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Chapter 2.4 Refraction and diffraction
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Deviations from simple media

1. Dispersion: ¢ = ¢c(w)
— Group and phase velocity, dispersion equation: o = f(k) = c- k
— Evanescent ( = non-propagating) waves: purely imaginary k
2. Attenuation: ¢ = ¢y + jcg

— Wavenumber is no longer real, imaginary part gives
attenuation.

— Waveform changes with distance
3. Non-linearity: ¢ = ¢(s(t))

— Generation of harmonics, shock waves
4. Refraction: c=c(x,y,z)

—  Snell's law
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Reflection, refraction, diffraction

* Click
http://lectureonline.cl.msu.edu/~mmp/kap13/cd372.htm

When a wave meets the interface, it s
either relracted or rellected. A wave is diffracted by an aperture.
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4. Refraction - avbgyning

¢ Unchanged phase on

interface:
ki@ =k T =k T
« Fig 2.10:

|E;| - sin@; = |ky| - sin @ = |k¢| - sin 6,

e 0,= ei (same ¢)
» Snell's law: sind/c;=sin0d,/c,

< Willebrand Snell von Royen, Sl
NL 1591-1626 =
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Critical Angle — total reflection

* Total reflection for all 6, which result in 6,>90°
« Critical angle sin6,=c//c,

» Ex: steel ¢,=5800 m/s, water ¢,=1490 m/s,
0,<16.5°

 Important for containing 100% of transmitted
energy inside optical fibers
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Simple model for the sea

1=

c=ay
i
Y
. shﬂ:%-
y 0 Y

Figure 2.11 A linear change in the speed of sound with depth results in circular rays. The linear
sound profile is shown in the right panel.

Problem 2.8. More general: c=c,(1+ay)
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Linear speed variation, c(y)=ay

Find 6(y) when wave is horizontal at depth y,

* Snell’s law: sinf(y) _ sin6(y — dy)
c(y) c(y — 0y)
» Multiply by c(y-dy) and subtract sinf(y)
. . sin6
sin0(y—oy)—sin () = 220D 10y 55y e(w)]
c(y)
1 X
e |n the limit: =
(:]
1 dsing 1 dc r
N = - Y === =
) d dy  y=====
sinf(y) dy c(y) dy Yo ain gl
Y 0
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. Equation: 1 dsing _ 1 de

sind(y) dy c(y) dy
* Solution: In(sin®) = In(c) + Cy

) cty)
sinf(y) = C1e(y)
c=ay

— Linear variation:
— Boundary condition:

Final solution:

c(y)=ay
sinf(yy)=1 => C,=1/ay,

sin6 = C1c(y) = ay/ayo = y/yo
» A circle with radius y,
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Underwater acoustics:
Sound speed profiles

¢ =1448.6+4.618T —0.0523T > +1.25(S - 35) + 0.017D .

Sound speed m/s

e Bl Empirical law:
< Decreasing temperature oC = Ve|OCI'[y Of Sound (m/S),
onstant temperature = (o]
e P T = temperature (°C),

«S = salinity (per thousand, promille),
D = depth (m).

Fra: J Hovem, TTT4175
Marin akustikk, NTNU
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Sound propagation: underwater peak
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From: J Hovem, TTT4175
Marin akustikk, NTNU
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Deep sound channel

« c decreases as the water cools
but increases with depth. ST

* Deep sound channel (DSC) —

 From the cold surface at the
poles to ~1300 m at the equator

« Sound can propagate
thousands of kilometers

e 1950s: US Navy SOSUS
(Sound Ocean Surveillance
System) network to monitor
Soviet submarines. il

Sen mountain

e Kuperman and Lynch, “Shallow- & e
water acoustics”, Physics
Today, 2004

Polar latitudes

(]

Ray trapped in the
deep sound channel (DSC)

Typical
northern
sound-speed
profile

Typical mid latitude
sound-speed profile

< (m/s)

Range ~1000 km
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Sound in air

e c=331,4+0,6T
around room temperature Outgaing Rays’ of Sound
Under Neutral Conditions

When There |s No
Termperature Inversion

« Ex N
T=20 C =>¢c=343,4 m/s : » \ A Rsnugums

; ; " | Y Groun Jus
« Usually T falls with height N | e Sround st
Y / o Temmperature

Imversion

— Sound is chanbent out into .
space.

Sound can be heard over
much longer distances

» Elephants at sunrise and
dawn: range of infrasound
increases from 1-2 km to 10
km

(1 or 2 miles)
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* Inversion: opposite => T G hS
The Source —/7.-_—_\_/-7:'_"--_/

The Receptor
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lonosphere — odd propagation

Echo of 0.15-0.3 sec for
frequencies 1-4 MHz, i.e.
Up to 2-45.000 km ~ 2.7
earth radii

WA
e

G. T. Goldstone and G. R. A. Ellis,
"Observations of 1.91 MHz echoes
from the magnetic conjugate point
after propagation through a
magneto-ionic duct,” Proc.
Astronom. Soc Australia (3), 1986,
pp 333-335

S. Holm, Radiosignaler med mange
sekunders forsinkelse, Fra
Fysikkens Verden, side 110-113, nr
4, 2004
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2.4.2 Ray Theory

» Method for finding ray path based on
geometry alone = high frequency
approximation

» Read the details in the book if you need to
understand better underwater acoustics or
modeling of the ionosphere!
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Periodic media

(1,1} diractan

250-mm-long steel cylinder rods
lattice constant a=2.5 mm

radius of cylinders: R=1.0 mm
Csteel =6100 m/s, cair=334.5m/ s
f=41.21048.0 kHz

000 s rmsen
200 FIG. 2. (Calor culine) Sche-
. ..... b matic of the experimental setup
Ut Ansorner (5X(°) ,’ used to messute the tmnsmission
TR o0 0 of ultmscnis wave in a $C, con-
AN (ON0) sisting of two transducers, a Aat
_ 000 rectangular slsb of steel cylinders,
) o0 a function generator, and an oseil-
Emiing TAnscr @y i@ loscope. The 5C, the rectungular
@ 9 slib of steel cylinders shown as
N ] the middle-botiom inset, is placed
between twe transducers and the
l lefi-top irset shows measurements
of the amplitude compariscrs with
the absarber (solid) to without the
abeceber (dashed ).
Ed = o
= + i
0o o o oo

Funcllon Generaior

Ossilkscops

Feng, Liu, Chen, Huang, Mao, Chen, Li, Zhu, Negative refraction of acoustic waves in
two-dimensional sonic crystals, Physical Review B, 2005
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Periodic media

murfnon
Hugaien norma
Fatacton

e Zhanga, Liu: Negative
refraction of acoustic
waves in two-dimensional
phononic crystals,
Applied Physics Letters,
2004.
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Acoustic metamaterials can
manipulate sound waves in
surprising ways, which include
collimation, focusing, cloaking, sonic
screening and extraordinary
transmission.

Recent theories suggested that
imaging below the diffraction limit
using passive elements can be
realized by acoustic superlenses or
magnifying hyperlenses. These could
markedly enhance the capabilities in
underwater sonar sensing, medical
ultrasound imaging and non-
destructive materials testing.

Li et al, Experimental demonstration
of an acoustic magnifying hyperlens, 18

Nature 2000
AattHe-—==ouoy9
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Array Processing Implications

» Spatial inhomogeneities must be taken into
account by array processing algorithms
— The essence of matched field processing

* Waves propagating in an inhomogenous
medium rarely travel in a straight line
— Makes array processing/beamforming much harder
» Refraction can lead to multipath

— Can be modeled as a low-pass filter, e.g. loss of high
frequencies
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Diffraction

Ray theory: Geometrical model of optics
High-frequency — small wavelength model

Diffraction:
— Wavelength comparable to structure size
— Edges of shadows are not perfectly sharp
— Can hear around corners

In this course: mainly consequences of
diffraction
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Diffraction — (spredning)

acoustical
shadow

';;lund incidence
by diffraction
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Diffraction
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¢ Geometric acoustic is OK for dimensions > 1 wavelength
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Huygens’ principle

» Christian Huygens, NL, 1629-1695

» Each point on a travelling wavefront can be
considered as a secondary source of
spherical radiation

» Also a model for an oscillating piston =
acoustic source
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Mathematical formulation of diffraction

» Augustin Jean Fresnel (F) 1788 — 1827
» Gustav Robert Kirchhoff (D) 1824 — 1887

» Lord Rayleigh, John William Strutt (GB) 1842
— 1919, Nobel prize physics, 1904.

Arnold Johannes Wilhelm Sommerfeld (D)
1868 — 1951

» Joseph von Fraunhofer (D) 1787 - 1826
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Diffraction: deviation from
geometrical model

» Rayleigh-Sommerfeld diffraction formula from
a hole with aperture A:

: .
sy ==/ s(@) ZPURTY o paa
A A r

— Wave at x is a superposition of fields from the hole, due
to linearity of wave equation

— Weighted by a spherical spreading function exp{jkr}/r
— Also weighted by 1/
— Obliquity factor cos6
— Phase shift of n/2 due to 1/j
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Two approximations

» Fresnel, nearfield, (but not quite near)
» Fraunhofer, farfield

e Leads to

— important estimates for nearfield — farfield transition
distance

— Fourier relationship between aperture excitation and field
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Fresnel approximation
s(x) = j%\//AS(?h)expE‘jkr} cosfdA

e C0S 0~ 1, r~d foramplitude

* Phase:
— spherical surfaces ~ quadratic
— parabolic approximation
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Fresnel derivation

» Pointin the hole (z, 77, 0), in observation plane (x,y,z=d)
« Distance: r = [(z —#)% + (y — §)° + d?]*/?
(z—3)2+ (y— @')2]1/2
d2
» Approximate (1+x)12x~1+x/2, i.e. small x/D < small angles
(=824 (y—9)?
2d

* Use the above expression for the phase and r~d for the
amplitude in Rayleigh-Sommerfeld integral

r=d[1+

r~d-+
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Fresnel approximation

2d

s(z,y) = %1;&79;@ / | /A §(. ) exp {jk[(x — 324 (y— @)2]} didi

« Nearfield approximation & within ~15° of z-axis

Also called paraxial approximation
2D convolution between field in hole and h(x,y):
exp{jkd} jk(a? + )
h(z,y) = ex
(@y) = =50 ep T )

This is a quadratic phase function = the phase shift that
a secondary wave encounters during propagation

DEPARTMENT OF INFORMATICS

30




£ UNIVERSITY
“¥7 OF OSLO

Fraunhofer approximation

» Expand phase term in Fresnel approximation

o) = S [ [ 5y e 41 B2+ =02,

2d
» and neglect quadratic phase term variation

over hole
(z—7)°+(y—7)° = m2+y2—2m£—2y§z 22 +y?—20F—2yj

 If D = max linear dimension of hole, this is
equivalent to assuming (d=dist. from source):

2 2 ..
D/ o= ass> 20« Fresnel limit
24~ 2d 4x
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Fraunhofer approximation

o(.y) = exp&?fd} exp{Jk(r +y )}f/“ S(7.5) exp {Jk(m+yy)” #dj
J

» Far-field approximation: valid far away from
hole
* s(x,y) = 2D Fourier transform of field in hole
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Fourier transform relationship

* Very important result

» Link between the physics and the signal
processing!

 Basis for simplified expressions like angular
resolution ~ A/D etc

* Small hole leads to wide beam and vice versa
just like a short time-function has a wide
spectrum
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Nearfield-farfield limit

Not a clear transition, several limits are used, in
increasing size:

* dr = D4\ : Fresnel limit

e d=mr2/\A =n/4 - D23\ : Diffraction limit

e d = D%\ : max path length difference 1/8
» dp = 2D?/ : Rayleigh dist: A path = A/16

» Proportional to D%/A, multiplied by 0.25, 0.79,
1,or2
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1 MHz 13 mm, unfocused xdcr

) JULTRASIM - PLOT

Fle fxis Options Test Print Clear Subplot [
ARRAY-RESPONSE |Reference=1 [us] 13-FEB-2008 {0:56
Equal area annular array, N =1 rings i
FF = Inf[mm], =1 [MHz], osc= Inf stten=0 [dB/cmMHz] e
_ , ; ; : - .30 @
£ =
E J
= 40 L9 /
f -
g ° -50
E 60
< - Olympus-Panametrics
5 A303S
5 Eil (in our lab)
]
o
o
-90 . .
g Simulation:
g 10 http://www.ifi.uio.no/
20 . . L L . L L L . - i
20 40 B0 80 100 120 140 160 180 200 w
Range in [mm)], Azimuth focussinf [mm]  Envelope
D474 D/A=113 mm
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Array Processing Implications

+ Diffraction means that opaque objects located
between the source and the array can induce
complicated wavefields

— Scattering theory:
» Acoustics: Schools of fish
» Electromagnetics: rain drops
» Complicated, but important to understand
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Norsk terminologi

Bglgeligningen

Planbglger, sfeeriske bglger
Propagerende bglger, bglgetall
Sinking/sakking: o

Dispersjon

Attenuasjon eller demping
Refraksjon

Ikke-linearitet

Diffraksjon; naerfelt, fiernfelt
Gruppeantenne ( = array)
Kilde: Bl.a. J. M. Hovem: “"Marin akustikk", NTNU, 1999
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