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Chapters in Johnson & Dungeon
Ch 1: Introduction• Ch. 1: Introduction.

• Ch. 2: Signals in Space and Time.
– Physics: Waves and wave equation.

» c, λ, f, ω, k vector,...
» Ideal and ”real'' conditions

• Ch. 3: Apertures and Arrays.
Ch 4 B f i
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• Ch. 4: Beamforming.
– Classical, time and frequency domain algorithms.

• Ch. 7: Adaptive Array Processing.
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Norsk terminologi
• BølgeligningenBølgeligningen
• Planbølger, sfæriske bølger
• Propagerende bølger, bølgetall
• Sinking/sakking:
• Dispersjon
• Attenuasjon eller demping
• Refraksjon
• Ikke-linearitet
• Diffraksjon; nærfelt, fjernfelt
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• Gruppeantenne ( = array)

Kilde: Bl.a. J. M. Hovem: ``Marin akustikk'', NTNU, 1999
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Deviations from simple media
1 Dispersion: c = c(ω)1. Dispersion: c = c(ω)

– Group and phase velocity, dispersion equation: ω = f(k) ≠ c· k
– Evanescent ( = non-propagating) waves: purely imaginary k

2. Loss: c = c< + jc=
– Wavenumber is no longer real, imaginary part gives 

attenuation.
– Waveform changes with distance

3. Non-linearity: c = c(s(t))
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– Generation of harmonics, shock waves

4. Refraction, non-homogenoeus medium: c=c(x,y,z)
– Snell's law
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Dispersion and Attenuation
Ideal medium: Transfer function is a delay• Ideal medium: Transfer function is a delay 
only

• Attenuation: Transfer function contains 
resistors

• Dispersion: Transfer function is made from 
capacitors and inductors (and resistors) => 
phase varies with frequency
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phase varies with frequency
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2. Attenuation/absorption
1 Absorption in air and water: f21. Absorption in air and water: ∝ f2

– Viscous differential equation

2. Also differential equation for ∝ f0

3. Medical ultrasound ∝ fy, where y ≈ 1
4. General differential equation for 0 ≤ y ≤ 2?
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Viscous wave equation
• Sound in a viscous fluid augmented wave eq :

Additional loss term

• Sound in a viscous fluid, augmented wave eq.:

– μ is shear bulk viscocity coefficient
– τ is a relaxation time
– Johnson & Dudgeon, problem 2.7

• Approximate solution (low frequency, low loss):
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• Attenuation that increases with  ω2
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Dispersion relation
Viscoelastic wave equation:• Viscoelastic wave equation:

• Assume 1-D, and u(x,t)=exp(j(ωt-kx)):
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• k=k<+jk==β-jα⇒ u=exp(-αx)·exp(j(ωt-βx))
• Let ωτ¿ 1 and solve for k:  

8See solution of problem 2.7 for more details
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Slightly more complex: 
Viscous + multiple relaxation

• First term: Classical losses – exchange of energy into 
heat, primarily viscous losses, also heat conduction, 
diffusion, and radiation

• Sum: Relaxation losses – change of kinetic or 
translational energy of the molecules into internal
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translational energy of the molecules into internal 
energy 

• Nachman et al: An equation for acoustic propagation in 
inhomogeneous media with relaxation losses, JASA 
1990
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Viscoelastic case: Air
Vi l d i• Viscous losses dominate 
the first term (A0)

• N=2:
– Nitrogen: f1<650 Hz
– Oxygen: f2<80 kHz

Evans, Bass, Sutherland: 
Atmospheric absorption 
of sound: Theoretical
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of sound: Theoretical 
predictions, JASA 1972

Bass, Sutherland, 
Zuckerwar, Blackstock, 
Hester, Atmospheric 
absorption of sound: 
Further developments, 
JASA, 1995

11
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Viscoelastic case: Sea water
A Vi• A0: Viscous 
absorption of water 
molecule 
= distilled water

• N=2:
– Boron acid: f1<2 kHz
– Magnesium sulphate: 

f2<150 kHz

Ainslie & McColm, A 
i lifi d f l f
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simplified formula for 
viscous and chemical 
absorption in sea 
water, JASA, 1998
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Attenuation and loss
Fall in amplitude due to spherical spreading:• Fall in amplitude due to spherical spreading: 
20log (R/R0) 

• Additional losses
– In water for underwater acoustics
– Can usually neglect it for audible sound 

• Combined: 20log (R/R0) + α R 
Pl l i ti ti l l i f
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• Plays a role in estimating level i.e. range for
– long-range sonar
– Ultrasound in air positioning
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Medical ultrasound
α = a fbα = a·fb

• Liver: 
• b= 1,...,1.3
• a=0.35,..., 0.9 dB/MHz/cm at 1 

MHz.

• Breast up to b=1.5
• Ex: 5 MHz, 10 cm two-way, 

b=1: Loss = 5 MHz·20 cm·0.5 
dB/MHz/cm = 50 dB
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– Absorption dominates over spherical
spreading loss

• Plots from 
Kadaba, Bhagat, Wu, “Attenuation and 
backscattering of ultrasound in freshly excised 
animal tissues, IEEE Trans. Biomedical Eng., 
1980,
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P- and S- loss: y>1
• Similar power laws• Similar power laws
• Longitudinal, pressure:

– Granite: y ≈ 1
– Liver: y ≈ 1.3

• Shear:
– YIG: y=2 

(Yttrium indium garnet)
– Granite: y ≈ 1

• T. Szabo and J. Wu, “A 
model for longitudinal and 
shear wave propagation in 
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p p g
viscoelastic media”, JASA
(2000).

2010.02.03
Data for shear and longitudinal wave loss which show 
power-law dependence over four decades of frequency.

15
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Silica aerogels, S: 0<y<1 
Used for matching layer inUsed for matching layer in 

aircoupled transducer

Longitudinal (●): y=1.1 ± 0.05
Shear (■) :          y=0.5 ± 0.15

T. Gomez Álvarez-Arenas, F. 
de Espinosa, M. Moner-
Girona, E. Rodrıguez, A. 
Roig and E Molins
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Roig, and E. Molins, 
“Viscoelasticity of silica 
aerogels at ultrasonic 
frequencies”, Appl. Phys. 
Lett., 2002 Attenuation vs frequency of longitudinal (●)

and shear (■) waves. Solid lines: power fitting. 
Velocity vs frequency of longitudinal (◊) 
and shear (▲) waves.

16

UNIVERSITY 
OF OSLO

Wave equation – constant loss
• Electric field in a conducting medium or• Electric field in a conducting medium or 

transverse electric waves in a homogeneous 
isotropic plasma

• Ch 2.3.2 + prob. 2.6: 
– kIm = -σμc/2 for small σ (poor conductor) and high ω

Additional term
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• Attenuation is constant with frequency
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General differential equation?
• Differential equation derived from physics that hasDifferential equation derived from physics that has 

power law with other than 0. or 2.order power law?
• Area of research:

– T. L. Szabo, ”Time domain wave equations for lossy media 
obeying a frequency power law, J. Acoust. Soc. Amer., pp. 491-
500, Jul. 1994.

– W. Chen and S. Holm, "Modified Szabo’s wave equation models 
for lossy media obeying frequency power law," J. Acoust. Soc. 
Amer., pp. 2570-2574, Nov. 2003.

– W. Chen and S. Holm, "Fractional Laplacian time-space models 
for linear and nonlinear lossy media exhibiting arbitrary 
frequency dependency " J Acoust Soc Amer pp 1424-1430
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frequency dependency,  J. Acoust. Soc. Amer., pp. 1424-1430, 
Apr. 2004. 

– S. Holm and R. Sinkus, ”A unifying fractional wave equation for 
compressional and shear waves,” Journ. Acoust. Soc. Am., vol 
127, no 1, pp-542-548, 2010.
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Attenuation and dispersion are linked
• Causality ⇒ k(ω)=k (ω)+jk (ω) satisfies• Causality ⇒ k(ω)=kr(ω)+jki(ω) satisfies 

Kramers-Kronig relationship. 
– Dispersion can be found from attenuation and vice versa

• Transfer function through medium:
– H(ω) = ejk(ω)·l where l is travel distance

• Kramers-Kronig relation is similar to Hilbert 
transform in filter theory
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transform in filter theory

19
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Causal filter: Hilbert transform
• Hilbert transform in the time domain:• Hilbert transform in the time domain:

– Impulse response h(t)=hr(t)+j hi(t)

• P.V.: Cauchy principal value

– A convolution with kernel x(t) = 1/(πt) 

• Hilbert transform in the frequency domain:
– Kernel: x(t) = 1/(πt) X(ω)=- j·sgn(ω)
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– Filter’s frequency response H(ω) = Hr(ω)+j Hi(ω) 
• Transforms of real and imaginary parts of h(t), not real/imag part of H(ω)!

– To find Hi(ω): Add 900 to Hr(ω) for ω>0, subtract 900 for ω<0
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Attenuation - Dispersion

• Attenuation and dispersion• Attenuation and dispersion 
are linked to guarantee 
causality

• O'Donnell, Jaynes, Miller, 
`Kramers-Kronig relationship 
between ultrasonic 
attenuation and phase 
velocity,' J. Acoust. Soc. Am., 
1981

P di t d di i i d
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– Predicted dispersion in dog 
myocardium 

– Very small => distortion of pulse 
form in medical ultrasound is 
negligible
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Lossy materialsSelf-similarity, 
long-range Constitutivelong range
correlation, 

fractality

Constitutive
equations

Partial Power law
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differential
equation

attenuation
α=α0|ω|y
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Approaches:
1 Model the medium from first principles =>1. Model the medium from first principles => 

differential equation 
2. Measure the characteristics of the medium, 

fit to an equation (empirical, descriptive 
equation or differential equation)

Often hard to unite the two, i.e. find the 
differential equation that yields an 
attenuation that can be measured
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attenuation that can be measured
Even harder to relate such a differential 

equation to first principles in physics
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Lower-left: Descriptive approach
Find a partial differential equation that gives• Find a partial differential equation that gives 
the proper power law attenuation

• Does not necessarily have its root in 
fundamental principles in physics:

– May not be causal, i.e. will not model the proper 
dispersion 

– Solution can maybe be ’fixed’ afterwards
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Viscous losses: from spatial to 
temporal derivatives

k2 = ω2/c2+j(ν/c2)ωk2 => k2= ω2/c2  / (1-j(ν/c2) ω)

• Approx. 1: k2≈ ω2/c2 · (1+j(ν/c2)ω), small ω
• Resulting partial differential equation (time-derivatives only):

3. order
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• Approx. 2: k ≈ ω/c · (1+j(ν/2c2)ω): quadratic loss: 2. order
• (The last one is the same step as in problem 2.7)
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Loss: temporal/spatial or temporal 
derivatives
• P and S waves:• P- and S-waves:

Lu is a loss operator

• Viscoelastic equation (water, air, ..., Prob 2.7):
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– Second order spatial deriv: Invariance wrt. rotation and translation

• For ω·τ¿ 1:
frequency squared
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Szabo, 1994: Order of loss term 
1+exponent in attenuation term
• Third-order time derivative => quadratic loss:

• First-order time derivative => constant loss (ex, p. 26) 
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• Observation by Szabo: Exponent of loss term in 
differential equation is one more than exponent in kIm

– T. L. Szabo, ”Time domain wave equations for lossy media 
obeying a frequency power law, J. Acoust. Soc. Amer., 1994.
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Modified Szabo equation
• A fractional derivative interpretation of Szabo 1994:• A fractional derivative interpretation of Szabo 1994:

– Implicit Riemann-Liouville fractional derivative
– Hypersingular, improper integral for y≠0 or y≠2

• Modification
– Caputo fractional operator instead, in principle equal to: 

(sign change for y=2)
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– W. Chen and S. Holm, "Modified Szabo’s wave equation models 
for lossy media obeying frequency power law," JASA, Nov. 
2003. 
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Fractional derivative – a simple 
approach

Fourier property n integer:• Fourier property, n integer:

• Fractional derivative:
– Generalize n to any real number 
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Fractional spatial derivative
• Fractional Laplacian (-∇2)y/2 :

• Agrees with viscous wave eq, not just ∂3/∂t3 approx
• But still not causal as it does not have the right 

dispersion
– Actually no dispersion for low ω
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y

– W. Chen and S. Holm, "Fractional Laplacian time-space models 
for linear and nonlinear lossy media exhibiting arbitrary 
frequency dependency," JASA, Apr. 2004. 

30

UNIVERSITY 
OF OSLO

Lossy materialsSelf-similarity, 
long-range Constitutivelong range
correlation, 

fractality

Constitutive
equations

Partial Power law
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differential
equation

attenuation
α=α0|ω|y

31
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Upper-right: Constitutive equations
Find constitutive equations that will result in a• Find constitutive equations that will result in a 
partial differential equation that gives the 
proper power law attenuation

• Rooted in physics
• Ensures causality, i.e. will model the proper 

dispersion 
N d t b k t th t f th
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• Need to go back to the roots of the 
viscoelastic (lossy) wave equation
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Constitutive equation
Hooke’s law:• Hooke’s law:

– Stress T, strain S, displacement u:
– c = stiffness

» Compressional wave: c=K is the bulk modulus or the 
inverse of the compressibility

» Shear wave: c44 = μ is the shear modulus.

• Include a damper:
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– η: viscosity coefficient

Voigt model
(Wikipedia Commons)

33
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Viscoelasticity: standard
Constitutive eq :

S
• Constitutive eq.:

• Wave equation:

• Power law:
• Can we find a description with a general

P

P (S)
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Can we find a description with a general 
power law for both P- and S-waves?
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Stress-strain: fractional viscous term
Stress T as a function of strain S:• Stress, T, as a function of strain, S:

• z0 ∈ (0,1], we extend it to (0,2)
• Introduces memory to the loss mechanism
• Wave equation:
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– Zero-frequency propagation speed,  c0
2= c/ρ,

– Relaxation time τz0=η/c.

36
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Fractional wave equation

• Introduced in 1967:
– M. Caputo, “Linear models of dissipation whose Q is almost frequency 

independent-II,” Geophys J. R. Astron. Soc, 1967.
• Rediscovered; not rooted in constitutive eq., only to fit 

measurement
– M. Wismer, “Finite element analysis of broadband acoustic pulses through 

inhomogenous media with power law attenuation”, JASA, 2006 
• Link between Caputo and Wismer:
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• Link between Caputo and Wismer:
– J. F. Kelly and R. J. McGough, “Fractal ladder models and power-law 

wave equations”, JASA, 2009
• Analyzed both for low and high ωτ cases

– S. Holm and R. Sinkus, ”A unifying fractional wave equation for 
compressional and shear waves,” Journ. Acoust. Soc. Am., 2010.
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Lossy wave equation
F ti l

• Physics-based:
– Viscoelastic, y=2:

• Fractional 
derivatives:

– Szabo94 
(Chen,Holm03):

– Chen, Holm 04:
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– E-field in 
conductor, y=0

– Wismer 06, 
Caputo 67:
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Fractional Caputo wave equation
Dispersion relation:• Dispersion relation:
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High- and low-frequency approx.
1 Low frequency: ( ) z0 << 11. Low frequency: (ωτ) z0 << 1

» P-waves: Air: τ = 1.7·10-10 sec, water: τ = 6·10-13 sec, 
air: at least 100 MHz, water: at least 1 GHz

» YIG, Shear and pressure waves up to 100’s of MHz.

1. High frequency: (ωτ)z0 >> 1
– Ex: Shear waves in tissue, dynamic elastography
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, y g p y

40



20

UNIVERSITY 
OF OSLO

Summary Caputo equation
Stress strain:• Stress-strain:

• Wave eq.:

• Low-f (P-waves, low-f S): 
– y = z0+1, y ∈ (1,2], z0 ∈ (0,1]
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y 0 y ( ] 0 ( ]

• Hi-f, S-waves:
– y = 1-z0/2, y ∈ [0,1), z0 ∈ (0,2]
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z0, fract. deriv. – y, exp in power law

y=2: Water,air (P), YIG (P, S)

y=1.3: Liver (P)

y=1: Granite (P, S)
z0=0.2: Living cells (S)

•0.16-18: cortical
•0.26-0.29: intracellular

y=1.1: Aerogels (P)

y=0 5±0 15 : Aerogels (S)
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y 0.5±0.15 : Aerogels (S)

42



21

UNIVERSITY 
OF OSLO

Parallel development of wave 
equations with memory term
• Convolution term as loss operatorConvolution term as loss operator

• The relaxation function and its Fourier transform are

• Can show that it can be transformed to a fractional derivative and 
th i f th f (H l Si k 2010)
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thus is of the same form (Holm, Sinkus, 2010)
• Buckingham, “Theory of acoustic attenuation, dispersion, and pulse 

propagation in unconsolidated granular materials including marine 
sediments,” J. Acoust. Soc. Am.,1997.
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Normal vs fractal distribution of scatterers
Top: Usual assumption: PDFTop: Usual assumption: PDF 

is a “normal” distribution. 

Bottom: Much data from the 
natural world consists of an 
ever larger number of ever 
smaller values. The PDF is 
a fractal distribution.
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Liebovitch and Scheurle,Two 
lessons from fractals and 
chaos, Complexity, 2000
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Electromagnetic, atmosphere ?
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Wikipedia
45
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Array Processing Implications
Lossy media cause signals to decay more• Lossy media cause signals to decay more 
rapidly than predicted by ideal wave equation

– Limits range
– Ultrasound imaging: low frequency deeper 

penetration, but poorer resolution

• Attenuation and dispersion are coupled
– Attenuation ∝ f2 ⇒ dispersion is zero

DEPARTMENT OF INFORMATICS 46


