Adaptive Array Processing

Sven Peter Näsholm
Department of Informatics, University of Oslo
INF5410, spring semester, 2010
svenpn@ifi.uio.no
Office phone number: 22840068

Slide 2: Chapter 7: Adaptive array processing

Minimum variance beamforming

- Generalized sidelobe canceler
- Signal coherence
- Spatial smoothing to de-correlate sources

Eigenanalysis methods

- Signal/noise subspaces
- Eigenvector method
- MUSIC

Slide 3: Delay-and-sum

stacking \triangleq adjustment of $\Delta_{0} \ldots \Delta_{M-1}$
Slide 4: Delay-and-sum, continued

- $z(t)=\sum_{m=0}^{M-1} w_{m} e^{-j \omega \Delta_{m}} y_{m}(t)$
- w_{m} : weight on signal $m \Rightarrow$ shading $=$ apodization
- Conventional D-A-S: \mathbf{w} independent of recorded signal data

Slide 5: Delay-and-sum on vector form

- Monochromatic source: $y_{m}(t)=e^{j\left(\omega t-\vec{k}^{\circ} \cdot \vec{x}_{m}\right)}$.
- Delayed signal: $y_{m}\left(t-\Delta_{m}\right)=y_{m}(t) e^{-j \omega \Delta_{m}}$

Define:

$$
\mathbf{w} \triangleq\left[\begin{array}{c}
w_{0} e^{j \omega \Delta_{0}} \\
w_{1} e^{j \omega \Delta_{1}} \\
\vdots \\
w_{M-1} e^{j \omega \Delta_{M-1}}
\end{array}\right] \xlongequal{\text { Delay-and-sum: }}\left[\begin{array}{c}
w_{0} e^{-j \vec{k} \cdot \vec{x}_{0}} \\
w_{1} e^{-j \vec{k} \cdot \vec{x}_{1}} \\
\vdots \\
\Delta_{m}=-\vec{k} \cdot \vec{x}_{m} / \omega^{\circ}
\end{array}\right], \mathbf{Y}(t) \equiv \vec{Y} \triangleq\left[\begin{array}{c}
y_{0}(t) \\
y_{1}(t) \\
\vdots \\
w_{M-1} e^{-j \vec{k} \cdot \vec{x}_{M-1}}
\end{array}\right]
$$

- Beamf. output: $z(t)=\sum_{m=0}^{M-1} w_{m} e^{-j \omega \Delta_{m}} y_{m}(t)=\mathbf{w}^{\mathrm{H}} \mathbf{Y}(t)$
- Power of $z(t)$:

$$
\begin{aligned}
\mathrm{E}\left\{|z(t)|^{2}\right\} & =\mathrm{E}\left\{\left(\mathbf{w}^{\mathrm{H}} \mathbf{Y}\right)\left(\mathbf{w}^{\mathrm{H}} \mathbf{Y}\right)^{\mathrm{H}}\right\}=\mathrm{E}\left\{\mathbf{w}^{\mathrm{H}} \mathbf{Y} \mathbf{Y}^{\mathrm{H}} \mathbf{w}\right\} \\
& =\mathbf{w}^{\mathrm{H}} \mathrm{E}\left\{\mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right\} \mathbf{w}=\mathbf{w}^{\mathrm{H}} \mathbf{R} \mathbf{w}
\end{aligned}
$$

Slide 6: Delay-and-sum on vector form, continued

Define:

Matrix of weights:

$$
\mathbf{W} \triangleq\left[\begin{array}{cccc}
w_{0} & 0 & \cdots & 0 \\
0 & w_{1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & w_{M-1}
\end{array}\right]
$$

Steering vector:

$$
\mathbf{e} \triangleq\left[\begin{array}{c}
e^{-j \vec{k} \cdot \vec{x}_{0}} \\
e^{-j \vec{k} \cdot \vec{x}_{1}} \\
\vdots \\
e^{-j \vec{k} \cdot \vec{x}_{M-1}}
\end{array}\right]
$$

- $\Rightarrow \mathrm{w}=\mathrm{We}$
- $z(t)=\mathbf{w}^{\mathrm{H}} \mathbf{Y}=[\underbrace{\mathbf{W e}}_{\mathbf{w}}]^{\mathrm{H}} \mathbf{Y}=\mathbf{e}^{\mathrm{H}} \mathbf{W}^{\mathrm{H}} \mathbf{Y} \xlongequal{\mathbf{w}^{\mathrm{H}}=\mathbf{W}} \underbrace{\mathbf{e}^{\mathrm{H}} \mathbf{W}}_{\left(\mathbf{w}^{\mathrm{H}}\right)} \mathbf{Y}(t)$
- Power of $z(t)$:

Slide 7: Delay-and-sum on vector form, continued

About e:

- Steering vector

$$
\mathbf{e} \triangleq\left[\begin{array}{c}
e^{-j \vec{k} \cdot \vec{x}_{0}} \\
e^{-j \vec{k} \cdot \vec{x}_{1}} \\
\vdots \\
e^{-j \vec{k} \cdot \vec{x}_{M-1}}
\end{array}\right]
$$

- Contains delays to focus in specific direction
- Represents unit amplitude signal, propagating in \vec{k} direction

In conventional $D-A-S: \underline{\mathbf{w} \text { independent of received signal data }}$

Slide 8: Estimation of spatial covariance matrix

- Averaging in time
- Averaging in space $=$ spatial smoothing $=$ subarray averaging

Slide 9: Minimum variance beamforming

Assume narrow-band signals

- Adaptive method. [Latin: adaptare "to fit to"]
- Allow w_{m} to also be complex and/or negative
- Sensor weights defined not only as function of problem geometry, but also as function of received signals

Slide 10: Minimum variance beamforming, continued

- "Minimum variance" $=$ "Capon" $=$ "Maximum likelihood" (beamforming)
- Constrained optimization problem
- New steering direction $\mathbf{e} \Rightarrow$ new calculation of element weights w_{m}

Minimum-variance key equations

\(\begin{array}{ll}1 \& \mathbf{w} \triangleq\left[\begin{array}{c}w_{0} e^{-j \vec{k} \cdot \vec{x}_{0}}

\vdots

w_{M-1} e^{-j \vec{k} \cdot \vec{x}_{M-1}}\end{array}\right] \Rightarrow\)| $\begin{array}{c}\min _{\mathbf{w}}\left(\mathbf{w}^{\mathrm{H}} \mathbf{R} \mathbf{w}\right), \\ \text { constraint: } \\ \mathbf{w}^{\mathrm{H}} \mathbf{1}=1\end{array}$ |
| :---: |$\Leftrightarrow \Leftrightarrow \mathbf{w}=\frac{\mathbf{R}^{-1} 1}{1^{\mathrm{H}} \mathbf{R}^{-1} 1}\end{array} \Rightarrow P(\mathbf{e})=\frac{1}{1^{\mathrm{H}} \mathbf{R}^{-1} 1}$

2	$\mathbf{w} \triangleq\left[\begin{array}{c}w_{0} \\ \vdots \\ w_{M-1}\end{array}\right] \Rightarrow$$\begin{array}{c}\min \left(\mathbf{w}^{\mathrm{H}} \mathbf{R w}\right), \\ \mathbf{w} \\ \text { constraint: } \\ \mathbf{w}^{\mathrm{H}} \mathbf{e}=1\end{array}$ $\mathbf{w}=\frac{\mathbf{R}^{-1} \mathbf{e}}{\mathbf{e}^{\mathrm{H}} \mathbf{R}^{-1} \mathbf{e}}$$\Rightarrow P(\mathbf{e})=\frac{1}{\mathbf{e}^{\mathrm{H}} \mathbf{R}^{-1} \mathbf{e}}$

- [beampattern $] \neq[$ steered response $]$

Slide 11: Minimum variance beamforming, continued

Example
Uniform linear array, $M=10$
Comparing:

- Delay-and-sum
- Minimum-variance

Investigating:

- Steered responses
- Beampatterns

Slide 12: Comparison: delay-and-sum / minimum-variance
1 source

Slide 13: Comparison: delay-and-sum / minimum-variance
2 sources

Slide 14: Comparison: delay-and-sum / minimum-variance
2 closely spaced sources

Slide 15: Example: Ultrasound imaging

Experimental setup

Slide 16: Example: Ultrasound imaging, continued

Resulting images

Slide 17: Example: Ultrasound imaging, continued

Experimental data, heart phantom

Slide 18: Sound example: Microphone array

Slide 19: Sound example, continued

- Single microphone mix.wav
- Delay-and-sum gaute_DAS.wav
- Minimum-variance gaute_adaptive.wav

Slide 20: Minimum-variance beamformer:

Uncorrelated signals required for optimum functioning

- Correlated signals may give signal cancellation
- Although constraint is fulfilled: signal propagating in the "look-direction" may be canceled by a correlated interferer

Slide 21: Minimum-variance / D-A-S example

2 correlated sources

Slide 22: Generalized sidelobe canceler

- Conventional D-A-S weights \mathbf{w}_{c} : steering in assumed propagation direction
- Adaptive/canceler portion: removal of other signals
- Blocking matrix B, blocks signal from assumed propagation direction from coming into "canceler part"
- \mathbf{w}_{a} : adaptive weights to emphasize what is to be removed
- Minimize total power. Unconstrained minimization:

$$
\min _{\mathbf{w}_{a}}\left(\mathbf{w}_{c}-\mathbf{B}^{\mathrm{H}} \mathbf{w}_{a}\right)^{\mathrm{H}} \mathbf{R}\left(\mathbf{w}_{c}-\mathbf{B}^{\mathrm{H}} \mathbf{w}_{a}\right) \Rightarrow \mathbf{w}_{a}=\left(\mathbf{B R B} \mathbf{B}^{\mathrm{H}}\right)^{-1} \mathbf{B R} \mathbf{w}_{c}
$$

- Full details: D\&J pp. 369-371

Slide 23: Eigenanalysis and Fourier analysis

(Chapter 7.3.1)
Eigenvalues / Eigenvectors of \mathbf{R}

$$
\mathbf{R} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

- Eigenvalues real \& positive: $\lambda_{i} \geq 0, \forall i$
- Eigenvectors \mathbf{v}_{i} : orthogonal
\Rightarrow For $\mathbf{V} \triangleq\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{M} \\ \mid & \mid & & \mid\end{array}\right]: \mathbf{V}$ is unitary matrix

$$
\Leftrightarrow \mathbf{V}^{\mathrm{H}} \mathbf{V}=\mathbf{I} \Leftrightarrow \mathbf{V}^{-1}=\mathbf{V}^{\mathrm{H}}
$$

Slide 24: Eigenvalue decomposition

Eigendecomposition of $\mathbf{R} \& \mathbf{R}^{-1}$: The spectral theorem

- $\mathbf{R}=\sum_{i=1}^{M} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathrm{H}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{H}}$
- $\mathbf{R}^{-1}=\sum_{i=1}^{M} \frac{1}{\lambda_{i}} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathrm{H}}=\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^{\mathrm{H}}$
- Note above: Same eigenvectors, but inverse eigenvalues

Slide 25: [Signal + noise] \& [noise] subspaces

$$
\mathbf{R}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{H}}=\underbrace{\mathbf{V}_{\mathrm{s}} \boldsymbol{\Lambda}_{\mathrm{s}} \mathbf{V}_{\mathbf{s}}^{\mathrm{H}}}_{\begin{array}{c}
\text { from } \\
\text { signal }
\end{array}}+\underbrace{\mathbf{V}_{\mathrm{n}} \boldsymbol{\Lambda}_{\mathrm{n}} \mathbf{V}_{\mathrm{n}}^{\mathrm{H}}}_{\begin{array}{c}
\text { from } \\
\text { noise }
\end{array}}
$$

Slide 26: Beamformer output powers

Minimum variance, $\hat{\mathbf{R}}=\mathrm{E}\left\{\mathbf{Y} \mathbf{Y}^{\mathrm{H}}\right\}$: "full \mathbf{R} estimate"
$P_{\mathrm{MV}}(\mathbf{e})=\frac{1}{\underbrace{\mathbf{e}^{\mathrm{H}} \mathbf{V}_{\mathrm{s}} \boldsymbol{\Lambda}_{\mathrm{s}}^{-1} \mathbf{V}_{\mathrm{s}}^{\mathrm{H}} \mathbf{e}}_{\begin{array}{c}\text { signal-plus-noise } \\ \text { subspace }\end{array}}+\underbrace{\mathbf{e}^{\mathrm{H}} \mathbf{V}_{\mathrm{n}} \boldsymbol{\Lambda}_{\mathrm{n}}^{-1} \mathbf{V}_{\mathrm{n}}^{\mathrm{H}} \mathbf{e}}_{\begin{array}{c}\text { noise } \\ \text { subspace }\end{array}}}=\frac{1}{\sum_{i=1}^{N_{s}} \frac{1}{\lambda_{i}}\left|\mathbf{e}^{\mathrm{H}} \mathbf{v}_{i}\right|^{2}+\sum_{i=N_{s}+1}^{M} \frac{1}{\lambda_{i}}\left|\mathbf{e}^{\mathrm{H}} \mathbf{v}_{i}\right|^{2}}$

Eigenvector method, $\hat{\mathbf{R}}=\sum_{i=N_{s}+1}^{M} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathrm{H}}:$ "noise-only \mathbf{R} estimate"

$$
P_{\mathrm{EV}}(\mathbf{e})=\frac{1}{\mathbf{e}^{\mathrm{H}} \mathbf{V}_{\mathrm{n}} \boldsymbol{\Lambda}_{\mathrm{n}}^{-1} \mathbf{V}_{\mathrm{n}}^{\mathrm{H}} \mathbf{e}}=\frac{1}{\sum_{i=N_{s}+1}^{M} \frac{1}{\lambda_{i}}\left|\mathbf{e}^{\mathrm{H}} \mathbf{v}_{i}\right|^{2}}
$$

MUSIC, $\hat{\mathbf{R}}=\sum_{i=N_{s}+1}^{M} \mathbf{v}_{i} \mathbf{v}_{i}^{\mathrm{H}}:$ "normalized noise-only \mathbf{R} estimate"

$$
P_{\mathrm{MUSIC}}(\mathbf{e})=\frac{1}{\mathbf{e}^{\mathrm{H}} \mathbf{V}_{\mathrm{n}} \mathbf{V}_{\mathrm{n}}^{\mathrm{H}} \mathbf{e}}=\frac{1}{\sum_{i=N_{s}+1}^{M}\left|\mathbf{e}^{\mathrm{H}} \mathbf{v}_{i}\right|^{2}}
$$

Slide 27: [Signal + noise], \& [noise] subspaces, continued

- \mathbf{R} always Hermitian $\Rightarrow \forall$ eigenvectors orthogonal
- N_{s} largest eigenvectors: span the [signal+noise subspace]
- $M-N_{s}$ smallest span the [noise subspace]
- Signal steering vectors \in [signal + noise subspace $], \perp$ [noise subspace]
- [Largest eigenvectors $] \neq[$ signal vectors $]$ However: signal vectors are linear combinations of [largest eigenvectors]

Slide 28: EV / MUSIC

- (Inverse of) projection of possible steering vectors onto the noise subspace
- MUSIC: Dropping λ_{i} in $\hat{\mathbf{R}} \Leftrightarrow$ noise whitening
- EV \& MUSIC: peaks at Directions-Of-Arrival (DOAs)
- No amplitude preservation
- Require knowledge of \# signals, N_{s}
- How to estimate N_{s} ?

Slide 29: MV / EV / MUSIC comparison

Slide 30: Situation with signal coherence

$$
\mathbf{R}=\mathbf{S C S}^{\mathrm{H}}+\mathbf{K}_{\mathrm{n}}
$$

- signal coherence \Rightarrow rank deficient signal matrix $\mathbf{S C S}^{H}$
- For minimum-variance: May cause signal cancellation
- Gives signal+noise-subspace consisting of linear combinations of signal vectors
- EV \& MUSIC: may fail to produce peaks at DOA locations
- Want to reduce cross-correlation terms in \mathbf{C}.
- Cure: Spatial smoothing (subarray averaging)

