

Y OF OSLO	Wave Type	Medium	Propagation Speed c		
			Formula	Value	
	Electromagnetic	Free space	$1/\sqrt{\epsilon\mu}$	$\begin{array}{l} 3\times 10^8 \mbox{ m/s} \\ \epsilon = 1/36\pi\times 10^{-9} \mbox{C}^2/\mbox{N-m}^2, \\ \mu = 4\pi\times 10^{-7} \mbox{W/A-m} \end{array}$	
	Electromagnetic	Glass	$1/\sqrt{\epsilon\mu}$	$2 \times 10^8 \text{ m/s}^a$	
	Acoustic	Air	$\sqrt{\gamma RT_0/M}$	330.7 m/s $R = 8.3 \times 10^{7} \text{ erg/}^{\circ} \text{K},$ $\gamma = 1.4, T_0 = 273 ^{\circ} \text{K},$ M = 29 g	
	Acoustic	Sea water	$\sqrt{\gamma B/\rho}$	1, 498 m/s ^b $\gamma = 1.01,$ $B = 2.28 \times 10^{9}$ N/m ² , $\rho = 1.026 \times 10^{3}$ kg/m ³	
	Water waves (Shallow water)		√gĦ	$3.13\sqrt{H}$ m/s g = 9.8 m/s ² , H = water depth (m)	
	Acoustic (longitudinal) Acoustic (transverse)	Granite Granite	$\frac{\sqrt{\frac{K+4G/3}{\rho}}}{\sqrt{G/\rho}}$	3, 310 m/s ^c 5, 770 m/s ^c Reverse	e as v ₁ >
	^a This value is derived from ^b Because of the complicate agation speeds are common. F <i>c</i> = 1, 449.3 where <i>T</i> is temperature in °C, ^c This value derived from d TABLE 2.1 Formulas an	a the refractive ind d properties of mo or sea water, the e 2 + 4.623T - 0.05 and S is salinity i irect measurement d Values for Prop	ex, which for glas st fluids, experime xpression is $46T^2 + (1.391 - 1)$ n parts per thousa s. pagation Speed c	sequals about 1.5. ntal, serieslike expressions for sound prop 0.0127) * (S - 35) + · · · nd. of Various Types of Waves in Differen	

UNIVERSITY OF OSLO			
Solution			
Insert $s(\vec{x},t) = A \exp\{j(\omega t - k_x \cdot x - k_y \cdot y - k_z \cdot z)\}$			
into $\nabla^2 \overrightarrow{s} = \frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial y^2} + \frac{\partial^2 s}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2}$			
$\Rightarrow k_x^2 s(\cdot) + k_y^2 s(\cdot) + k_z^2 s(\cdot) = \omega^2 s(\cdot)/c^2$			
or $k_x^2 + k_y^2 + k_z^2 = k ^2 = \omega^2/c^2$ or $ k = \omega/c$ which is the condition for this guess to be a solution			
DEPARTMENT OF INFORMATICS	10		

