin akustikk, NTNU
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Reverse as vl > vt
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Wave modes – media
• Electromagnetic E and H: transverse waves• Electromagnetic, E and H: transverse waves
• Mechanical bulk waves: 

– Pressure waves, longitudinal – acoustic wave in air, water, body,
– Shear waves, transverse – only in solids

• Mechanical guided waves
– Surface wave: 

» Rayleigh waves (ocean waves)
» Stoneley waves

Plate modes:
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– Plate modes:
» Lamb waves are dispersive plate waves 
» Love waves are horizontally polarized shear waves which 

also exist on the surface.
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Solution
Guesses:Guesses:
1. Separable s(x,y,z,t) = A·st(t)·sx(x)·sy(y)·sz(z)
2. Complex exponential in time: s(t) = exp{jωt} 
3. Complex exponential in space 

sx(x) = exp{-jkxt}, (also in y and z) 
Assumed solution:
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Solution
InsertInsert 

into

⇒ kx
2 s(·) + ky

2s(·) + kz
2 s(·) = ω 2s(·)/c2
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or kx
2 + ky

2 + kz
2 = |k|2 = ω2/c2 or |k| = ω/c 

which is the condition for this guess to be a 
solution
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Temporal behavior: Monochromatic
For a sensor placed in one point in space:For a sensor placed in one point in space: 
s(t) = exp{jωt} = Acosωt + j·Asinωt
• Single frequency
• Monochromatic = one color
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Spatial behavior: Plane wave

At a given time instant, the solution is the same 
for all points on

= constant phase = equation for a plane
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= constant phase = equation for a plane.
The vector     is perpendicular to the planes of 

constant phase
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Propagating wave
• If this is a propagating wave the plane of constant• If this is a propagating wave, the plane of constant 

phase moves by        in time     :

=>
or 
May take directions of k and δx vectors to be the same 

(minimizes length of δx):
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(minimizes length of δx):
Speed of propagation:                      and with |k| = ω /c

= speed of wave:  
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Wavelength – spatial frequency
Propagation in space in one period T=2 /• Propagation in space in one period, T=2π/ω:

• Wavelength 
λ = δx = c·δt = c·T= 2π·c/ω = 2π/|k|

• Interpretation of wave number vector      :
– The number of cycles in radians per meter
– = Spatial frequency

Angular frequency ω is no of cycles in radians per
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– Angular frequency ω is no of cycles in radians per 
second

• Unit vector for direction of propagation (zeta):
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Slowness vector
Alternative notation• Alternative notation 

• Expressed as a function of a single variable
• |α| =|k|/ω=2π/(ωλ)=1/c
• This is the slowness vector (Norsk: sinking) 

– Points in the direction of propagation
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p p g
– Has units of reciprocal velocity (s/m)
– Parallels optical index of refraction: n=c0/c, except there 

is no free-space c0 in acoustics.
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Wave equation and arbitrary solutions
• The wave equation is linearThe wave equation is linear
• Solution may be a sum of complex exponentials
• Almost any signal may be expressed as a sum of 

complex exponentials using Fourier theory
• Therefore any signal, no matter its shape, may be a 

solution to the wave equation – and the shape will be 
preserved as it propagates

• Propagating waves are therefore ideal carriers of 
information
M difi d b th b d diti t d t i
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• Modified by the boundary conditions – to determine 
which components that are excited

• Propagation is determined by the deviations of the 
medium from ideal
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Plane waves
Propagating plane wave:• Propagating plane wave: 

• Propagating sinusoidal plane wave: 
• Slowness vector: 
• Dispersion relation:
• Wavenumber vector: 
• Frequency and wavelength:
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Frequency and wavelength:

UNIVERSITY 
OF OSLO

Wave equation, spherical coordinates
Assumption: Solution exhibits sphericalAssumption: Solution exhibits spherical 

symmetry:

Monochromatic solution, spherical wave, 
propagating away from origin:
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Another soluton propagating towards the 
origin is found by replacing ’-’ with ’+’. Also 
valid, boundary conditions determine 
which ones that exist
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Spherical solution
Distance between zero crossings cos( t kr)/r• Distance between zero-crossings, cos(ωt- kr)/r, 
is given by kr=π r=π/k = π/(2π/λ)=λ/2

• Distance between peaks – problem 2.4
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Doppler shift
• f0+fD ≈ f0(1+v/c) where v isf0+fD ≈ f0(1+v/c) where v is 

the component along the 
wave propagation

• Christian A. Doppler (1803-
1853), Austria

• Determination of the 
velocity of blood flow 
(medical ultrasound)

• Air plane velocity by radar
• 1 page derivation (better 

than Johnson & Dungeon): 
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t a Jo so & u geo )
A. Donges, ”A simple 
derivation of the acoustic 
Doppler shift formulas,” 
Eur. J. Phys. 19 467, 1998

http://www.iop.org/EJ/abstract/0143-0807/19/5/010
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Doppler 1, v<<c, moving observer
Source: y =Asin( t)• Source: ys=Asin(ωt)

• Propagation time to observer: τ=x/c
• Observer at rest: yo=Asin(φo), 

– Only phase φo=ω(t-τ)= ω(t-x/c) is shifted

• Observer moves with vo away from source
– Distance increases: x=xo+vot
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• Observed phase: 
φo=ω(t-x/c) = ω(t-{xo+vot}/c) = ω(1-vo/c)t - ωxo/c

• Observed angular frequency is ω’ = ω(1-vo/c)
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Doppler 2, v<<c, moving source
• Source moves towards observer at v• Source moves towards observer at vs

– Distance decreases: x=xo-vst
– Apparent velocity > c, not valid for EM-waves (Einstein)

• During the propagation time, τ, the source travels a 
distance Δx=vsτ

• Propagation time is now not τ=x/c, but τ={x+vsτ}/c 
– Lasts longer since source is approaching 
– solve for τ: τ = x/{c-vs}
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solve for τ: τ  x/{c vs}

• Observed phase: φo=ω(t-τ) = ω(t-x/{c-vs}) = ω(t-{xo-
vst}/{c-vs}) = ω/{1-vs/c}t - ωxo/{c-vs}

• Observed angular frequency is ω’ = ω/{1-vo/c}
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Doppler effect
• Nonrelativistic: Combine the two former derivations:• Nonrelativistic: Combine the two former derivations:

• Approximation: 1/(1-y) ≈ 1+y for y <<1 
• Combine: (1-x)/(1-y) ≈ (1-x)(1+y) = 1-(x-y)-xy ≈ 1-(x-y)
• Small velocities: v<<c:
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• Equation to remember: f0+fD ≈ f0(1+v/c) where frequency 
increases when source and observer move towards each 
other
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Doppler example
• Echo Doppler imaging: f +f ≈ f (1+2v/c)• Echo Doppler imaging: f0+fD ≈ f0(1+2v/c)

1. Observer = scatterer moves
2. Source = scatterer moves
(Problem 2.5)

• Ultrasound, f=3 MHz, blood flow 1 m/s
– Ultrasound beam is parallel to blood flow

• fD = f0 · 2v/c =3e6 · 2· 1/1560 = 3846 Hz (Audible)
• Often beam is almost perpendicular to blood flow ⇒
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• Often beam is almost perpendicular to blood flow ⇒
must multiply by cosθ

– Ex: θ=75 deg (15 deg from perpendicular) ⇒
fD = f0·2v·cosθ/c = 995 Hz

25
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Array Processing Implications (1)
Whenever the wave equation applies the following isWhenever the wave equation applies, the following is 

valid:
• Propagating signals are functions of a single variable, 

s(·), with space and time linked by the relation 
– A bandlimited signal can be represented by temporal samples at 

one location or
– by spatial samling at one instant

• The speed of propagation depends on physical 
f h di
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parameters of the medium.
– If  the speed is known, direction can be found
– If the direction is known, speed can be found
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Array Processing Implications (2)
• Signals propagate in a specific direction• Signals propagate in a specific direction 

represented equivalently by either       or 
– Can find direction from waveform from properly sampled 

locations

• Spherical waves describe the radiation pattern of most 
sources (at least near their locations):

– Far-field: resemble plane waves

• The Superposition Principle applies, allowing several 
i i l l i h
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propagating waves to occur simultaneously without 
interaction.

– Spatiotemporal filters may separate multiple sources
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Deviations from simple media
1 Dispersion: c = c(ω)1. Dispersion: c = c(ω)

– Group and phase velocity, dispersion equation: ω = f(k) ≠ c· k
– Evanescent ( = non-propagating) waves: purely imaginary k

2. Loss: c = c< + jc=

– Wavenumber is no longer real, imaginary part gives 
attenuation.

– Waveform changes with distance

3. Non-linearity: c = c(s(t))
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– Generation of harmonics, shock waves

4. Refraction, non-homogenoeus medium: c=c(x,y,z)
– Snell's law


